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Abstract

The centrality in a network is often used to measure nodes’ importance and model
network effects on a certain outcome. Empirical studies widely adopt a two-stage pro-
cedure, which first estimates the centrality from the observed noisy network and then
infers the network effect from the estimated centrality, even though it lacks theoret-
ical understanding. We propose a unified modeling framework, under which we first
prove the shortcomings of the two-stage procedure, including the inconsistency of the
centrality estimation and the invalidity of the network effect inference. Furthermore,
we propose a supervised centrality estimation methodology, which aims to simulta-
neously estimate both centrality and network effect. The advantages in both regards
are proved theoretically and demonstrated numerically via extensive simulations and
a case study in predicting currency risk premiums from the global trade network.

Keywords: Hub centrality, Authority centrality, Measurement error, Global trade network,
Currency risk premium
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1 Introduction

In many disciplines such as economics, finance, and sociology, there have been great

interests in studying the network effect, that is, the effect of a network on certain outcomes

of interest due to relationships among agents (e.g., individual persons, firms, industries, and

countries). One popular approach is to bridge the outcome and network via an intermediary

– the centrality of the network.

As a low-rank summary of a network, centrality is a common metric to measure agents’

importance in the network, which in turn induces a wide range of agent behaviors and

consequently shapes certain outcomes of them. A strong motivation for centrality is that

many real-world networks exhibit a low-rank structure, i.e., the leading singular value

dominates the rest in magnitude (Zhu and Yang, 2020, Liu and Tsyvinski, 2020). Centrality

itself has rich implications on studying human capital investment (Jackson et al., 2017),

information sharing and advertisement (Banerjee et al., 2019, Breza and Chandrasekhar,

2019), firms’ investment decision-making (Allen et al., 2019), the identification of banks

that are too-connected-to-fail (Gofman, 2017), and stock returns (Ahern, 2013, Richmond,

2019), among many others.

To be specific, researchers often regress the outcome of interest on the network centrality

to study the network effect. This approach has been implemented in many fields including

portfolio management, finance, and social networks, among others. In portfolio manage-

ment, Hochberg et al. (2007), Ahern (2013) and Richmond (2019) demonstrated that, for a

trade network of firms or countries, a strategy that shorts portfolios with high centralities

and longs those with low centralities yields a significant excess return, and regressing risk

metrics on the centrality of the financial institutions helps avoid amplification of severe ad-

versarial shocks to the central institutions in the network. Liu (2019) examined the effect

of centrality in the production network on the government’s investment to illustrate the
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effectiveness of industrial policies. For social networks, Ozsoylev et al. (2014) and Rossi

et al. (2018) regressed the excess returns of investment managers on the centrality of their

social networks to study trading behaviors; Kornienko and Granger (2018) and Mojzisch

et al. (2021) studied the network effect on mental health by regressing the stress level on

the network centrality.

Network centrality is not directly observable however. In practice, researchers often, in

Stage 1, compute the centrality from a given network adjacency matrix via some algorithm

and then, in Stage 2, feed the computed centrality into the regression. Such practice will

be referred to as the two-stage procedure throughout.

The validity of the two-stage procedure, however, hinges upon one critical assumption

that the centrality is computed from a noiseless observed adjacency matrix in Stage 1 so

that it is accurate. In reality, network is often observed with noise due to the cost of

data collection (Lakhina et al., 2003). For example, the friendship network on Facebook

or Twitter is far from a perfect measure of real-life social connections; using self-reported

friendships to measure social ties suffers from subjective biases (Banerjee et al., 2013);

using patent citations to measure the knowledge flow between companies neglects the

communication among workers or executives (Zhu and Yang, 2020). Overlooking noise in

networks has demonstrable consequences for network analysis (Borgatti et al., 2006, Frantz

et al., 2009, Wang et al., 2012, Martin and Niemeyer, 2019, Candelaria and Ura, 2022).

Given a noisy observed network, one has two goals in understanding the network effect:

(G1) Estimate centrality accurately from the observed noisy network;

(G2) Estimate and conduct valid inference of the network effect through the centrality.

The two-stage procedure attempts to achieve these two goals in a sequential manner.

It has the following drawbacks: Stage 1 only uses the information from the noisy network

to estimate centrality without incorporating the auxiliary information from the regression

on the centrality, which can result in inaccurate estimation of the centrality due to large
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observational errors in the network; Stage 2 is contingent upon Stage 1 – regressing the

outcome on the inaccurately estimated centrality exacerbates an inaccurate estimation of

the regression coefficients, thereby invalidating the followup statistical inference.

To remedy the shortcomings of the two-stage procedure, we first propose a unified

framework that fuses two models to achieve the two goals: one network generation model

based on the centralities for (G1) and one network regression model for the dependency

of the outcome on the centralities for (G2). We then propose a novel supervised network

centrality estimation (SuperCENT) methodology that accomplishes both (G1) and (G2)

simultaneously, instead of sequentially.

SuperCENT exploits information from the two models – the network regression model

contains auxiliary information on the centrality in addition to the network, and thus

provides supervision to the centrality estimation. The supervision effect improves the

centrality estimation, which in turn benefits the network regression. Therefore, the

centrality estimation and the network regression complement and empower each other.

Under the unified framework, we derive the theoretical convergence rates and asymptotic

distributions of the centralities and regression coefficients estimators, for both the two-stage

and SuperCENT methods, which can be used to construct confidence intervals.

We summarize our contributions as follows. Firstly, to the best of our knowledge, we are

the first to provide a unified framework to study properties of centrality estimation and in-

ference, and the subsequent network regression analysis when the observed network is noisy.

Secondly, we are the first to demonstrate that the common practice of two-stage can be

problematic. For centrality estimation (G1), the two-stage centrality estimates in Stage 1 are

inconsistent when the network noise is large. This finding of inconsistency extends the phase

transition phenomenon of the singular vectors (Shabalin and Nobel, 2013) and the eigenvec-

tors (Shen et al., 2016) to the network centrality problem. For the network regression (G2),

the centrality coefficient estimates are biased and inconsistent, and the ad-hoc inference can
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be either conservative or invalid depending on the network noise level.

Thirdly, we show theoretically and empirically that the proposed SuperCENT domi-

nates the two-stage universally. Specifically, for (G1), SuperCENT yields a more accurate

centrality estimation; for (G2), SuperCENT mitigates the coefficient estimation bias, and

thus boosts the estimation accuracy under large network noise. Furthermore, SuperCENT

provides confidence intervals that are valid and narrower than the ad-hoc two-stage

confidence intervals.

Lastly, we apply both SuperCENT and the two-stage to predict the currency risk pre-

mium, based on an economic theory on the relationship between a country’s currency risk

premium and its importance within the global trade network (Richmond, 2019). We show

that a long-short trading strategy based on the SuperCENT centrality estimates yields a

return three times as high as that by the two-stage procedure. Furthermore, SuperCENT

can verify the economic theory via a rigorous statistical test while the two-stage fails.

Our paper contributes to several lines of literature on network modeling, network

regression with centralities, covariate-assisted network modeling, network effect modeling,

and measurement error. Firstly, the proposed unified framework unites the literature

on the noisy network and network regression with centralities. Most existing network

literature focuses on only one of the two aspects. On one hand, in the presence of noisy

networks, many empirical studies estimated the true network without involving centrality

(Lakhina et al., 2003, Handcock and Gile, 2010, Banerjee et al., 2013, Le et al., 2018,

Rohe, 2019, Breza et al., 2020). On the other hand, numerous research, including those

aforementioned, focused on the network regression model with centralities while ignoring

the estimation error of the centralities inherited from the noise of the network.

Our unified framework also relates to the line of research on networks with covariates

supervision (Zhang et al., 2016, Li et al., 2016, Binkiewicz et al., 2017, Yan et al., 2019,

Ma et al., 2020). One major difference is that SuperCENT uses both the covariates and
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the response to supervise the estimation, instead of only the covariates. In addition, the

existing literature focused mostly on network formation or community detection.

In econometrics, there have been significant efforts to model the network effect on an

outcome of interest through regression (De Paula, 2017). One popular approach follows

the pioneer work of Manski (1993), the “reflection model” (Lee, 2007, Bramoullé et al.,

2009, Lee et al., 2010, Hsieh and Lee, 2016, Zhu et al., 2017). This approach models the

network effect through the observed adjacency matrix itself, not through the centralities

like ours. There is also a recent surge of literature in network recovery based on the

reflection model (De Paula et al., 2019, Battaglini et al., 2021). This literature focuses on

the issue of identifiability of the network effect, while our work attends to both estimation

and inference of the network effect. Another popular approach assumes that the outcome

depends on individual fixed effects, and casts the role of the network through the Laplacian

matrix, such that connected nodes share similar individual fixed effects (Li et al., 2019, Le

and Li, 2020). This approach emphasizes the network homophily, while ours concentrates

on the nodes’ position or importance in the network using the centralities.

Lastly, our methodology further contributes to the measurement error literature.

Most measurement error literature concerns a regression setup where the covariates are

directly observed with errors, which leads to bias in the coefficient estimation (Garber

and Klepper, 1980, Pischke, 2007, Abel, 2017). We extend it to the network regression

problem. Specifically, the two-stage procedure resembles the measurement error problem:

the estimated centralities that are used as covariates in the regression of Stage 2 contain

estimation error instead of measurement error. Nevertheless, the derivation of the two-

stage bias is not a trivial extension of the classical results because it involves the analysis

of the asymptotic joint distributions of the two-stage centrality estimators. Furthermore,

SuperCENT corrects the coefficient estimation bias induced by the estimation errors and

provides valid inference for the regression coefficients under less restrictive assumptions.
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The rest of this article is organized as follows. Section 2 provides the background

and formally introduces the unified framework. Descriptions of the two-stage procedure

and SuperCENT are given in Section 3. Theoretical properties are studied in Section 4

and the simulation study is shown in Section 5. Section 6 presents the case study of the

relationship between currency risk premiums and the global trade network centralities.

Section 7 concludes with a summary and future work. The supplementary materials contain

additional background information on network and centralities, detailed descriptions of the

algorithms for rank-one, multi-rank network models as well as undirected networks, more

simulation results, additional information of the case study, some concrete mathematical

expressions, and the proofs. We developed an R package, SuperCENT, that implements the

methods (https://jh-cai.com/SuperCENT).

2 A unified framework

2.1 Set-up and background of network

We observe a sample of n observations px1, y1q, px2, y2q, . . . , pxn, ynq where yi P R is

the response and xi P Rp´1 is the vector of p ´ 1 covariates for the i-th observation as in

the multivariate regression setting. Let y P Rn denote the column vector of outcome and

X P Rnˆp denote the design matrix including the intercept, which is assumed to be fixed.

In a network, the nodes are agents and the edges represent relationships between the

agents. The edges can be directed or undirected depending on whether the relationships

are reciprocal. This article focuses on directed networks, and the Supplement provides the

results for undirected ones. A weighted directed network with n nodes can be represented

by an asymmetric adjacency matrix A P Rnˆn where aij’s represent the weighted edges.

Researchers have used multiple versions of network centrality. We refer to Chapter

2 of Jackson (2010) for a comprehensive introduction to centrality. We focus on the

hub and authority centralities (Kleinberg, 1999), which extend the well-known eigenvector

centrality associated with the undirected network to the directed network.
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For directed networks, there is a distinction between the giver and the recipient, such

as the citee-citor in citation networks or web-page networks, the exporter-importer in

trade networks, and the investor-investee in investment networks. The hub and authority

centralities take into account the different roles of the giver and the recipient, and thus

measure the importance of nodes from these two different perspectives. The concept of

“hubs and authorities” originated from web searching. Intuitively, the hub centrality of a

web page depends on the total level of authority centrality of the web pages it links to,

while the authority centrality of a web page depends on the total level of hub centrality

of the web pages it receives links from. Supplement S1 provides a toy example to further

illuminate this intuition.

Let ui denote the hub centrality and vi denote the authority centrality for node i,

and let u “ pu1, u2, . . . , unqJ, v “ pv1, v2, . . . , vnqJ. Their relationship hence satisfies

u “ Av, v “ AJu. Given A, to calculate the centralities, Kleinberg (1999) proposes to

iterate with proper normalization as follows till convergence, for k “ 1, 2, 3, . . . ,

upkq
Ð Avpk´1q, vpkq

Ð AJupkq. (1)

This iterative algorithm is also well known as the power method to compute the singular

value decomposition (SVD) of A (Van Loan and Golub, 1996). Therefore, the hub and

authority centralities are the leading left and right singular vectors of A respectively. It is

worth mentioning that such definition of centrality and the algorithm essentially assume

that the adjacency matrix A is noiseless.

2.2 A unified framework

We propose the following unified modelling framework that encapsulates (G1)-(G2),
$

&

%

A “ A0 ` E “ duvJ
` E,

y “ Xβx ` uβu ` vβv ` ϵ.

(2a)

(2b)

The intuitions of the unified framework are as follows. The hub and authority centralities

are calculated as the leading left and right singular vectors of the observed adjacency
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matrix. As such, it is natural to consider the generative model (2a) for the observed

adjacency matrix, where A0 is the true adjacency matrix, the true centralities u,v P Rn

are the parameters to be estimated, and E is the additive noise of mean zero. Then, (2b)

naturally models the relationship between the centralities and the response variable. Here,

βx P Rp is the vector of the regression coefficients, βu, βv P R are the coefficients of the hub

and authority centralities, and the regression error ϵ has mean zero. Note that in (2b) it

is the true centralites, not the estimated ones, that have direct impacts on the response.

Under the unified framework (2) with observed data tA,X,yu, our original two goals

(G1)-(G2) become concrete: (i) estimate the true centralities u,v and the true network

A0; (ii) estimate the regression coefficients βx, βu, βv; (iii) construct valid confidence

intervals (CIs) for the centralities and the regression coefficients.

The low-rank mean plus noise model (2a) has been commonly adopted for matrix estima-

tion or denoising (Shabalin and Nobel, 2013, Yang et al., 2016, Cai and Zhang, 2018), matrix

completion (Candes and Plan, 2010), and network community detection with slight modifi-

cations (Rohe et al., 2011, Zhao et al., 2012, Lei and Rinaldo, 2015, Le et al., 2016, Gao and

Ma, 2021). There is a strand of literature on latent variables network models which can be

rewritten as (2a) (Hoff, 2009, Soufiani and Airoldi, 2012, Fosdick and Hoff, 2015).

Model (2a) assumes a rank-one instead of multi-rank structure for A0 for multiple rea-

sons. Firstly, since the centralities are our focus and defined to be the leading pair of

singular vectors in the literature, the rank-one structure is a reasonable approximation.

Secondly, it is commonly observed that real networks’ first singular value dominates the

latter ones, a phenomenon that we demonstrate with four real networks in Supplement S2,

namely, the global trade, innovation, production, and equity-holding networks. Thirdly, the

rank-one structure simplifies the theoretical analysis, which offers many insights for under-

standing the two-stage and SuperCENT estimators, as well as for extension to multi-rank.

Lastly, Remark 1 extends the rank-one model to a multi-rank version, and Supplements
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S3.2 and S5.4 contain the corresponding estimation procedure, the simulation results, and

the theoretical analysis. As a prelude, the same SuperCENT methodology (Section 3.2)

remains valid for multi-rank models and the simulation results are qualitatively similar.

The unified framework unites our estimation goals and provides a theoretical framework

to study the behaviors of the two-stage procedure and motivates our new methodology.

Under Model (2a) and some extra assumptions on the noise, Shabalin and Nobel (2013)

proves that if the noise-to-signal ratio is large, the leading singular vector of A and that of

A0 converge to orthogonal as n goes to infinity. This implies that the naive estimation of the

centralities by implementing SVD on the observed network will fail in the presence of large

noise, which invalidates the common practice of two-stage. Furthermore, unifying the two

models motivates our supervised network centrality estimation (SuperCENT) methodology,

which we will describe formally in the next section. We name it the “supervised” centrality

estimation because pX,yq in the regression (2b) can be thought of as the supervisors

that offer additional supervision to the centrality estimation. It is expected that if the

centralities indeed have strong predictive power (that is, the centrality regression coefficients

βu, βv are large compared with the regression noise level), the estimation of the centralities

will be better when considering both (2a) and (2b) instead of only (2a). With the improved

estimation of the centralities, SuperCENT can further improve the estimation and inference

of the regression model.

Remark 1. (Multi-rank unified framework) The unified framework can be extended to

a multi-rank version, by substituting the rank-one network model (2a) with a multi-rank

network model with non-diverging rank r ď n, i.e.,

A “ A0 ` E “ UDV J
` E “ duvJ

`

r
ÿ

l“2

dlulv
J
l ` E, (3)

whereD is a diagonal matrix of dimension rˆr with the singular values d ą d2 ě . . . ě dr ě

0 as the diagonal entries, and U “ pu,u2, . . . ,urq and V “ pv,v2, . . . ,vrq are two matrices

of size n ˆ r with orthogonal columns of length
?
n. The hub and authority centralities,
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u and v, still correspond to the leading left and right singular vector respectively. The

regression model (2b) remains unchanged and only includes u and v instead of the entire U

and V because it is common practice to consider the network effect via only the centralities.

Remark 2. (Model identifiability) Note that u,v are only identifiable up to a scalar. SVD

assumes u,v have unit length. However, we assume }u}2 “ }v}2 “
?
n, in view of the fact

that the network can grow and consequently the centralities should roughly be on the same

scale with the network. This prevents the centrality regression coefficients from exploding

as the network grows. We further assume n ą p ` 2 and X is full rank.

3 Methodology

Sections 3.1-3.2 formally introduce the two-stage procedure and SuperCENT respectively.

Section 3.3 is devoted to the prediction problem when new nodes are added to the network

together with their covariates. Supplement S3 contains tuning parameter selection and Su-

perCENT for multi-rank networks and undirected networks with eigenvector centrality.

3.1 The two-stage procedure

As mentioned in the introduction, given the unified framework (2) and the observed

data tA,X,yu, a natural and ad-hoc procedure is the two-stage estimator, which can

serve as a benchmark. In view of (2a), the first stage is to perform SVD on the observed

adjacency matrix A and take its leading left and right singular vectors and rescale them

to have length
?
n, denoted as ûts and v̂ts, as the estimates for the centralities u and v

respectively. The superscript ts stands for two-stage. In view of (2b), given the estimates

ûts and v̂ts, the second stage performs the ordinary least square (OLS) regression of y on

X and ûts, v̂ts, treating ûts, v̂ts as fixed covariates.

Hence, the two-stage procedure solves the following two optimizations sequentially,

$

’

’

’

&

’

’

’

%

pd̂ts, ûts, v̂ts
q :“ argmin

d,}u}2“}v}2“
?
n

}A ´ duvJ
}
2
F ,

β̂
ts
:“ pppβ

ts

x q
J, β̂ts

u , β̂
ts
v q

J :“ argmin
βx,βu,βv

}y ´ Xβx ´ ûtsβu ´ v̂tsβv}
2
2.

(4a)

(4b)
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It follows that β̂
ts

“ pxWJ
xWq´1

xWJy, where xW “ pX, ûts, v̂ts
q.

Remark 3. (Two-stage “ad-hoc” confidence interval (CI)) Besides the estimation of the

unknown parameters, valid inference is necessary to evaluate the network effect. Empirical

studies usually construct CIs of the regression coefficients from the second stage regression

by assuming that ûts and v̂ts are fixed and noiseless. This assumption simplifies the infer-

ential statement, because it follows that covpβ̂
ts

q “ σ2
ypxWJ

xWq´1, where xW “ pX, ûts, v̂ts
q.

However, the observed network A is one realization from A0 ` E as in Model (2a), which

makes its singular vectors ûts, v̂ts random. If one ignores this randomness, the inference

becomes invalid. We refer to such “ad-hoc” CI as the “two-stage-adhoc” method. To cor-

rect for the randomness of the estimated singular vectors ûts, v̂ts and obtain valid inference,

Section 4 derives the asymptotic distribution of the two-stage estimator and discusses the

theoretical property of the naive two-stage-adhoc CI. Section 5 shows that the two-stage-

adhoc CI is either conservative or invalid, depending on the network noise level.

3.2 SuperCENT methodology

In the two-stage procedure, the estimation of the regression model in Step 2 depends

on the centrality estimation in Step 1. The more accurate the centrality estimates are,

the better we are able to make inference in the regression model. On the other hand, the

centralities are incorporated in the regression model as regressors, so pX,yq can supervise

centrality estimation and thus boost the estimation accuracy.

Motivated by the above intuition, we propose to optimize the following objective

function to obtain the SuperCENT estimates,

pd̂, û, v̂, pβx, β̂u, β̂vq :“ argmin
βx,βu,βv

d,}u}2“}v}2“
?
n

1

n
}y ´ Xβx ´ uβu ´ vβv}22 `

λ

n2
}A ´ duvJ}2F , (5)

where } ¨ }F is the Frobenius norm of a matrix. The above objective function combines

the residual sum of squares (4b) and the rank-one approximation error of the observed
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network (4a). The connection between the two terms is the centralities. The trade-off

between them can be tuned through a proper selection of the hyper-parameter λ.

To solve (5), we use a block gradient descent algorithm by updating pd̂, û, v̂, pβq

iteratively until convergence, where pβ “ ppβ
J

x , β̂u, β̂vqJ. The initialization can be the first

stage of the two-stage procedure, i.e., pd̂ts, ûts, v̂ts
q. The complete algorithm with a given

tuning parameter λ is shown in Algorithm S1 of Supplement S3.1.

Note that although û and v̂ with length
?
n are only identifiable up to the sign, ûv̂J,

ûβ̂u and v̂β̂v are uniquely identifiable. One can determine the sign of all the parameters

as follows: find the entry that has the largest magnitude in pûJ, v̂J
q, and then make that

entry positive and determine the signs of the rest in û and v̂ accordingly.

On a separate note, under the multi-rank unified framework presented in Remark 1,

the same SuperCENT methodology applies without any modification (see Section S3.2).

Simulation studies show similar results as the rank-one setting (see Section S5.4).

3.3 Prediction

Once the model is fitted with training data, it can be used for prediction. Suppose

there are n˚ new observations, which includes the new covariates X˚, the new network

among themselves A˚, as well as the new edges connecting them with the n training

observations. The original network A is then augmented to Aall as follows:

Aall
“

¨

˚

˝

A11 A12

A21 A22

˛

‹

‚

“

¨

˚

˝

A A12

A21 A˚

˛

‹

‚

“ d

¨

˚

˝

uvJ uv˚J

u˚vJ u˚v˚J

˛

‹

‚

`

¨

˚

˝

E11 E12

E21 E22

˛

‹

‚

. (6)

The above expression is obtained from assuming (2a) for Aall, i.e.

Aall
“ duallvallJ

` Eall, (7)

where uall “ puJ,u˚J
qJ and vall “ pvJ,v˚J

qJ. Given the regression equation ŷ˚
“

X˚
pβx ` u˚β̂u ` v˚β̂v, to predict y˚, u˚ and v˚ needs to be estimated. One can either

perform SVD on A˚ or SVD on Aall and reserve only the relevant components of the

singular vectors. The latter approach is more accurate and is formally described in
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Algorithm S3 of the Supplement.

Since ûall and v̂all are only identifiable up to sign, we determine their signs in Step 2 of

Algorithm S3 such that the angles between the training proportions and the SuperCENT

estimates are less than 90 degrees. Recall that for identifiability, û, v̂ are of length
?
n,

and β̂u, β̂v are of the corresponding scale. In prediction, we need to scale û˚ and v̂˚

accordingly so that β̂uû
˚

` β̂vv̂
˚ is on par with β̂uû ` β̂vv̂ (See Step 3 of Algorithm S3).

4 Theoretical properties

We investigate the statistical properties of the two-stage procedure in Section 4.1 and

SuperCENT in Section 4.2. We start with introducing notations and assumptions. Let

δts,sc “ pλd2 ` β2
u ` β2

vq
´2

„

2λd2 ` β2
u ` β2

v

d2n
σ2
a ´ σ2

y

ȷ

, (8)

which depends on the network signal and noise strengths d, σa, the regression signal and

noise levels βu, βv, σy, the sample size n, and the tuning parameter λ. As we will show

later, δts,sc is a crucial quantity that measures the discrepancy between the two-stage (ts)

and SuperCENT (sc).

The properties of two-stage and SuperCENT will be studied under a different subset

of the following assumptions respectively.

Assumption 1. The network noise E and regression noise ϵ have independent normal

entries with mean 0 and variance σ2
a and σ2

y respectively, and they are independent.

Assumption 2. The fixed design matrix in the regression X P Rnˆp satisfies n ą p ` 2,

XJX is invertible, and the dimension p is non-diverging.

Assumption 3. The scaled network noise-to-signal ratio κ :“ σ2
a

d2n
Ñ 0.

Assumption 4. (i) The scaled signal-and-noise relationship for the hub centrality from

both network and regression pκ ´ β2
uδts,scq Ñ 0; (ii) The scaled signal-and-noise relationship

for the authority centrality from both network and regression pκ ´ β2
vδts,scq Ñ 0.

In Assumption 1, the independence is assumed for simplicity. If the network noises eij’s

or the regression noises ϵi’s are dependent with known covariance, the theorems and the
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corollaries below still hold with slight modifications by simply plugging their covariance

matrices into appropriate places; if they are dependent with unknown covariance, extra

assumptions on the covariance structure need to be made and new methodologies and

theories should be developed. Assumption 2 simply states that the regression is in the

conventional low-dimensional fixed-design regime.

Assumption 3 is required for the consistency of the two-stage, which essentially requires

the signal-to-noise ratio (SNR) of the network to be large enough. Otherwise, the two-stage

centrality estimation is inconsistent and the regression coefficient estimation is biased.

Assumption 4 is required for the consistency of SuperCENT and it is less restrictive in

general than Assumption 3, which will be further explained in Remark 6. Therefore, to

achieve consistency, SuperCENT requires weaker network SNR than the two-stage.

Throughout this section, we focus on the unified framework with the rank-one network

model (2), whose properties are more comprehensible. The same proof strategy can be

applied under the multi-rank unified framework.

4.1 Theoretical properties of the two-stage procedure

In this section, we summarize the theoretical properties of the two-stage estimator.

Additional theorems and interpretations are given in Supplement S4.1.

Under Assumptions 1-3, the two-stage estimators are consistent, with asymptotic

distributions in Theorem S1 and convergence rates in Corollaries S1-S2. They have

the following implications on centrality estimation and inference of the regression: 1.

For centrality estimation, Corollary S1 states that the convergence rate of two-stage is

essentially the network noise-to-signal ratio κ. Since real networks tend to have diverging

noise level or shrinking signal strength as the network grows, the two-stage estimators will

be thus inconsistent; 2. For regression inference, Theorem S1 and Corollary S2 show that

the asymptotic covariance of pβ
ts
involves both σ2

y and σ2
a, not just σ

2
y, which signifies that

the two-stage-adhoc CI is invalid as it assumes error-less pûts, v̂ts
q.
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Corollary 1 states that, when Assumption 3 is violated, the two-stage estimator is in-

consistent in Stage 1, leading to estimation biases for the regression coefficients in Stage 2.

Corollary 1. (Bias of β̂ts
u , β̂

ts
v when two-stage is inconsistent) Let ρ “ corpu,vq. If βx “ 0

or covpX, puvqq “ 0pˆ2, then under the unified framework (2) and Assumptions 1-2,

plim β̂ts
u “

p1 ` κ ´ ρ2qβu ` κρβv

p1 ` κq2 ´ ρ2
and plim β̂ts

v “
p1 ` κ ´ ρ2qβv ` κρβu

p1 ` κq2 ´ ρ2
. (9)

Corollary 1 explicates the directions of biases in β̂ts
u and β̂ts

v and has consequences on

the inference, resembling the measurement error problem which we review in Remark S6.

The following remarks discuss the a few special cases of the corollary and the two-stage

ad-hoc confidence interval (CI) of βu. Remark S5 discusses the conditions in the corollary.

Remark 4. (Directions of the biases of β̂ts
u and β̂ts

v ) For Corollary 1 there are some spe-

cial cases when Assumption 3 is violated, i.e., κ Û 0. (i) When the two true centralities are

uncorrelated, ρ “ 0, plim β̂ts
u “ 1

1`κ
βu and plim β̂ts

v “ 1
1`κ

βv. The OLS estimate is biased

towards zero, and the degree of bias depends on the attenuation factor, 1
1`κ

, similar to the

classical measurement error results. The classical results, however, are derived under sim-

pler assumptions; hence they are not directly applicable under our unified framework. Note

that if κ Ñ 0, plim β̂ts
u “ βu and plim β̂ts

v “ βv; but the traditional estimate of σ2
y,

RSS
n´1

, over-

estimates σ2
y. (ii) When ρ ‰ 0, if |βu| " |βv|, then plim β̂ts

u «
p1`κ´ρ2qβu

p1`κq2´ρ2
, which is equiva-

lent to plim β̂ts
u ´βu « ´

p1`κqκ
p1`κq2´ρ2

βu. This implies that β̂ts
u has attenuation bias. As for β̂ts

v ,

plim β̂ts
v ´ βv «

ρκ
p1`κq2´ρ2

βu, which implies that β̂ts
v is biased away from zero if signpβuq “

signpβvq. (iii) When βu and βv have similar size, the directions of biases depend on the rela-

tionships of βu, βv, ρ and κ. For β̂ts
u , the asymptotic bias is plim β̂ts

u ´βu “
´κrp1`κqβu´ρβvs

p1`κq2´ρ2
.

Because κ ą 0 and 0 ă ρ ă 1, the denominator is always larger than 0; thus, the direction

of the bias depends on the sign of p1 ` κqβu ´ ρβv: when βu ą
ρ

1`κ
βv, plim β̂ts

u ´ βu ă 0;

when βu ă
ρ

1`κ
βv, plim β̂ts

u ´ βu ą 0. Similar conclusions can be drawn for β̂ts
v .
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Remark 5. (Comments on the two-stage “ad-hoc” CI of βu) Remarks 4 and S6 have a few

implications on the CI for βu when the two-stage estimator is consistent (κ Ñ 0). (i) When

all the quantities in the asymptotic variance of β̂ts
u (S28)-(S29) are known, both terms are

needed to construct valid inference. Using (S28) alone, i.e., the “two-stage-adhoc” method

obtained via software directly from the regression in Stage 2, yields invalid inference unless

σa “ 0 or ũ K ṽ as discussed in Remark S3. (ii) When the quantities are unknown and

need to be estimated, the inference based on the two estimated terms of (S28)-(S29) will

be unnecessarily wide, thereby even more conservative. This is because the inference based

on the first estimated term (S28) alone is already conservative and σ̂2
y further over-estimates

σ2
y in (S29). On the other hand, when κ Û 0, the two-stage inference is invalid.

4.2 Theoretical properties of SuperCENT

Denote SuperCENT estimators from Algorithm S1 with a given tuning parameter λ as

d̂, û, v̂, and pβ “ pppβxqJ, β̂u, β̂vqJ. Let pA “ d̂ûv̂J be the SuperCENT estimate of A0.

Theorem 1. Under the unified framework (2) and Assumptions 1, 2 and 4, the SuperCENT

estimators converge to the following normal distributions asymptotically,

1. Centralities: for each i “ 1, . . . , n

pûi ´ uiq
D

ÝÑ N
´

0,Σu,ii

¯

and pv̂i ´ viq
D

ÝÑ N
´

0,Σv,ii

¯

; (10)

2. Network: for each i, j “ 1, . . . , n
´

pAij ´ A0,ij

¯

D
ÝÑ N

´

0,ΣA0,i`npj´1q,i`npj´1q

¯

; (11)

3. Network effect:
´

pβ ´ β
¯

D
ÝÑ N

´

0p`2,Σβ

¯

, (12)

where Σu,Σv,ΣA0
and Σβ are functions of pσa, d,u,v, σy,X, βu, βv, λq, whose specific

forms are given in Supplement S4.3.

Comparing the covariance matrices with those of the two-stage in Theorem S1, all

Σu,Σv,ΣA0
and Σβ involve both σ2

a and σ2
y due to the simultaneous estimation, while
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Σts
u,Σ

ts
v and Σts

A0
of the two-stage only involve σ2

a and Σts

β involves both. Following

Theorem 1, Corollaries 2-3 provide the convergence rates of the network-related quantities

(û, v̂, pA) and the regression coefficient estimates (pβ) respectively.

Corollary 2. (Convergence rates of û, v̂ and pA) Under the unified framework (2) and

Assumptions 1, 2 and 4, the SuperCENT estimators satisfy the following,

1

n
E}û ´ u}22 “

ˆ

σ2
apn ´ 1q

d2n2
´

n ´ p ´ 2

n
β2
uδts,sc

˙

p1 ` op1qq “ O
`

κ ´ β2
uδts,sc

˘

, (13)

1

n
E}v̂ ´ v}22 “

ˆ

σ2
apn ´ 1q

d2n2
´

n ´ p ´ 2

n
β2
vδts,sc

˙

p1 ` op1qq “ O
`

κ ´ β2
vδts,sc

˘

, (14)

E
›

› pA ´ A0

›

›

2

F

}A0}
2
F

“

ˆ

σ2
ap2n ´ 1q

d2n2
´

n ´ p ´ 2

n

`

β2
u ` β2

v

˘

δts,sc

˙

p1 ` op1qq “ O
`

κ ´
`

β2
u ` β2

v

˘

δts,sc
˘

.(15)

Corollary 3. (Asymptotic property of pβ) Under the unified framework (2) and Assump-

tions 1, 2 and 4, the SuperCENT estimators satisfy the following,

Epβ̂u ´ βuq
2

“ Epβ̂ts
u ´ βuq

2
“ O

ˆ

σ2
y

n
`

σ2
apβ2

u ` β2
vq

d2n2

˙

,

Epβ̂v ´ βvq
2

“ Epβ̂ts
v ´ βvq

2
“ O

ˆ

σ2
y

n
`

σ2
apβ2

u ` β2
vq

d2n2

˙

,

Cov
´

pβx ´ βx

¯

“ Cov
´

pβ
ts

x ´ βx

¯

.

The two-stage estimator β̂
ts
achieves the same rate under Assumptions 1, 2 and 3.

Remark 6. (The role of δts,sc) Comparing Corollaries S1 and 2, the discrepancies between

the two-stage and SuperCENT estimators of the centralities and the true network are all

proportional to δts,sc.The consistency of the two-stage requires Assumption 3, i.e., κ Ñ

0, whilst the consistency of SuperCENT requires Assumption 4, i.e., pκ ´ β2
uδts,scq Ñ 0

and pκ ´ β2
vδts,scq Ñ 0. It can be seen that, whenever δts,sc ą 0, SuperCENT always

outperforms the two-stage. When both Assumptions 3-4 hold, two-stage and SuperCENT

are both consistent, but SuperCENT converges faster; when Assumption 3 is violated and

Assumption 4 holds, SuperCENT is consistent while the two-stage is not.

The positiveness of δts,sc requires
2λd2`β2

u`β2
v

d2n
σ2
a ´σ2

y ą 0, which depends on the interplay

of pσa, d, σy, βu, βv, n, λq. Specifically, δts,sc is positive, when the signal of the regression
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βu, βv is large, the regression noise σy is small, the signal of the network d is small, or

the network noise σa is large. This exactly verifies our intuition: when the regression

SNR is high, we gain information from the regression to assist centrality estimation; and

the advantage is more pronounced when the network SNR is weak, which is exactly when

the two-stage becomes inconsistent while SuperCENT remains consistent. Moreover, δts,sc

involves a tuning parameter λ, and is positive when λ is large enough. This is especially

true when λ takes the optimal value λ0 “ nσ2
y{σ2

a given in the remark below.

Remark 7. (Optimal λ) Minimizing the convergence rates (13), (14), or (15) with respect

to λ leads to the optimal tuning parameter λ0 “
nσ2

y

σ2
a
. With the optimal λ0, SuperCENT

achieves its best performance and obtains the most improvement over the two-stage. Plug-

ging the optimal λ0 into (8), we obtain the discrepancy δts,sc “

κ2

σ2
y

1`κ

ˆ

β2u
σ2
y

`
β2v
σ2
y

˙ , which is

always positive. This implies that as long as the tuning parameter is properly selected,

SuperCENT will always be superior over the two-stage.

Remark 8. (SuperCENT-λ̂0 and SuperCENT-λ̂cv) The benefit of the optimal value λ0

is two-fold: 1) to benchmark the cross-validation (CV) procedure in Algorithm SS4; 2) to

provide a candidate for the tuning parameter λ by plugging in the two-stage estimates of σ2
y

and σ2
a, i.e., λ̂0 “ npσ̂ts

y q2{pσ̂ts
a q2, instead of the time-consuming cross-validation. We refer to

the SuperCENT with λ̂0 as SuperCENT-λ̂0. Furthermore, λ̂0 can be used as a guide to lay

out the cross-validation grid points in Algorithm SS4, to obtain λ̂cv and SuperCENT-λ̂cv.

Remark 9. (Comparison of the estimation of u,v,A0 when two-stage is inconsistent)

For the two-stage procedure, ûts, v̂ts, pA
ts

is consistent if and only if κ “
σ2
a

d2n
Ñ 0, which

implies the network SNR has to be large enough for the two-stage to be consistent. When

κ “ Op1q, the two-stage procedure is inconsistent. Can the SuperCENT estimates remain

consistent under this regime? The answer is positive.

Plugging in the optimal λ0, the rate of E}û ´ u}22{n in (13) becomes
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κ
1 ` κβ2

v

σ2
y

1 ` κ
´

β2
u

σ2
y

`
β2
v

σ2
y

¯ , (16)

which is obviously faster than the rate of E}ûts
´u}22{nκ in (S26). We want the above rate

to converge to 0 when κ “ Op1q. Given (16), the convergence of û boils down to the SNR

of u and v in the network regression model, i.e., β2
u

σ2
y
and β2

v

σ2
y
. One sufficient condition for

convergence is when β2
u

σ2
y

Ñ 8 and β2
v

σ2
y

“ Op1q, which means that, to guarantee convergence

of û, the signal for u has to be stronger than the signal for v and the noise σy.

If we want to guarantee the convergence of v̂ under this regime, one sufficient condition

is β2
v

σ2
y

Ñ 8 and β2
u

σ2
y

“ Op1q. This conflicts with the requirement of the convergence of û.

Fortunately, the rates of both û and v̂ are faster than those of ûts and v̂ts, so SuperCENT

always improves the estimation: when β2
u{σ2

y " β2
v{σ2

y “ Op1q or β2
v{σ2

y " β2
u{σ2

y “ Op1q,

one of û and v̂ will be consistent. In other words, no matter κ Ñ 0 holds or not, û is

consistent under Assumption 4(i) and v̂ is consistent under Assumption 4(ii). We will

demonstrate this phenomenon in the simulation.

For the estimation of A0 using the optimal λ0, the rate of E} pA ´ A0}2F {}A0}2F in

(15) becomes κ
”

1 ` κ
´

β2
u

σ2
y

`
β2
v

σ2
y

¯ı´1

, which is much faster than the rate of E} pA
ts

´

A0}
2
F {}A0}

2
F “ κ in (S27). Better yet, to ensure pA is consistent, we only require either

β2
u

σ2
y

Ñ 8 or β2
v

σ2
y

Ñ 8. This means that, as long as one of û or v̂ is consistent, pA is also

consistent, while two-stage pA
ts
is only consistent when both ûts and v̂ts are consistent.

Remark 10. (Comparison of pβ
ts
and pβ) Note that Corollary 3 states that the asymptotic

variances and covariances of the two-stage and SuperCENT estimators of βu, βv,βx are the

same. But the property for the two-stage holds under Assumption 3, while the property

for the SuperCENT holds under Assumption 4. When both Assumptions 3-4 hold, i.e.,

both the two-stage and SuperCENT are consistent, from the perspective of regression

coefficient estimation, SuperCENT and the two-stage are similar and the supervision effect

of SuperCENT only takes place for the estimation of u,v and A0. However, if Assumption
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3 does not hold but Assumption 4 does (with a large regression SNR and a proper tuning

parameter), the two-stage regression coefficient estimation is biased as shown in Corollary

1, but the SuperCENT regression coefficient estimates are still consistent and unbiased

with the covariances shown in Corollary 3.

5 Simulation

In this section, we investigate the empirical performances, including the estimation and

inference properties of the two-stage and SuperCENT estimators under various settings.

Section 5.1 describes the simulation setups and Section 5.2 shows the results under the

inconsistent regimes of the two-stage. Additional simulations, including the consistent

regime of the two-stage, a phase-transition experiment, and robustness check under the

multi-rank network model, are deferred to Supplement S5. Messages under multi-rank

model remain the same as those under the rank-one model.

5.1 Simulation setup

We generate the network following (2a). The elements of u are first generated from

i.i.d. Np0, 1q and v “ 0.5u ` ϵv where ϵv are generated from i.i.d. Np0, 1q. u and v are

then re-scaled to have length
?
n. For the regression model (2b), the regression coefficients

are βx “ p1, 3, 5qJ, the design matrix X consists of a column of 1’s and p ´ 1 columns

whose entries follow Np0, 1q independently.

For the properties of the estimators and inference, only the network SNR d{σa and the

regression SNR pβu{σy, βv{σyq matter. Hence, we fix n “ 28, d “ 1, and βv “ 1 and vary

σa, σy, and βu. To study the effect of the regression SNR, we consider σy P 2´4,´2,0 and

βu P 20,2,4, while ensuring β2
u

σ2
y

ě
β2
v

σ2
y
. As the network SNR is solely controlled by σa, we

vary σa to cover both regimes when the two-stage estimator is consistent or inconsistent.

Specifically, under the consistent regime of the two-stage, i.e., when the network noise-to-

signal ratio κ “
σ2
a

d2n
Ñ 0, we consdier σa P 2´4,´2 to keep κ ă 2´12; under the inconsistent

regime of the two-stage, i.e., κ “ Op1q, we consider σa P 20,2 so that κ P 2´8,´4 “ Op1q.
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The simulation results under the inconsistent regime are presented below in this section,

while those under the consistent regime are given in Supplement S5.1.

For estimation property, we compare the following procedures: 1. Two-stage; 2.

SuperCENT-λ0, which implements Algorithm S1 with oracle λ0 “ nσ2
y{σ2

a using the

true σy, σa and serves as the benchmark; 3. SuperCENT-λ̂0 is SuperCENT with esti-

mated tuning parameter λ̂0 “ npσ̂ts
y q2{pσ̂ts

a q2, where pσ̂ts
y q2 “ 1

n´p´2
}ŷts

´ y}22 and pσ̂ts
a q2 “

1
n2 } pA

ts
´A0}2F are estimated from the two-stage procedure; 4. SuperCENT-λ̂cv is Super-

CENT with tuning parameter λ̂cv chosen by cross-validation as in Algorithm SS4.

For inference property, we consider the following procedures to construct the confidence

intervals (CIs) for the regression coefficient: 1. Two-stage-adhoc: β̂ts ˘ z1´α{2σ̂
OLSpβ̂tsq,

where z1´α{2 denote the p1 ´ α{2q-quantile of the standard normal distribution, β̂ts is the

two-stage estimate of β and σ̂OLSpβ̂tsq is the standard error from OLS, assuming ûts, v̂ts

are fixed predictors; 2. Two-stage-oracle: β̂ts˘z1´α{2σpβ̂tsq, where σpβ̂tsq is the standard

error of β̂ts, whose mathematical expressions are given in (S28)-(S29) or (S31)-(S32) with

the true parameters plugged in; 3. Two-stage-plugin: β̂ts ˘ z1´α{2σ̂pβ̂tsq, where σ̂pβ̂tsq

is the standard error of β̂ts by plugging all the two-stage estimators into (S28)-(S29) or

(S31)-(S32); 4. SuperCENT-λ0-oracle: β̂
λ0 ˘z1´α{2σpβ̂λ0q, where β̂λ0 is the estimate of β

by SuperCENT-λ0 and σpβ̂λ0q follows (S28)-(S29) or (S31)-(S32), with the true parameters

plugged in; 5. SuperCENT-λ̂cv: β̂
λ̂cv ˘ z1´α{2σ̂pβ̂λ̂cvq, where β̂λ̂cv is the estimate of β by

SuperCENT-λ̂cv and σ̂pβ̂λ̂cvq is obtained by plugging the SuperCENT-λ̂cv estimates into

(S28)-(S29) or (S31)-(S32). The experiments are repeated 500 times.

5.2 Simulation results under the inconsistent regime of two-stage

From the perspective of estimation, we compare the following metrics: the estimation

accuracy for the centralities, the network, and the regression coefficients. Let P denote

the projection matrix. Figure 1 shows the loss lpû,uq “ }P û ´ Pu}22 and the bias β̂u ´

βu, respectively, across different σa, σy and βu with d “ 1 and βv “ 1. Losses such
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(a) Boxplot of log10plpû,uqq.
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(b) Boxplot of the bias β̂u ´ βu. The dashed lines correspond to no bias.

Figure 1. Inconsistent regime of two-stage: Boxplot of log10plpû,uqq for the four estimators
across different σa, σy and βu with fixed d “ 1, βv “ 1. The super-imposed red symbols show
the theoretical rates of the two-stage in Corollary S1 and SuperCENT in Corollary 2 in Figure
1a and the median of the bias in Figure 1b respectively.

as lpv̂,vq “ }P v̂ ´ Pv}22, lp pA,A0q “ } pA ´ A0}
2
F {}A0}

2
F , lpβ̂u, βuq “ pβ̂u ´ βuq2{β2

u,

lpβ̂v, βvq “ pβ̂v ´ βvq2{β2
v , and the bias β̂v ´ βv are given in Supplement S5.2.

Figure 1a shows the boxplot of log10plpû,uqq. The rows correspond to log2pσaq and

the columns correspond to log2pβuq. For each panel, the x-axis is log2pσyq and the y-

axis is log10plpû,uqq. The super-imposed red symbols show the theoretical rates of ûts

in Corollary S1 and that of û in Corollary 2. As expected, the three SuperCENT-based

methods estimate u much more accurately than the two-stage procedure. In particular, the
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supervision effect of pX,yq is more pronounced when the noise of the outcome regression

(σy) is small, or when the signal of the outcome regression (βu) is large, or when the network

noise-to-signal (σa

d
“ σa) is large. The numerical comparison validates Remarks 6 and 9

on the theoretical comparison of the estimators. Comparing the three SuperCENT-based

methods, SuperCENT-λ̂cv and SuperCENT-λ̂0 are sometimes worse than the benchmark

SuperCENT-λ0, but still better than the two-stage. SuperCENT-λ̂0 is typically comparable

to or worse than SuperCENT-λ̂cv, because SuperCENT-λ̂0 fails to locate the optimal λ0

due to inaccurate estimate of σa and σy from the two-stage procedure.

Figure 1b shows the estimation bias β̂u ´ βu. With large σa or large βu, the two-stage

estimates suffer from sever attenuation bias, while SuperCENT can alleviate the bias.

The attenuation bias of the two-stage can be explained by Corollary 1 and Remark 4 as

follows. In this regime where κ “ 2´8,´4 Û 0, u and v are correlated with ρ “ 2´1
?
1.25

, and

βu P 22,4 ą 1 ¨ 2´1.2 “ βv
ρ

p1`κq
, then plim β̂ts

u ´ βu ă 0. Hence, β̂ts
u has an attenuation bias

and the bias becomes larger as βu increases.

From the perspective of inference property, Figure 2 shows the empirical coverage prob-

ability (CP) and the average width of the 95% confidence interval for βu respectively. The

CP and width for the centralities, the network, and βv are given in the Supplement.

Figure 2a shows that the bias in the estimation of βu by the two-stage further affects its

confidence interval. For the empirical coverage, when βu is small (leftmost column), all the

methods are close to the nominal level. When βu increases and σa remains small (top right

two panels), all the methods (except two-stage-oracle) remain valid, though for different

reasons: the two SuperCENT based methods remain valid because there is no estimation

bias and the estimation of the standard error is accurate; while two-stage and two-stage-

adhoc remain valid mainly because they over-estimate σ2
y , and this conservativeness hides

the issue of bias. Two-stage-oracle uses the true σ2
y and the issue of bias can not hide,

hence the corresponding intervals undercover. When βu increases and σa gets large too
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(a) Empirical coverage of CIβu . The dashed lines show the nominal confidence level 0.95.
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Figure 2. Inconsistent regime of two-stage: Empirical coverage and log10 of the width of CIβu

across different σa, σy and βu with d “ 1 and βv “ 1. SuperCENT variants are labelled as circles
(˝ ‚) and the two-stage variants are labelled as triangles (△ İ ▲). The hollow ones are for oracles
and the solid ones are for non-oracles.

(bottom right two panels), over-estimation of σ2
y can no longer conceal the issue of bias and

all two-stage related methods become invalid. Again, SuperCENT can mitigate the bias

and the CP is closer to the nominal level.

As for the width of CIβu , Figure 2b shows that the confidence intervals by the Super-

CENT based methods have better coverage and are narrower than those by the two-stage

methods. The improvement in width is more significant with larger βu, σa.
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6 Global trade network and currency risk premium

In this case study, we demonstrate that SuperCENT can provide more accurate estima-

tion of the centralities from the global trade network. This has a profound and lucrative

implication on portfolio management because the centrality is closely related to currency

risk premium, i.e., the excess return from holding foreign currency compared to the US

dollar. We further show the advantage of SuperCENT over the two-stage in the inference

of regression coefficients, and thus strengthens a related economic theory.

In international finance literature, economists have been studying extensively the cur-

rency risk premium and puzzled by its driving forces. One recent theory, developed by

Richmond (2019) using a general equilibrium, shows that countries’ positions in the trade

network can explain the difference in currency premiums and countries that are central in

the trade network exhibit lower currency risk premiums. This theory has two implications:

(i) the regression coefficients for the centralities should be negative; (ii) international in-

vestors can leverage and profit from a long-short strategy for foreign exchange – take a long

position in currencies of countries with low centralities and a short position in currencies of

countries with high centralities. Therefore, if the centralities can be estimated accurately,

one can yield a significant investment return based on the strategy.

Motivated by Richmond (2019), we investigate how the global trade network drives the

currency risk premium by regressing the currency risk premium on the centrality of the

international trade network. To be specific, we consider a triplet of tA,X,yu, where A

is the country-level trade network, y is the currency risk premium, and X is the share

of world’s GDP. Since all these quantities are not directly available, we compute them

following Richmond (2019). It is worth mentioning that the trade linkage in A is defined

as the trade volume normalized by the pair-wise total GDP, which represents the relative

trade (export/import) intensity between two countries. We use a 5-year moving average:
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when considering year t, average is taken from year t´4 to year t. More details are provided

in Supplement S6.1. We focus on the period between 1999 and 2013 and include the 24

countries/regions whose exchange rates are available during this period.12 In Figure 3,

the dotted line shows the time series plot of the rank of the 5-year moving average of risk

premium from 2003 to 2012 for the 24 countries/regions.3 In each year, we rank the 24

countries/regions’ risk premiums from the largest to the smallest as the 1st to 24th. We

show a circular plot to visualize the average trade volume (2003-2012) in Figure S29.

Centrality estimation. Since neither the two-stage nor SuperCENT is applicable for

panel data, we will repeat the analysis for each year from 2003 to 2012. Besides the network

and the response variable, we also include the GDP share as a predictor, which is defined

as the percentage of country/region GDP among the total GDP of all available countries

in the sample for that year. In summary, the unified framework is, for each t,

aijt “ d ¨ Hubit ˆ Authorityjt ` eijt,

yit “ α ` βut ¨ Hubit ` βvt ¨ Authorityit ` βxt ¨ GDP shareit ` ϵit.

In Sections 4 and 5, we have demonstrated that the two-stage is problematic under large

network noise. In this case study, the observational error of the network comes from two

sources: GDPs and the trade volumes, because each entry of the observed network aijt is

defined as the trade volume normalized by their GDPs. The accounting of GDP has been

a challenge in macroeconomics (Landefeld et al., 2008). For the trade volume, measure-

ment errors are mostly due to (i) underground or illegal import and export; (ii) excluding

service trade; (iii) trade cost like transportation or taxes (Lipsey, 2009). Consequently, the

observed trade network can be very noisy and the two-stage will perform badly.

On the other hand, SuperCENT can significantly improve over the two-stage when

the network noise is large. In what follows, we focus on SuperCENT-λ̂cv using 10-fold

1Euro was first adopted in 1999. The bilateral trade data is available till 2013.
2The list of country acronyms is provided in Supplement S6.
3We leave the last available year 2013 for the validation purpose.
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Figure 3. Time series of ranking of risk premium in descending order and ranking of hub
centrality estimated by two-stage and SuperCENT in ascending order from 2003 to 2012. The
vertical dashed line indicates 2008, the year of the financial crisis.

cross-validation. We will refer SuperCENT-λ̂cv to SuperCENT for simplicity and use the

superscript sc for all the SuperCENT-λ̂cv related estimates. Figure 3 shows the time series

plots of the ranking of the hub centrality estimated by two-stage and SuperCENT for the

24 countries/regions, together with the ranking of the currency risk premium. Figure S28

is for the authority centrality. We rank the centrality in ascending order and the risk

premium in descending order. Based on the negative relationship between centralities and

risk premium established in Richmond (2019), the closer the trends of rankings between

centralities and risk premium are, the better the centralities capture the time variation

in the risk premium. The centrality estimated by the two-stage procedure is relatively

more stable over time compared to SuperCENT. This is because SuperCENT incorporates

information of both the GDP share and the currency risk premium, which is more volatile

than the trade network itself. Asian trade hubs such as Hong Kong (HKG) and Singapore

(SGP) are the most central ones; while countries like South Africa (ZAF) and New Zealand
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Figure 4. Time series of the next-year return from 2004 to 2013 based on a strategy that takes a
long position on the currencies with the lowest 3 centralities and a short position on the currencies
with the highest 3 centralities estimated from 2003 to 2012 respectively.

(NZL) are peripheral. Comparing with the ranking of risk premium, the time variation is

not reflected in the centrality estimated by the two-stage procedure, while it is well captured

by SuperCENT. For the 2008 financial crisis, the SuperCENT centralities fluctuate together

with the risk premium while the two-stage centralities mostly remain unchanged.

To emphasize the importance of accurate centrality estimation for portfolio manage-

ment, we examine whether a long-short strategy based on SuperCENT’s estimated cen-

trality can significantly boost investment performance over two-stage. For either two-stage

or SuperCENT, we take a long position on the currencies with the lowest 3 centralities

(bottom 10%) and a short position on the currencies with the highest 3 centralities (top

10%). We obtain a return based on the estimated centrality of the period between year t´4

and t. Figure 4 shows the year t`1 return based on this strategy. The return based on the

centrality estimated by SuperCENT is much higher than that of the two-stage procedure.

Table 1 shows the 10-year average return based on this strategy with the top and bottom

3, 4, and 5 currencies, respectively. The 10-year average return based on the SuperCENT

centralities increased more than twice from that of the two-stage procedure.

Inference of regression. We further demonstrate the superiority of SuperCENT in

inference. Again since our method is not directly applicable to longitudinal data, we take

the 10-year average of trade volume and GDP to construct a 10-year trade network and
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Table 1: The 10-year average return

Top/Bottom 3 Top/Bottom 4 Top/Bottom 5

Hub Authority Hub Authority Hub Authority

SuperCENT 0.0031 0.0021 0.0036 0.0019 0.0033 0.0014
Two-stage 0.0003 -0.0014 0.0008 -0.001 0.001 -0.0006
Relative difference 1 136% 253% 338% 285% 237% 320%

Table 2. The summary table of the regression comparing three methods in terms of coefficient
estimation, standard error (in parenthesis) and the significant level (by asterisks).

Two-stage-adhoc Two-stage SuperCENT-λ̂cv

GDP share βx ´0.0159˚ (0.0083) ´0.0159˚ (0.0083) ´0.0162˚˚˚ (0.0037)
Hub βu ´0.0011 (0.0006) ´0.0011˚ (0.0006) ´0.0021˚˚˚ (0.0002)
Authority βv ´0.0005 (0.0006) ´0.0005 (0.0006) ´0.0003 (0.0003)
Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01

GDP share. Similarly, we take the 10-year average of risk premium as the response.

To better understand the behavior of the two-stage and SuperCENT estimators, it

is crucial to know which regime the trade network belongs to. However, the true noise-

to-signal ratio κ of the trade network is unknown, so we estimate it using SuperCENT:

κ̂sc “ 0.154 « 2´3, which falls in the inconsistent regime of the two-stage. Note that in the

simulation study, when κ “ 2´8, two-stage already shows inconsistency.

To further comprehend the behavior of SuperCENT and gauge how much improvement

it can potentially achieve in the inconsistent regime, we estimate the SNR of the regression:

pβ̂sc
u {pσsc

y q2 “ 7.6ˆ106 « 223 and pβ̂sc
v {pσsc

y q2 “ 1.8ˆ105 « 217. Compared with the simulation

settings in the inconsistent regime where κ “ 2´4, β2
u{σ2

y ď 216 and β2
v{σ2

y ď 28, we expect

SuperCENT to improve greatly over two-stage for both the estimation and inference of βu,

due to a large pβ̂sc
u {pσsc

y q2 and β̂sc
u " β̂sc

v under a relatively large κ̂sc.

Table 2 shows the coefficient estimation, the standard error, and the significant level

for the two-stage-adhoc, two-stage, and SuperCENT, respectively. For the hub central-

ity βu, (i) the estimate from the two-stage methods is ´0.0011, while the estimate from

SuperCENT is ´0.0021, which demonstrates the severe bias of two-stage in the inconsistent
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regime and the bias is towards zero because |β̂sc
u | “ 0.0021 " 0.0003 “ |β̂sc

v |;4 (ii) the stan-

dard errors from the two-stage methods are close to 0.0006, much larger than 0.0002 from

SuperCENT, which reinforces the problem of overestimation of σ2
y in two-stage; (iii) the

above two facts combined make the confidence intervals by two-stage-adhoc and two-stage

unnecessarily wide, yet still invalid: consequently the hub centrality βu is barely significant

at level 0.1 using two-stage and is insignificant using two-stage-adhoc; (iv) the two facts

in (i) and (ii) also lead to a valid but narrower confidence interval for SuperCENT, mak-

ing the hub centrality a significant factor at level 0.01 for the currency risk premium; (v)

conclusions drawn from the two-stage-adhoc and two-stage methods contradict the theory

in Richmond (2019), while SuperCENT supports the theory. Other regression coefficients’

significance can be also explained by Remark 4; the details are given in Supplement S6.2.

7 Conclusion and discussion

Motivated by the rising use of centrality in empirical literature, we examined central-

ity estimation and inference on a noisy network (G1) as well as network effect through

the centralities in the subsequent network regression (G2). We proposed a unified frame-

work that incorporates the network generation model and the network regression model to

achieve both goals. Under the unified framework, we showed that the commonly used two-

stage procedure could yield inaccurate centrality estimates, biased regression coefficient

estimates, and invalid inference, especially when the noise-to-signal ratio of the network is

large. We proposed SuperCENT which incorporates the two models and simultaneously

estimates the centralities and the effects of the centralities on the outcome. We further de-

rived the convergence rate and the distribution of the SuperCENT estimator and provided

valid confidence intervals for all the parameters of interest. We showed that SuperCENT

dominates the two-stage universally and the SuperCENT estimates remain consistent under

4Specifically, β̂sc
u “ ´0.0021 ă ´0.0003 ˆ 0.673

1`0.154 « ´0.0002 “ β̂sc
v

ρsc

1`κsc , then plim β̂ts
u ´ βu ą 0 as in

Remark 4, and therefore the two-stage estimate is biased towards zero.
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less restrictive assumptions than those required by the two-stage. The theoretical results

are corroborated with extensive simulations and a real case study in predicting currency

risk premiums from the global trade network.

The unified framework and SuperCENT methodology can be extended in multiple di-

rections. One can consider a generalized linear model for the outcome model and extend

SuperCENT to generalized SuperCENT. In the case when only a subset of covariates and

outcomes are observed, semi-supervised SuperCENT can be developed. In the case when

the network is partially observed, we can perform matrix completion with supervision. Su-

perCENT can also be extended to a longitudinal model with additional assumptions by

using techniques from tensor decomposition as well as functional data analysis to obtain

centralities that are smooth over time. For ultra high-dimensional problems, sparsity can

be imposed on centralities due to the existence of abundant peripheral nodes.
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