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This is the supplement to the paper “Estimation and Inference for
Minimizer and Minimum of Convex Functions: Optimality, Adaptivity,
and Uncertainty Principles”. It is organized into four sections. Section
A presents the simulation results. Section B offers a comparison be-
tween our procedures and the methods based on convexity-constrained
least squares for the minimizer, along with a discussion of the con-
nections with the classical minimax framework. Section C provides
the proofs of the main results, and Section D contains the proofs of
supporting technical lemmas.
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APPENDIX A: SIMULATION RESULTS

Our proposed algorithms for non-parametric regression are easy to im-
plement and computationally fast. We implement the algorithms in R and
the code is available at https://github.com/chenrancece/MMCF. This sec-
tion presents the numerical results for our algorithms. The data splitting
procedure in our proposed algorithm was introduced in the main paper to
create independence, which is purely for technical reasons. In simulation,
we also include a variant of our method without the data splitting step.
That is, the original data set is used in the localization, stopping, and esti-
mation/inference steps. Simulation studies are carried out to examine the
numerical performance of the proposed algorithms, including the non-split
variant. Comparisons are made with CLSC1I, in (B.2) proposed by Deng
et al. (2020) and the CLS estimator for the minimizer.

The simulation studies use 7 test functions with different levels of smooth-
ness around the minimizer, 6 sample sizes ranging from 100 to 50,000, 5
confidence levels for the confidence intervals, and 100 replications. We com-
pared the proposed methods, their non-split variant, and the CLS methods
in terms of computational time, average absolute error (for the estimators),
and coverage probability and length (for the confidence intervals). We also
investigated the relationship with the benchmarks when the benchmarks can
be calculated explicitly. The results can be summarized as follows.

e Computational cost: Our methods are significantly faster than CLS
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methods.! For small sample sizes, all methods are relatively fast. For
n > 5000, our procedures are at least 10 times faster than the CLS
methods for all functions. In many cases, they are more than 100 times
faster. This gap is further increased as the sample size grows.

e Confidence interval for the minimizer: Our methods achieve the
nominal coverage consistently and the empirical lengths are propor-
tional to the benchmark. In comparison, the coverage probability of
CLSCI, can be far below the nominal level for a variety of functions,
including functions that are not differentiable at the minimizer or
have vanishing second order derivative around the minimizer. For a
piecewise linear function such as 100 - |22 — 1|, CLSCI, is long and its
length remains roughly constant as the sample size increases, while the
benchmark goes to zero. 2

e Estimation of the minimizer: The numerical performances of our
methods and the CLS estimator are comparable. Interestingly, in the
cases where the benchmarks can be calculated explicitly, the perfor-
mance of the CLS estimator relative to the benchmarks (and our meth-
ods) deteriorates with increasing smoothness of the function around
the minimizer, while the performance of our estimator remains steady
relative to the benchmarks.

¢ Estimation and CI for the minimum: For estimation and inference
for the minimum, we are unaware of CLS based procedures that have
theoretical guarantees, so we only examined the performance of our
methods. The empirical absolute error for estimator and the lengths
of the confidence intervals for the minimum exhibit linear relationship
with the corresponding benchmarks (when calculable). The nominal
coverages of the confidence intervals are achieved in all the settings.

A.1. Experiment Design. To generate the data, we set noise level
o = 1. We use test functions with different smoothness, minimizer location,
and symmetry. We tested on sample sizes 100, 500, 1000, 5000, 10000, and
50000. For inference, we take 5 confidence levels, namely 0.8, 0.9, 0.95, 0.98,
and 0.99, which correspond to a = 0.2,0.1,0.05,0.02,0.01. For each test
function and each sample size, we performed 100 replicates and calculated
averages accordingly

In experiments evaluating our methods’ behavior compared with theoretical

1This is also supported by complexity analysis. Time complexity of our algorithms is
O(n). Time complexity for CLS itself scales as O(n>) for generic quadratic programming
solvers or O(n?) per iteration for first-order methods, according to Simonetto (2021).

2The behavior of the CLS based confidence interval is not surprising due to its asymptotic
nature of coverage and high dependency on the second-order derivative.
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results, we include functions with calculable benchmarks, along with sample

sizes facilitating the examination of the relationship, which we will discuss in

detail in Section A.3. Now we focus on the general functions and comparison.
We implement and compare three methods, as summarized in Table 1.

Method Estimation Inference
Minimizer [ Minimum | Minimizer [ Minimum
Proposed (split) v v v v
Variant (non-split & stop) v v v v
CLS based v v
TABLE 1

List of the methods to be compared and their applicable scenario.

We investigate the following metrics.

e Running time of the methods.

e Empirical risks for estimating the minimizer and minimum.

e Coverage and length of confidence intervals for the minimizer and
the minimum. In particular, we construct confidence interval with 5
different confidence levels with o ranging from 0.2 to 0.01.

We have 7 test functions, as shown in Equation (A.1). We scale the
functions by 100 so that reasonable sample sizes can cover from sample-
scarce region to sample-rich region. Figure 1 shows the plots of those functions
(in the order 1,2,3,4,5,6,7 from left top to right bottom), grouped based on
smoothness. Note that we include functions of different smoothness around the
minimizer (e.g., of the types z, 22, 2%, exp(—1/z), represented by f1, f3, f5, f6
), with both symmetric (i.e., f1, f3, f5, f¢) and asymmetric configurations
(i.e., fa, fa, f7). We also include functions with the minimizer at boundary
(i.e., f2, f4). Using similar arguments as in the proof of Proposition B.1, we
can convolve the true function with a smooth kernel concentrated enough to
the center to have a function that is both smooth (i.e., differentiable to any
order) and arbitrarily close to the original true function, regardless of the
smoothness of the true function. Therefore, the phenomenon shown here also
carries to the non-asymptotic region (i.e., small to medium sample sizes) of
functions differentiable to any order.
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(A.1)
fi(x) =100[2z — 1

non-differentiable, symmetric, linear
fa(z) =100z

asymmetric, linear, with minimizer at the boundary
f3(z) =100(|22 — 1])*

twice differentiable with positive second order derivative
fa(z) =10022

twice differentiable, asymmetric, with minimizer at the boundary
f5(2) =100(|22 — 1])*

fourth-order differentiable with vanishing second order derivative
fole) <100 exp (2= )

arbitrarily differentiable with vanishing derivatives of any order
fr(z) =1002z — 1|1{z < 0.5} 4 1002z — 1*1{z > 0.5}

non-differentiable, non-symmetric.

A.2. Numerical Results and Comparison with CLS Methods.
Now we present the simulation results using the 7 test functions. In particular,
we compare our methods with the CLS methods for estimation and confidence
intervals for the minimizer.

A.2.1. Results Presentation and Results for Four Tasks.

Plots and Tables. Before we discuss the results, we explain how we present
the results for each function. For each true function, we provide the following
plots: the true function, the time vs log sample size plot (for all three
methods), the log empirical risk vs log sample size plot for estimation of
the minimizer, the log empirical expected length vs log sample size plot for
inference of the minimizer, the log empirical risk vs log sample size plot
for estimation of the minimum, and the log empirical expected length vs
log sample size plot for inference of the minimum. For empirical expected
lengths, we plot for @ = 0.01, other confidence levels are similar. We also
provide tables for CLS empirical coverage for the minimizer, log risk for
the minimizer, log length for the minimizer for o = 0.01, and our non-split
version CI’s empirical coverage for the minimum. The plots and tables are
shown in Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13. In Section A.2.2, we
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give detailed explanations for each function separately in addition to the
task-wise discussion in Section A.2.1.

Estimation of Minimizer. In general, our methods tie with the CLS method
for the estimation of the minimizer.

Our methods behave better than CLS for functions with higher smoothness
(e.g., the third row in Figure 1: 2%, exp(—1/x) type). For less smooth func-
tions (e.g., linear, half-side-quadratic), CLS behaves better. For quadratic
function with minimizer away from boundary, our methods tie with CLS.
This sensitivity to smoothness is due to CLS rather than our methods. We
show in Section A.3 that our methods are stable compared to the benchmarks
and hence are insensitive to the smoothness of the true functions.

Inference for Minimizer. For the inference of minimizer, both our methods
achieve the nominal coverage (empirical coverages are at 0.99 or 1). CLS
confidence interval does not achieve nominal coverage consistently. For all
the functions except the linear functions and the quadratic function with
minimizer at the middle, the CLS confidence interval misses the nominal
coverage by far. For linear functions, the expected length of CLSCT converges
extremely slowly with the increase of the sample size (if converges at all).

In Section A.3, we provide a more detailed discussion of the comparison
with the theoretical results for our methods.

Estimation for Minimum. The plots show nice decreasing patterns. For
the polynomial type functions, we can see a nice linear relationship between
log empirical risk and log sample size, which is a good indicator of a linear
relationship between the empirical risk and the benchmark, as the benchmark
of a polynomial function is a power function (with negative exponent) of
sample size. A detailed comparison with theoretical results is in Section A.3.

Inference for Minimum. Both our methods achieve nominal coverages in
all settings (shown in Table (d) in the corresponding figure). The plots on
empirical expected length show a nice decreasing pattern. Comparison with
theoretical results is discussed in Section A.3.

Computing Time. Our methods are significantly faster than CLS based
methods. For our methods, we measure the total time used for producing all
four results, while for CLS based methods, we only measure the time taken
to fit a CLS. The time for each function is the sum of times used for 100
replicates. Although this measurement of the computing time favors CLS
based methods, our methods still take much less time.

A.2.2. Figures, Tables, and Detailed Discussion.
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Discussion for results of fi(x) = 100|2x — 1| and fo(x) = 100x. Both
functions are piecewise linear functions, and their smoothness is the lowest
among all test functions.

In terms of coverage of confidence interval, our methods achieve nominal
coverage consistently, CLSC1, achieves the nominal coverage in most cases,
but not consistently — it fails in some cases for fo. Therefore, we turn to
the expected lengths of the confidence intervals.

Piecewise linear functions are prototypes for supporting examples for sub-
optimality of CLSC1I,, in both rigorous proof and intuitive reasoning that
we present in Section B.1. The simulation results on the length, as shown
below, go along with the theoretical analysis.

The fourth plot in Figure 2 shows the log empirical expected length for the
minimizer vs log sample size for fi, which clearly shows that the empirical
expected length of CLSC1, shrinks much slower than our methods, support-
ing our intuitive reasoning in Section B.1. Further, extended experiments
on even larger sample sizes show that the log empirical expected length
eventually fluctuated around -2.3 rather than converging to —oo.

For f,, the fourth plot in Figure 4 show the expected length of CLSCI,
hardly converges, while those of our methods clearly converge.

For estimating the minimizer, the piecewise linear function f; is in favor of
the CLS estimator for the minimizer, as discussed in section B.1. The results
indeed shows that the empirical risk for CLS is around 0.6 times that of our
method, although all the methods show the same rate. Similar phenomena
also holds for fs.

For tasks involving the minimum, we primarily focus on the relationship
with theoretical benchmarks and the empirical coverage for the minimum.
The nominal coverages are consistently achieved. A detailed comparison with
theoretical results is deferred to Section A.3.

Discussion for results of f3(z) = 100(|2x — 1])? and fi(z) = 10022. The
quadratic function f3 belongs to the prototype function class that CLSC1,,
is designed for. It has higher smoothness than f; but lower smoothness than
f5 and fe.

From Table (a) in Figure 7, we can see that CLSCI,, does not consistently
achieve nominal coverages for f3. However, its coverage behavior for f3
is much better than that for other test functions except piece-wise linear
functions. Nevertheless, it is worth mentioning that for another quadratic
function f: z — (z — 1/2)2, most of the empirical coverages of CLSCI, are
far below the nominal coverages. An explanation is that the difference in the
scale between f and f3 leads to different signal-to-noise balances — f is too
weak a signal so that reasonable sample sizes do not reach the asymptotic
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region of CLSC1, for f. This instability in coverage is an issue for CLSC1,,
as the true underlying function is always unknown. In contrast, our methods
achieve the nominal coverage consistently.

The fourth plot in Figure 6 shows that the convergence rates of length for
f3 are almost the same for all methods, but the empirical expected length
for CLSC1, is shorter than that of our methods by a constant multiplier.
This is not surprising as our goal in this paper is to propose methods that
can achieve the benchmarks up to a constant multiplier. The details of the
building blocks in our procedures have flexibilities for further improvement
of the constant, which we leave to future investigation.

For estimating the minimizer of f3, the performance of the CLS estimator
is between our two versions.

For the half-quadratic function f;, the performances of estimation of
minimizer are similar to that of linear function, while the performance of
inference of the minimizer is different from both quadratic and linear functions.
Our methods achieve the nominal coverage consistently, but C'LSCI, misses
the nominal coverage by far.

Discussion for results of fs(x) = 100(|2z — 1|)*.  f5 has relatively higher
smoothness. For the inference of the minimizer, Table (a) in Figure 11
shows that CLSC1, has empirical coverages that fall significantly below the
nominal coverages. In contrast, our procedures attain nominal coverages.

For the estimation of the minimizer, all methods have similar rates yet
both our methods have smaller empirical risks.

Discussion for results of fe(x) = 100exp (2 — ﬁ) f6 has the highest
smoothness. Its arbitrary-order derivative at the minimizer z = 0.5 is 0.

For the inference of the minimizer, Table (a) in Figure 13 shows that the
empirical coverages of C'LSC1, fall significantly below the nominal coverages.
In contrast, our procedures achieve nominal coverages.

For estimating the minimizer, the CLS estimator has larger empirical risks
than ours and does not show a clear trend of convergence. Ours have already
shown a clear pattern of converging to 0 (a.k.a to —oo on the log scale).

Discussion for results of fr = 100|2x —1|1{z < 0.5} +100/2z —1?1{z > 0.5}.
fr is asymmetric, non-differentiable, and differing in smoothness on two sides.
For estimation of the minimizer, all methods have similar behavior with CLS
being slightly better. For inference of the minimizer, C'LSCI, has empirical
coverages that fall significantly below the nominal coverages. All of our
confidence intervals achieve the nominal coverage and has empirical expected
lengths showing nice decreasing patterns.
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100 500 1000 5000 10000 50000

08 1 1 099 095 094 0.97

09 1 1 099 097 0.97 0.98

095 1 1 0.99 0.98 1 0.99

098 1 1 099 1 1 0.99
099 1 1 1 1 1 1

(a) Empirical coverage of CLS confidence interval for minimizer

100 500 1000 5000 10000 50000

split —0.053 -0.427 -0.56 -1.144 -1.315 -1.851
non-split —0.063 -0.685 —0.959 -1.404 -1.686 —-2.236
CLS based -0.808 -0.881 -1.097 -1.19 -1.228 -1.49

(b) Log empirical length of confidence interval for minimizer

100 500 1000 5000 10000 50000

split -5.332 -5.912 -6.263 -6.351 -6.63 -7.381
non-split —=6.768 -6.303 -6.309 —6.724 -7.339 —-7.978
CLS based -8.112 -6.928 -7.106 -7.495 —-7.724 —8.456

(¢) Log empirical risk for minimizer

100 500 1000 5000 10000 50000

08 098 1 1 099 1 1
09 098 1 1 1 1 1
095 1 1 1 1 1 1
098 1 1 1 1 1 1
099 1 1 1 1 1 1

(d) Empirical coverage of our confidence interval for the minimum

Fig 3: Tables for f1(z) = 1002z — 1|
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100 500 1000 5000 10000 50000

08 1 097 095 094 096 0.96

09 1 097 098 09 0.96 0.98

095 1 0.99 099 097 096 0.99

098 1 1 1 099 0.96 0.99
099 1 1 1 1 1

(a) Empirical coverage of CLS confidence interval for minimizer

100 500 1000 5000 10000 50000

split —0.209 -0.776 -0.987 -1.54 -1.715 -2.343
non-split —=0.537 -1.181 -1.389 -1.882 -2.179 -2.65
CLS based -1.207 -1.076 -1.131 -1.284 -1.138 -1.176

(b) Log empirical length of confidence interval for minimizer

100 500 1000 5000 10000 50000

split —4.776 —5.096 -5.174 -5.757 —-5.892 -6.459
non-split —=5.231 -5.555 -5.574 -6.161 -6.254 -6.82
CLS based -6.908 -6.949 -6.918 -7.562 —-7.541 —-8.579

(¢) Log empirical risk for minimizer

100 500 1000 5000 10000 50000

08 1 1 1 1 1 1
09 1 1 1 1 1 1
095 1 1 1 1 1 1
098 1 1 1 1 1 1
099 1 1 1 1 1 1

(d) Empirical coverage of our confidence interval for the minimum

Fig 5: Tables for fo(z) = 100z
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100 500 1000 5000 10000 50000
0.8 0.81 0.79 082 0.84 0.76 0.82
09 0.88 092 091 091 0.89 0.93

0.95 096 096 0.97 097 0.97
098 099 099 1 099 099 0.99
099 1 1 1 1 1

(a) Empirical coverage of CLS confidence interval for minimizer

100 500 1000 5000 10000 50000

split —0.009 -0.065 -0.133 -0.324 -0.473 -0.783
non-split —0.028 -0.205 -0.287 -0.52 -0.597 -0.809
CLS based -1.584 -1.838 —-1.965 -2.364 -2.391 —-2.806

(b) Log empirical length of confidence interval for minimizer

100 500 1000 5000 10000 50000

split —3.75 —-4.092 -4.216 -4.528 -4.681 -5.088
non-split —=3.993 —-4.323 -4.401 -4.799 -4.956 -5.495
CLS based —3.963 —4.257 —-4.337 —-4.766 —-4.831 —5.382

(c¢) Log empirical risk for minimizer
100 500 1000 5000 10000 50000
08 1 098 1 099 098 0.98
09 1 099 1 099 0.99 1
095 1 1 1 1 0.99 1
098 1 1 1 1 0.99 1
099 1 1 1 1 1 1

(d) Empirical coverage of our confidence interval for the minimum

Fig 7: Tables for f3(z) = 100(|2z — 1])?
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100 500 1000 5000 10000 50000
0.8 0.73 0.72 0.77 0.87 0.84 0.68
09 0.8 081 082 0.88 0.89 0.77
095 0.89 0.91 0.89 096 0.94 0.88
0.98 0.96 0.95 0.94 0.96 0.92
0.99 0.97 0.98

(a) Empirical coverage of CLS confidence interval for minimizer

100 500 1000 5000 10000 50000

split —0.024 -0.204 -0.33 -0.624 -0.7 -1.064
non-split —0.09 -0.389 -0.425 -0.756 -0.928 -1.308
CLS based -2.033 -2.261 -2.392 -2.714 -2.924 -3.177

(b) Log empirical length of confidence interval for minimizer

100 500 1000 5000 10000 50000

split —3.161 —-3.413 -3.603 —-3.926 —-4.019 -4.28
non-split —=3.475 -3.642 -3.797 -4.07 -4.309 -4.512
CLS based —3.932 —-4.124 -4.371 -4.874 -5.054 —-4.902

(c¢) Log empirical risk for minimizer
100 500 1000 5000 10000 50000
08 1 098 098 0.97 095 094
09 1 099 1 097 097 0.95
095 1 099 1 099 099 0.99
098 1 099 1 1 0.99 0.99
099 1 1 1 1 1

(d) Empirical coverage of our confidence interval for the minimum

Fig 9: Tables for f4(z) = 10022
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SUPPLEMENT

100 500 1000 5000 10000 50000
0.8 0.57 0.61 0.67 0.56 0.56 0.62
09 0.82 0.83 0.82 0.83 0.77 0.82
095 0.89 091 091 091 09 0.94
098 0.95 0.95 0.96 0.96 0.95 0.96
0.99 0.96 0.98 0.97 0.97

(a) Empirical coverage of CLS confidence interval for minimizer

100 500 1000 5000 10000 50000

split O -0.008 -0.008 —-0.002 -0.002 -0.04
non-split —=0.001 -0.013 -0.013 -0.002 -0.006 —-0.055
CLS based -0.67 -0.836 —-0.905 -1.091 -1.147 -1.363

(b) Log empirical length of confidence interval for minimizer

100 500 1000 5000 10000 50000

split —2.848 —-3.003 -3.068 —-3.262 —-3.302 -3.49
non-split —2.894 -3.117 -3.173 —-3.368 -3.405 —-3.644
CLS based -2.651 -2.896 —-2.998 -3.121 -3.167 —-3.411

(¢) Log empirical risk for minimizer
100 500 1000 5000 10000 50000
0.8 0.97 0.95 0.99 0.97 096 0.97
09 0.97 097 099 0.98 0.98 0.98

095 1 099 1 1 1 1
098 1 099 1 1 1 1
099 1 1 1 1 1

(d) Empirical coverage of our confidence interval for the minimum

Fig 11: Tables for f5(z) = 100(|2x — 1|)*
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100 500 1000 5000 10000 50000
0.8 0.44 0.39 047 046 046 0.33
09 0.73 0.66 0.71 0.76 0.74 0.69
095 0.89 0.84 0.84 0.93 091 0.86
098 093 0.9 0.92 097 0.95 0.93
099 0.95 0.93 0.96 0.97 0.96 0.95

(a) Empirical coverage of CLS confidence interval for minimizer

100 500 1000 5000 10000 50000

split —0.003 -0.008 -0.011 -0.002 -0.002 -0.027
non-split —=0.003 -0.013 -0.016 -0.002 -0.006 -0.026
CLS based -0.685 -0.803 -0.817 -0.869 -0.909 -1.033

(b) Log empirical length of confidence interval for minimizer

100 500 1000 5000 10000 50000

split —2.837 —-2.871 -2.922 -2.991 -3.029 -3.165
non-split —=2.821 -2.933 -2.963 —-3.105 -3.094 -3.176
CLS based -2.526 -2.555 -2.669 -2.772 -2.799 -2.792

(¢) Log empirical risk for minimizer
100 500 1000 5000 10000 50000
0.8 098 0.93 098 094 0.97 0.96
09 098 096 0.99 097 098 0.96

095 099 099 099 1 1 1
098 1 099 1 1 1 1
099 1 1 1 1 1

(d) Empirical coverage of our confidence interval for the minimum

Fig 13: Tables for fs(z) = 100exp (2 — ﬁ)
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100 500 1000 5000 10000 50000
0.8 0.71 0.71 0.67 0.66 0.68 0.69
09 0.78 08 0.75 0.85 0.82 0.78
095 0.89 0.88 0.83 0.88 0.87 0.83
098 0.95 0.94 091 0.97 0.97 0.93
0.99 0.98 0.97 1

(a) Empirical coverage of CLS confidence interval for minimizer

100 500 1000 5000 10000 50000

split —0.027 —0.159 -0.255 -0.528 -0.625 -0.962
non-split —0.055 -0.321 -0.424 -0.696 -0.787 —-1.081
CLS based -1.425 -1.827 -2.102 -2.187 -2.714 -2.691

(b) Log empirical length of confidence interval for minimizer

100 500 1000 5000 10000 50000

split —=3.725 -4.021 -4.173 -4.475 —-4.633 —4.687
non-split —4.048 —-4.139 -4.416 -4.659 -4.784 -4.884
CLS based —4.213 —-4.469 -4.619 -5.018 -5.117 -5.392

(c¢) Log empirical risk for minimizer
100 500 1000 5000 10000 50000
08 1 1 099 0.96 1 0.99
09 1 1 0.99 0.97 1 0.99

095 1 1 0.99 0.99 1 1
098 1 1 1 099 1 1
099 1 1 1 1 1 1

(d) Empirical coverage of our confidence interval for the minimum

Fig 15: Tables for f;(x) = 100|2x — 1|1{z < 0.5} + 100|22 — 1|?1{x > 0.5}
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A.3. Comparison with Benchmarks. In this subsection, we consider
the functions for which benchmarks can be explicitly calculated. The primary
task is to investigate the relationship between empirical risks/lengths and
the benchmarks.

We consider a different set of functions whose benchmarks can be easily
calculated:

(
(
(A.2) hs(
(
(

All other settings remain the same as before, except that we take roughly
exponentially equally spaced sample sizes.

We calculated the corresponding benchmarks (the discretization errors in
these examples are negligible): p,(1/1/n; f) and pp,(\/1/n; f).

The log risk/length vs. log sample size plots for the minimizer and minimum
with the reference line of the benchmark are shown in Figures 16, 17, 18, and
19. For the estimation of the minimizer, in addition to the almost identical
slope with the reference line (i.e., linear relationship between empirical risk
and benchmark), the intercept difference of the reference line and the log risk
of non-split version ranges between 0.6472699 and 1.036388, meaning that

empiricéﬁzﬁiﬂ;ﬁimmizer for non-split version ranges in [1.910318,2.819016],
implying that the performance of non-split version is quite robust when
smoothness varies.

For the other three tasks, excluding the outlier points that are clearly
influenced by the truncation for confidence interval, the slopes of the methods
and the reference line are almost identical.

The empirical performances, therefore, agree with the theoretical results.
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Fig 17: Empirical risks for minimum
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APPENDIX B: COMPARISON WITH CLS METHODS AND
CONNECTIONS WITH THE CLASSICAL MINIMAX
FRAMEWORK

In this section, we compare our procedures with the convexity-constrained
least squares (CLS) methods for the minimizer (see Section B.1 for inference,
Section B.4 for estimation, and the corresponding numerical results are in
Section A), discuss the connections between local minimax framework and
the classical minimax framework for problems considered in this paper, and
elaborate on the generality of the Uncertainty Principle.

In particular, we prove that the CLS confidence interval for the minimizer
proposed in Deng et al. (2020) is sub-optimal under the local minimax frame-
work. We also provide a larger class of functions that potentially also lead to
sub-optimality and provide the intuitive reasoning behind, which is validated
through numerical results. Through investigating the connection with the
classical minimax framework, we established that optimal procedures under
the local minimax framework (e.g., our algorithms) are also optimal under
the classical minimax framework (see Section B.2 for details). Implications
of these results include that our algorithms are optimal under the setting
that CLS is theoretically investigated. In addition, we provide more settings
where the Uncertainty Principle holds in Section B.3.

B.1. Comparison with CLS Confidence Interval (CLSCI): Sub-
optimality of CLSCI Under Non-asymptotic Local Minimax Framework
and Optimality of Our Algorithms Under Several Frameworks. The
convexity-constrained least squares (CLS) estimator is widely used for es-
timating a convex regression function globally. While CLS estimation and
inference methods for the minimizer have been proposed and studied in the
literature (e.g., Shoung and Zhang (2001); Ghosal and Sen (2017); Deng et al.
(2020)), the theoretical analyses usually assume the existence of second or
higher order derivatives with an even order derivative being positive and all
lower order derivatives being zero at the minimizer. However, it is unclear
how the CLS estimator behaves under our non-asymptotic framework or even
asymptotically in general when the underlying convex function is nonsmooth
at the minimizer. As for the minimum, to the best of our knowledge, no
CLS-based method for estimation or inference with theoretical guarantees
exists.

It is interesting to compare with the CLS confidence interval for the
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minimizer proposed in Deng et al. (2020). Let

n
B.1 f, = mi ()2
(B.1) fn 5%12 2 (yi — f(zi))
be the CLS estimator. Let 771, be the anti-mode of frs Om (vesp. @) be the
first kink of f,, to the right (resp. left) of 771,,. Under the assumption that the
second order derivative exists and is positive around the minimizer, Deng
et al. (2020) introduce the following (1 — «)-level confidence interval,

(B.2) CLSCI, = [ + ™ (6m — )] N[0, 1],

where ¢ is a constant depending on « only.
For positive integer k and positive number A, denote k-smooth A-bounded
convex function class by

(B.3)
Fo {f € F: fis k-differentiable, |f¥)(Z(f))| < A}, k is odd
A {f € F: f is k-differentiable, 0 < |f®)(Z(f))| < A}, kiseven

The parameter space described, with the exception of convexity, was also
considered in the estimation of the mode for unimodal smooth functions (not
necessarily convex) in Shoung and Zhang (2001).

Clearly the collection of convex functions with continuous positive second
order derivative around the minimizer, denoted by F», can be expressed
as Fo = Uas0F2,4. Deng et al. (2020) shows that the confidence interval
CLSCI, has desired coverage probability asymptotically over F». The fol-
lowing result shows that CLSC1, defined in (B.2) is sub-optimal over F, 4
for any k£ and A under the local minimax framework.

PROPOSITION B.1. For positive integer k and positive number A, for any
sample size n > 5,

E;L(CLSCI,)
fE€Fk A Lz,cx,n(a; f)

(B.4)

where L o.n(0; f) is the benchmark defined in Equation (4.2).

Proposition B.1 shows that for any n > 5, there exists f € Fj 4 such that
the length of CLSC1I, at f is much larger than the local minimax benchmark.
In contrast, our proposed confidence interval CI, , achieves the benchmark
up to an absolute constant for all f € F. This phenomenon can be attributed
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to the nonasymptotic nature of our framework compared to the asymptotic
nature of CLSCI,. In summary, the CLS construction, which only takes
into account the kinks, fails to make full use of the convexity property.
Now we continue with proving Proposition B.1, providing additional
scenarios that CLSCI potentially remains sub-optimal with intuitive reasoning
whose associated numerical validation is in Section A, and showing that our
algorithms are optimal under the setting CLSCI is theoretically investigated.

PRrROPOSITION B.2.  For positive integer k and positive number A, for any
function r(n) > 1, for any integer n > 5, 3f, € Fi a such that

(B5) Ey,L(CLSCI,) > o),
Lz,a,n(o'; f)

where Ez,am(a;f) is defined in Equation (4.2), Fi A is defined in Equa-
tion (B.3).

PROOF. Suppose k£ and A are fixed. Recall that in the proof of Theorem
4.2, we have

EfL(CI.0) < Caa (suphegnm p=(Z=ih) <1 A npzqﬁ;h)) + “‘5“)©z<n,f>) ,

where the definition of G, (f) is given in Equation (C.105).

Combining this inequality with the lower bound of the local minimax
length of the confidence interval that we established in Proposition C.4,
namely

Lian(0;f) > Cupa <Sngegn(f) p=(F39) (1 A \/npz(jﬁ;g)) + 4299 (n, f)) :

we see that it suffices to show that for any r(n) > 0, there exists f € Fj 4
such that

E;L(CLSCI,)

> r(n).
(Supgegn(f) p=( 77 9) (1 A \/npz(jﬁ;g)> + (1_22a)®z(n,f))

Note that L(CLSCI,) > L, we only need to find f € Fj 4 such that

n’

1
and g

(BE)  D(mf)<gipyend sw pi(mie) < gy
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Consider function fy :  — 4n(r(n) + 1)%(0 +1)|z — %L for which we
have .
o ($)3 1
D.(n, fo) =0,  sup p.(—=;g) < :
’ 6€Gulf) VM 2 n(r(n)+1)
The conditions mentioned in Inequality (B.6) are met, but fy is not in Fj, 4.
Now we will proceed to construct f; € Fj 4 such that the conditions in
Inequality (B.6) are still met for f = fi.
For function f defined on [0, 1], define the following transformation.

L[S

i), e,
1) = 1)

GRS SRR S e

f(0) ~l—tsu£r ‘w:r:, <0

Then consider the following class of transformations of function f:

1 - (z —t)?
N TR 242

It is easy to check that this transformation preserves convexity: if f is a
convex function on [0, 1], then T'(f; ) is a convex function on R. In addition,
this transformation is a smoothing transformation: if f is continuous on [0, 1],
then T'(f;9) is infinitely differentiable on R. Further, for any given f, the
sequence of transformed functions {T'(f;9)}s>o converges uniformly to f
as  — 0. When we focus on the interval [0, 1], we have that for fixed f,
lims_o+ sup,epoq) |T(f30)(2) — f(z)| = 0.

Now we list some basic properties of the transformed function T'( fo;9).

Clearly, T'(fo;9) is convex and infinitely differentiable. Clearly, we have
uniform convergence: lims_,o+ SUp,¢(o 1] }T(fo; 0)(z) — fo(a:)‘ =0.

(B.5) T(f:6)(x) = / F(t) ).

Now we consider T'( fo; 6)*) (%) Let o™ denote coefficient corresponding

to the term z‘exp (—22/2) in the m orzier derivative of function u(z) =
exp (—x2/2). For i < 0, agm) =0.
Calculations show that
(B.9)
0 k is odd

5 _1y(B—2)/2 (k311
T(fo;é)(k)(@) _ ) v(n) e = v(n)w
n v(n)o L0

v(n)/d k=2

k is even and k > 4

)
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where v(n) =2 - 4n(r(n) + 1)%(0 +1)/V2m.
The calculations are primarily based on the following facts.

o 0 for odd k
t|t* exp(—t2/2)dt = ,
/_oo [tE" exp(=£/2) { 2 x k! for even k

af™ = i+ Dafl — o) = (i + D +2)affy ) = @i+ D" +a"V.
Taylor expansion of u(x) gives a((]m).

Now we proceed with construction of the target f.
Let a class of transformations of f be

(B.10) Ta(f;n)(x) = max{0, f(x) +n(|2z — 1] - 0.5)}

for n > 0. This transformation clearly preserves convexity. Consider T'(T%( fo;1);0).
We start with showing that it converges uniformly to at fy on [0, 1] as
8,n — 0T. Let g(z) = |22 — 1| — 0.5]. Clearly,

sup |T(T(fo;n); 6)(x) — fo(@)]
z€[0,1]

< sup [T(fo:6) ~ fo(@)| +n sup [T (g:9) (@),
z€0,1] z€0,1]
Therefore, for any v > 0, there exist n(v, fo),d(v, fo) > 0 such that for any
positive 0 < d(v, fo),n < n(v, fo),

(B.11) z%p1] T (T2(fo;m); 0) () — fo(z)| <v.

This uniform convergence gives that

(B.12a)

o o 1
lim sup p:(—=:9) = sup p:(—=19) < 5~
0n=0% g€G, (T(T2(foin):d)) “vn 9€Gn(fo) “vn 2n(r(n) +1)

(B.12b)

lim D, (n,T(T2(fo;n);9)) = Dz (n, fo) =0,
&m—0Tt

(B.12¢)
lim Z(T(T5(fo;n);6)) = Z(fo) € (0,1)
6,n—0t
For k-th order derivative of T(T5(fo;m);0), elementary calculation shows
that
k ;-
6—0t Oxk

=0, for all n > 0.
z=Z(T(T>(fo;n);5))
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and that
k . . n
i L L(T2(foim):9) _ T(fo;(s)(’f)(@), for all § > 0.
n—0t oxk n
x=Z(T(T2(fo;n);9))

Recall the expression of T'( fo; 5)(1‘3)(%) in Equation (B.9). Therefore, there
exist 7 > 0 and § > 0 depending on fp , such that the function f; =

T(T( fo;n);5)‘[0 . both satisfies conditions in Inequality (B.6) and is in

FrA-

Details of choosing such 7 and § are as follows. For an even k, choose a small
enough § = dp such that the limits in Equations (B.12) can be approximately
achieved by all § < §p and n < 79, such that Inequality (B.6) hold. Then

OFT(Ta(foim);0
choose a small enough n < 79 such that %‘w:Z(T(Tﬂfom);é)) >0

and Inequality (B.6) holds. Then fix this 1 and select § < dp that is

OFT(To(foim):9)
%}FZ(T(TQ%W)M > 0. For an

odd k, choose a small enough 1 (for Inequality (B.6) to hold for some
small ¢) and then a small enough § such that Inequality (B.6) holds and

OFT(Ta(foim);0)
T‘z:Z(T(TﬂfOWW)) <A

small enough such that A >

O]

In the proof, we can observe the strength of non-asymptotic and non-
localized results. A significant distinction between pz(%; f), as featured
in our theorem, and the second-order derivative, heavily relied upon by
CLSCI, in both method and theoretical guarantees, is that pz(ﬁ; f) does
not require any form of limit, whereas the second-order derivative does.

In this regard, unlike p,( ﬁ; f), the second-order derivative exclusively
characterizes the local behavior of a function within an infinitely small
interval around a point. It is a localized quantity and demands twice dif-
ferentiability. Consequently, an asymptotic procedure based on a localized
quantity encounters the issue that, for some functions, regardless of how
large n becomes, it remains outside the scope of locality.

To demonstrate the sub-optimality of CLSC1,, let us turn our attention
to convex piecewise linear functions. Simulation results provide compelling
evidence supporting the sub-optimality of CLSCI for this class of functions. In
our simulations, we included two representative functions: fi(z) = 1002z —1|,
and fa(z) = 100x. These functions serve as prototypes for all piecewise linear
functions. f; is a 1-kink piecewise linear function, and Figure 2 clearly
illustrates that the length of CLSCI converges much more slowly than our
confidence interval. This slow convergence indicates sub-optimality, as our
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method is theoretically and empirically shown to align with the minimax
rate, as detailed in Section 4.3 of the main paper and Section A.3 of the
supplement. On the other hand, fo(x) = 100z is a linear function, and Figure
4 demonstrates that the lengths of CLSCI hardly converge at all. A rigorous
analysis of CLSCI’s behavior for convex piecewise linear functions, or non-
smooth functions in general, in a non-asymptotic context is a formidable
challenge and necessitates the development of new analytical tools. This
topic is of independent interest and falls beyond the scope of this paper.
However, we provide intuitive reasoning to explain the slow convergence of
CLSCI, if it converges at all.

If a convex piecewise linear function f has all its kinks at rational points,
there are infinitely many sample sizes n for which f belongs to the function
class that convex least squares can precisely estimate. That is, the expectation
version of the CLS estimator for those n,

(B.13) fomde,n = arg min Ef(Z(f(fL‘z) —y)?),

f is piecewise linear convex function p
gives fomcle’n = f. Recall the construction of CLSC1I, in Deng et al. (2020),
which we summarized in Equation (B.2). Consider a 1-kink convex piecewise
linear function f = f; and assume n is even. In this case, fomcle,n as defined
in Equation (B.13) equals f. This implies that the left and right nearest
kinks to the minimizer are located at 0 and 1, respectively. Consequently, if
CLSC1I, were based on fomde’n, it would have a constant length for all even
n. Although the actual CLS estimator (i.e., f, defined in Equation (B.1))
produces kinks that are slightly closer to the minimizer compared to the
oracle version of CLS (i.e., fomde,n), resulting in a shorter expected length of
the confidence interval C' LSC1,, this improvement is unlikely to completely
resolve the issue. As a result, we anticipate that CLSCI remains sub-optimal.
The numerical results mentioned earlier provide support for this assertion.
Similar arguments apply to linear functions as well.

For a general piecewise linear convex function with the minimizer taking
a rational value %, these arguments hold when n is a multiple of ¢ and
sufficiently large. For piecewise linear convex functions f with irrational
minimizers, consider linear interpolation on rational grids for f. The same
arguments apply in these cases. It is worth noting that these arguments also
highlight a conflict between the estimation and inference of the minimizer in
CLS-based methods for convex piecewise linear functions. Better estimation
from CLS implies a longer length of C'LSC1,, so the construction of CLSCI,,
after CLS estimation also contributes to sub-optimality.

These examples, in addition to the one we provide in the proof of sub-
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optimality, demonstrate that the convex least squares component of confi-
dence interval construction is not the sole reason for sub-optimality. However,
it does make it challenging to fully exploit the convexity of the true function
when constructing a CLS-based confidence interval. In contrast, Algorithm 1
offers a means to fully leverage the convexity of the true function.

On the other hand, when considering our methods under asymptotic
conditions or within the classical minimax framework for the class of smooth
convex functions (defined in Section B.2), both of which have coarser criteria

than the local minimax framework, we achieve the optimal rates of n_#ﬂ for
the minimizer. The connection between the local minimax framework and the
classical minimax framework is discussed in Section B.2. Further discussion
involving CLS (for the estimation of the minimizer) and our estimator for
the minimizer is provided in the latter part of Section B.2 and Section B.4.

B.2. Connections With the Classical Minimax Framework: Lower
Bounds, Optimality, and Characteristics. In this part, we relate local
minimax rates to classical minimax rates, which captures the worst case for
a certain function class.

Before going into details, we elaborate on a general comparison. The lower
bound provided by our non-asymptotic local minimax framework over a
certain function class is no larger than the classical minimax lower bound
over the same function class. Because in the classical minimax framework,
the Le Cam two-point reduction, in a way, can be considered as a two-point
case of Assouad’s or Fano’s Lemma, which are typical tools for establish-
ing lower bounds for the classical minimax framework. This makes the
local minimax rate a stricter criterion, which preserves more information
before taking supremum over the function class (i.e., individual functions
are treated individually). This strictness/information-preserving property
increases the difficulty for constructing adaptive optimal procedures (i.e.,
attaining the potentially smaller lower bound) but enables characterizing the
difficulty of estimating of individual functions and makes establishing the
non-superefficiency type of results conceptually possible.

As an illustration, we consider the convex function class with additional
smoothness conditions, as in literature the classical minimax rates for both
smooth functions and smooth convex functions are extensively investigated.
We walk through the procedures translating local minimax rates to classical
minimax lower bounds and highlights the following additional implications.

e For the same class of functions, all optimal procedures under non-
asymptotic local minimax benchmarks are optimal in the classical
sense.
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e The local minimax rates established for one class of functions (e.g.,
convex functions) can be useful for establishing classical minimax lower
bounds for another function class (e.g., smooth functions).

Further, we demonstrate that the classical minimax rates for the convex func-
tion class are meaningless, which shows the advantage of the non-asymptotic
local minimax framework.

The smoothness condition we consider is local smoothness defined around
the minimizer. For £ > 1 and B > B; > 0, the locally smooth convex
function class I'; (k; By, B) is defined as
(B.14)

: _ . : LfF@&)—F(Z()] T LO=F(ZU)I
Fl(kaB17B)_ f€f31 St_l>17-‘q(lf) It—Z(f)‘k St—lgé?f) |t—Z(f)|k SB}

A similar smoothness class has been studied by Shoung and Zhang (2001),
with the difference being that their smoothness requires the limit to exist
and be exactly B (i.e., B; = B). Later in this section, We will also briefly
discuss a global version of smoothness.

The moduli of continuity for the locally smooth convex function class are
given by,

w.(e; f) =sup{|Z(f) — Z(9)| : If —gll2 < e,9 € I'1(k; B1, B)},
W (€5 f) =sup{|M(f) — M(g)| : [If — gll2 <e,9 € I''(k; B1, B)},

for any locally smooth convex function f € I'y(k; By, B).
Further, similar to the proof of Proposition 2.2, we can show that

(B.15) Qg5 f) = po(e; ) om(es f) = pmles f).

We defer the proof of this inequality to the last part of this section.

Consider function fy : t — B‘t — % k, which is in I';(k; By, B). Then we
can lower bound the classical minimax rate of estimating the minimum for
the function class I'y(k; By, B) by:

inf  sup  Ef|M — M(f)|
M feT1(k;B1,B)

> sup sup  inf max Epu|M — M(h)|
f€T1(k;B1,B) gl (k;B1,B) M he{f.g}
(B.16) > sup  inf max En|M — M(h)|

g€l (k;B1,B) M he€{fi.g}

> ai1pm(e; f1)
2k
= a1Cp ekt
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k 1
%)WBW.

Similarly, for estimating the minimizer, take f; : t — Bl‘t — %‘k, we can
lower bound the classical minimax rate by
(B.17)

where cp i, = (

(2k+1)(k+1))2kl+1 i

2
inf  sup  Ef|Z-Z(f)| > B, < 02

Z feri(k;B1,B)

Note that the class of locally smooth convex functions I';(k; B, B) is a
subset of the class of locally smooth functions. Therefore, the lower bounds for
I’y (k; By, B) also hold for the class of locally smooth functions. This implies
that our local minimax rates, while are primarily based on the properties of
convex functions, can also be used to establish lower bounds for the class of
locally smooth functions.

Moreover, this technique of establishing lower bounds for one functions
class under the classical minimax framework using the local minimax lower
bound for another function class has wider applicability. To illustrate this
point, we use this approach to establish lower bounds for estimating the
minimum for globally smooth function, which is also extensively studied in
the literature.

The globally smooth convex function class I'o(B, k) is defined as

(B.18) To(B,k) = {f € F:|f(t) — f(Z(f)| < Blt — Z(f)|F, vt € [0,1]}.

Note that the global smoothness imposes conditions on the behavior of
a function not just around its minimizer, which makes the globally smooth
convex function class smaller than the locally smooth convex function class
(if we can let By = 0 to allow the same form).

The continuity modulus for the globally smooth convex function class can
be similarly defined as

(B-19)  wm(e; f) = sup{|M(f) = M(g)| : [If —gll2 < &,9 € T2(B, k)},

for f € T'2(B, k).
Similarly, we can show that

(B.20) Om(&; ) > pm(es f),

the proof of which is deferred to the last part.
Inequality (B.20) and similar arguments as in Inequality (B.16) give that
the minimax rate for estimation of the minimum for function class I'o(B, k) is

2k k 1
lower bounded by aicp ye%++T (where cp ) = (%)WBW), which

automatically serves as a lower bound for the globally smooth function class.
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Our discussion on establishing lower bounds under the classical minimax
framework and transferring rates from local minimax framework to the
classical minimax framework for the white noise model can be extended
to the non-parametric regression. Despite the large volume of literature on
non-parametric regression, the lower bounds for various smooth classes are
not well known. For instance, the lower bound for isotropic Hélder class is
not known until lately (Belitser et al., 2021). To get the analogous discussion
for the non-parametric regression, we only need to replace ¢ in the white
noise model with %2, as the discretization error is always dominated by
the noise-induced error for commonly seen smooth function classes in the
classical minimax framework.

Now we proceed to see the advantage of local minimax benchmarks
compared with classical minimax rates. Consider a collection of functions
fs:t— 0|t — %|, for 6 > 0. This collection of functions is convex. We have
lower bounds (up to some absolute constants) for classical minimax rates for
convex functions, given by

) 1
Jim pe(e; fo) = 3,
Sdm i (e; fs) = oo
Any procedure will be optimal under the classical minimax framework, which
makes the classical minimax framework meaningless in this setting.

Finally, we are ready to show that our methods are adaptively optimal for
function classes for which the CLS estimator and CLSCI are investigated.
The function class for which the CLS estimator and CLSCI are investigated in
(Ghosal and Sen, 2017; Deng et al., 2020) can be written as Up~ol'1(k; B, B)
for even integer k > 2. Previous discussion established that our procedures
not only achieve the optimal minimax rate in the classical sense (in terms of n)
for T'y(k; B, B) but also have a risk/length smaller than a universal constant
multiple of the lower bound for each and every B and k. Our procedures do
not depend on B or k, meaning that our procedures are adaptively optimal
under the classical setting.

PROOF OF INEQUALITY (B.15) AND INEQUALITY (B.20). The proofs are
similar to the proof of Proposition 2.2. Using the same notation as in
Proposition 2.2, ¢t; and t, are the left and right endpoints of the interval
[t F(t) < M(f) + pules N}

To prove Inequality (B.20) (i.e., @m(g; f) > pm(e; f)), we only need to
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replace gs(t) in the proof of Proposition 2.2 by gs defined as

B21)  gs(e) = me+o([EZH| -1 u<e<a(),
pe+ 0 E551 -0 2(n o<t

for k > 1and 0 < § < min{B|t;— Z(f)*, B|t, — Z(f)|F, 3L Ef }. It is easy to
see that this new gs € I'2(B, k), ||gs — f]| < e and lim;s_, ]M(g(;) M(f)| =
pm(g; f). When k < 1, we just replace the k in the newly constructed gs with
1.

To prove Inequality (B.15) (i.e., @.(g;f) > p.(e;f) and @y, (e;f) >
pm(€; f)), without loss of generality, we assume t, —Z(f) = p,(e; f). Note that
k > 1. We only need to replace gs(t) in the proof of Proposition 2.2 to be gs(t),
which is defined in the following way: let hs(t) = Blt —t, + 0 ] + s, as when §

f(— f f
is small enough, Vt > ¢, — 4, w is lower bounded by My S I ),

so Js such that h4(t) and gs(t) has an intersection ¢; € (t1,t, — 5) and an
intersection to € (t, — 6,t,), which satisfy hs(t) > g5(t),Vt € (t1,t2) and
hs(t) < gs(t) for a small neighborhood outside (¢1,t2) on both sides.

Define gs by

(B.22) Gs(t) = {95(t) t € [0,1]\(t1, t2) '

hs(t) t€ (t1,t2)

Then gs € I'1(k; By, B), ||g — fll <€, lims—0|Z(gs) — Z(f)| = p=(e; f), and
lims_,o [M(gs) — M(f)| > lims—0 |M(g5) — M(f)| = pm(e; f). O

B.3. More on the Uncertainty Principle. In this subsection, we
elaborate on the generality of the Uncertainty Principle. We start with the
convex smoothness class we discussed in Section B.2. Uncertainty principle
still holds for the function class I'1 (k; By, B) defined in (B.14), which contains
all the functions f € F satisfying

L O =@ 10— FE

B <
Yy E=Z(OF T Teszin - ZHOF T

It follows from Inequality (B.15) that the moduli of continuity for the min-
imizer and minimum over the function class I'y (k; B, B) have the following
relationship.

62

(B.23) @2 (25 m(e; £)? > pale; fom(e; £) > 5
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So the Uncertainty Principle also holds for I'y(k; By, B).

Further, applying the smoothing technique in Equation (B.8) in the proof
of Proposition B.2 to gs defined by Equation (B.22), we know that the
Uncertainty Principle also holds for the k-th order differentiable convex
function class for any k.

Therefore, there are many choices of subclasses of F where the Uncertainty
Principle holds. Interested readers can further explore other possible choices.
Further, given the prevalent occurrence of tension between different quantities
(e.g., minimizer and minimum in our case), we believe that similar Uncertainty
Principles can be developed in diverse scenarios.

B.4. Comparison with the CLS Estimator for Minimizer. We
now turn to a comparison of the CLS estimator and our proposed estimator
for the minimizer.

Analyzing the behavior of the CLS estimator within our framework poses
significant challenges. On the other hand, the theoretical analysis for our
method easily gives a corollary that our estimator achieves the same optimal
rate as the CLS estimator under a coarser criterion — in asymptotic sense
with functions that have positive second order derivatives — the same
context in which the CLS estimator is typically studied. Numerical results
demonstrate that the behavior of the CLS estimator aligns with our methods,
albeit with sensitivity to the smoothness of the functions. Now we proceed
with details.

Existing theoretical results for the CLS estimator of the minimizer are both
asymptotic and for a fixed function with strong regularity assumptions such
as twice differentiability. The tools used in establishing the performance of
the CLS estimator in the literature are insufficient for studying its behavior
under our non-asymptotic local minimax framework for general convex
functions without smoothness conditions. Therefore, the properties of the
CLS estimator under our framework for convex function class are unclear
and difficult to analyze.

More precisely, existing analyses of the CLS estimator are based on the
limiting distribution, which is usually obtained by performing a second-order
Taylor expansion of the function around the minimizer and analyzing the
resulting empirical process. However, the limiting distribution only holds with
the sample size going to infinity for a fixed function, so similar arguments can
not lead to results that hold uniformly for all functions within a function class,
regardless of whether the sample size is fixed or growing. Additionally, the
Taylor expansion approach is not applicable when the second-order derivative
does not exist at the minimizer. As a result, analyzing the behavior of the
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CLS estimator under our local minimax framework requires new tools and is
of separate interest.

On the other hand, theoretical results for our estimator can be easily
transferred into one that uses the same criterion used in theoretical results
for the CLS estimator — asymptotic results for convex functions with positive
second order derivatives at the minimizer. Under this criterion, our estimator
and the CLS estimator have the same optimal rate.

For functions that are twice differentiable around the minimizer with a
positive second-order derivative at the minimizer, the boundedness of the
CLS estimator for the minimizer Zeyx (i.e., Zeyx € [0,1] ) and its limiting
distribution (Theorem 2.9 in Deng et al. (2020)) give that

2/5
ligl_)solépE(\ZAcvx — Z(f)D(n)o?)/® < (f,,(Zl(f))) consty,

where const; is an absolute (positive) constant, and that

1 2/5
P _ 2)1/5 <
hnﬁ_l)loféfE(’chx Z()h(n/a?)° > (f”(Z(f))) consty,
where constg is another absolute (positive) constant. Note that for functions
twice differentiable at the minimizer with a positive second-order derivative,
the key part of the benchmark for the minimizer in our framework pz(ﬁ; f)

F"(Z()
benchmark has a discretization part as shown in Section C.11, it can be easily

2/5
verified that the order of the benchmark remains (02/n)'/5 (W)

when f is fixed and n goes to infinity. In this asymptotic sense, the CLS
estimator matches our rate, which is also the optimal rate, for functions
twice differentiable at the minimizer with a positive second-order derivative
(the lower bound provided in Section B.2). However, this match in rate is
under a coarser criterion and does not imply optimality for Zevx under our
non-asymptotic framework.

Now we look at the numerical experiments we have shown in Section A.
Figure 6 shows that the CLS estimator and our methods have almost the
same behavior for f(z) = 100(|2z —1])2, a function with positive second order
derivative. However, the performance of the CLS estimator, when compared
with that of our estimator, deteriorates as the smoothness of the underlying
function grows, as shown in Figure 10 and Figure 12, and improves as the
smoothness of functions decreases, as shown in Figure 2 and Figure 4. In
contrast, our method is stable in terms of the smoothness of the functions,
as shown in the comparison with the theoretical benchmarks in Section A.3.

2/5
is of the order (02/n)'/® (*) when n goes to infinity. Although the
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APPENDIX C: PROOFS OF THE RESULTS IN THE MAIN PAPER

This section provides the proofs of all the main results presented in the
paper “Estimation and Inference for Minimizer and Minimum of Convex
Functions: Optimality, Adaptivity, and Uncertainty Principles”.

C.1. Notation, Lemmas and Basic Properties. We begin by intro-
ducing and recollecting notation that will be frequently used in the proofs.

Note that Y;, Y;, and Y, are defined on the same probability space. We
use [E; to denote the expectation with respect to the distribution of Yy and
so on. We denote by 7 the index for the subinterval at level j that contains
the minimizer Z(f); we denote by 7 the index for the level where the chosen
interval is at least two blocks away from the subinterval containing the
minimizer, i.e.,

(C.1)  if =max{i: Z(f) € [tji-1.t;]}, j=min{j:|i; — i > 2}.

It is easy to see that j > 2, and j only depends on Y;. In addition, we let

(C.2) 5% =min{j : m; < pZ(Z 7y,

Then by this definition, @ < mjx < %. Furthermore, p;; denotes

the average of f on interval [t;;_1,%;,], i.e.,

(C.3) ! / o F(t)at
. Hii = — .
! Mj Jt; 1

We now list the notation that is used throughout the proofs of theorems
in Section 3, in case readers get lost in the middle of reading a proof.

Z;k :max{i : Z(f) S [tj7i_1,tj’i]}, 5 = min{j : ﬁj - Z;‘ Z 2},

1 /tw' . o p=(&; f)
i =— [ f(dt, j*=min{j:m; < ,
J m‘? t]-yi_l ( ) { J 4 }
1
Eji =—— (Waltji) — 2Wa(tji-1) + Wa(tji-2)),

(C.4) Nao
N o 1 3N
j =min{j: |i; —if| > 5}, f= m/ T p

J t%jthfl
A =2 (H{Xj‘7§}+6 - Xj7%5+5 S 2Uj} — 1{X3,55—6 — Xj,%3—5 S 20’j}) .
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In the data splitting step of the white noise model, we obtain three
independent copies of the observations: Y;, Y, and Y,. While we let them
have equal variance (3¢2), it is not necessary. We denote the variances of
Y;, Y, and Y, as cl252, c2e?, and c2e?, respectively, in the supplement. This
helps demonstrate how the results depend on variance and allows for easy
derivation of analogous results for modified splitting procedures.

Similar for regression model, the splitting procedure for the regression
model can be modified to allow different variances of the three copies {y; .},
{ys,.}, and {y.,.}. We denote the scaling factors for the three copies as v,
~s, and 7., respectively, i.e., for all i, Var(y;;) = v20?, Var(ys;) = v202, and
Var(ye,i) = 720

For the regression model, we use similar notion for the length of subinterval,
the index of the interval in which the minimizer lies, etc. The following
notation is used in the proofs of the results for regression model.

27 . 1
mj = Lji=1omy = o
L s 1 1
i =max{i: Z(f) € [tji-1+ %7tj,i + %]},
j = min{min{j : |i; — i} > 2}, 00},
* . . IOZ(L)f) . . . N

(C5)  j"=min{j:m; < %}, j¥ = min{j : ’ij - ij‘ > 5},
Yo = {yw,(]aym,l: T ayx,n}g for x = l,s,e,
1 2J/-3.4—1
aveg(j, 1) = DY Z f(zk),
k=27-7 (i—1)

Q:,j,i,x = Y},’i,ﬂ? — cwef(j,i) . 2J_j, f — avef(j’ 5_3)

To keep the logic flow neat, additional notation for non-parametric regres-
sion are introduced in Section C.11.

We finish this part by recalling some of the basic properties that are
frequently used in the proofs. The proofs for these properties are deferred to
later sections. Firstly, we revisit a basic property for convex functions.

LEMMA C.1.  For a convex function f, and any 0 < 21 < 22 < 23 < 1,

we have
flx2) = flan) _ flxs) = (1) _ flxs) = f(2)

To — X1 - T3 — X1 - T3 — T2

Next we introduce the following lemma that helps with detailed calculation.
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LEMMA C.2. For z > 63, we have

where @ is the Cumulative Density Function (CDF) of a standard normal
distribution.

We further introduce two quantities that will be often used in the proofs
of the theorems in Section 3 of the main paper. Let

(C.6) Q =supz’®(—2) and V =supz’®(2 —z),
>0 >0

for which we have the following results.
LEmMmaA C.3.

(C.7) Q=supz’®(—x) <0.169, V =supz’®(2— )V < 2.0555.
>0 x>0

C.2. Proof of Proposition 2.1. We begin by proving the statement
with respect to the minimum. That is, for e > 0, f € F, and ¢ € (0, 1),

wln

. < pmcs f) 2

T opm(ef) T

PRrROOF. Without loss of generality, we assume M (f) = 0. We first prove
the left hand side. Define the S-indexed function on [0,1], gg, as

gg =t = max{f(t), pm(Be; f)},
and it is not difficult to see that
(C.9) g1 — fII? =€, lge = fII? = *&*.

Define function g on [0,1] as g := t — max{f(t),com(e; f)}. Let t;,, and
trm be the left and right end point of the interval {¢t € [0,1] : f(t) < g(t)} =
{t €[0,1] : f(t) < cpm(e; )} Cleatly, [tym,trm] C {t : f(t) < pm(s )}
which gives

(C.8)

(C.10) li—fIP = / " epmle: ) — F(1)dt
(1) < / " P pmles 1) — ()t

A

(C.12) < Ellgr = fIP = P = lge — £
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Therefore, § < g. at all the points. This gives cpp,(e; f) < pm(ce; f).
Now we turn to the right hand side, which can be reduced to finding the

value of
FEF pml(cs; f)

Let the left side and right side of the “water area” with “water level” p,,(ce; f)
be

(C.13) T = min{x : ge(x) > f(z)}, 2 = max{z : g.(x) > f(z)}.

The rest of the proofs can be divided into four steps.

1) The first step shows that taking the infimum of pp;"((csjf)) over F is the

same as over the function class

(C.14)
JFir= {f SRV f‘[O,xz,m]’f

o 1] AT€ linear functions with slopes
f/(xl,m+)a andf/(xr,l_)}‘

2) The second step shows that it is further no smaller than taking the
infimum over the function class

Fu={feF: f’[o,Z(f)]’ f‘[Z(f),l] are piece-wise linear functions with

at most two pieces, f ‘[0 ]’ f | are linear functions }

[@r,m,1
3) In the third step, we define two extended function spaces
Fo = { f is convex function with unique minimizer on (—oo, c0) :
f‘(_oom, f}[lpo)] are linear functions, f‘[OJ] € .7:},
Fu = {f e F,: f‘(—oo,Z(f)] and f‘[z(f)ﬁoo)are piece-wise linear functions

with at most three pieces }

as well as two extended geometric quantities p,(e; f), pm(e; f) for

feF.
po(e; f) = max{[t—Z(f)| : f(t) < p(e; )}, pmles f) = ple; f)—M(f),

where pu(e; f) satisfies that for function f,, defined on R as f, : t —
max{u(e; f), f(t)}, the following holds: ||f, — f||* = 2. In this step,
we show that ~

1eFu pm(ce; )~ jeFy Pm(ce; f)
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4) Finally, in the fourth step, we show that

pm(€; f) > inf pm(€; f) —

Wl

inf — > L
feFu pm(cs; f) fEFL pm(ce; f)

where Fj, = {f € Fu : f{(_oo 2(0)] and f‘[Z(f) 00y 1€ linear functions}.

Step 1. We start with defining a mapping Li : F — Fy, i.e., L1 maps a
function in F to a function in F;. Then we will show that

pm(e f) o pm(s Li(f))

(€1 pnle= ) = puleziLa()

by showing

(C.16a) pm(ce; f) = pm(ce; L1(f)), and

(C.16b) pm(&: f) = pm(e; La(f)).

Then Inequality (C.15) gives

(C.17) inf pm(e; f) > inf pm(&; L1(f)) > inf pm(; f) _

JEF pm(ces ) — feF pm(ce;s Li(f)) — e pm(cs; f)
Granting Inequality (C.17) holds, to prove the statement of the first step,
we only need to show that
(C.18) ing LS e pmES)
feF pm(ce; f) ~ R pmles; f)
Inequality (C.18) indeed holds as F; C F.
Now we give the precise definition of L by giving the value of L;(f)(t)

for [0,1], and show that Inequalities (C.16) hold. Convexity of f ensures the
existence of one-sided derivatives. Let

f@im) + fl(@imt)  (t—21) 0<t <,
(L1(f) (&) = § f(t) t € [T1m, Trom) -
f(l"r,m) + f/(xr,m_) : (t - xr,m) 1>t> LTrm
Clearly, Inequality (C.16a) holds. Now we will show that Inequality (C.16b)
holds. Without loss of generality, we can assume M (f) = 0. It is clear that

M(Li(f)) =0, Li(f)(t) < f(t) vt € [0,1]. Define a function Li(f) on [0,1]
as L1(f) : t = max{Li(f)(t), pm(e; f)(t)}. Then we have

1
IEA(f) — La(H)] = /O (&5 f) = Lu(F)(0) 1) dt

(C.19) )
> [ (ones 1) = 102 =2
0

This inequality gives Inequality (C.16b).
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Step 2. Similarly to Step 1, we will define a mapping Lo : F; — Fy; that
maps a function in F; to a function in Fj;, such that the following inequalities
hold.

(C.20a) pm(ce; f) = pm(ce; La(f)), and
(C.20b) pm(€; f) = pm(e; La(f)).
Then, similar arguments as in Step 1 will give the statement of Step 2. To

define Lo(f), we define a sequence of functions {h(d; f)}s>o and then pick
one in this sequence. We first introduce two quantities:

1(0; ) :=min{t € [0,1] : f(t) <J+ M(f)},
r(d; f) :=max{t € [0,1] : f(t) <0+ M(f)}.
When there is no ambiguity, we will omit f, resulting in [(9), and r(6).

Now we define four functions I, lo 5, I35, and l4 on R. Recall the definition
of z,, and z; ,, in (C.13).

Mo =10 4 (), aim >0,
W(t) = S (= apm) lim,_qe LEmtDZIC) o py Y 5E Z(f) > @pm = 0,
M(f), if Z(f) = 2ypm =0,
ey — | TR 20+ M), i Z() > 0,
’ M(f), it Z(f) =0,
os(t) = | A 2D+ M), (D) <1,
’ (), it Z(f) =1,
%ﬁm)(t — ) + F(@rm), it v <1,
l4(t> = (l’nm — t) lims_>0+ f(xmm_sg)g_f(th) + f(l'r,m)7 if Z(f) < Trm = 17
M(f), if Z(f) = zrm = 1.

Based on these four functions, we define a new function h(d; f) on [0, 1]:
h(d; f) : t — max{li(t),l25(t),l35(t), la(t)}.
When there is no ambiguity on f, we will denote h(d; f) as h(d). Clearly,
h(01)(t) > h(d2)(t), for all t € [0,1], when 61 > do.

This, along with the continuity of f implies that pp,(ce;h(0)) increases
continuously as § increases. Further, for § = p,,(ce; f) and § — 01, we have

pmiceshpm(ce; f))) = pmlees ), lim pm(ce; h(0)) < pm(ce; f)-
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Further, inequality lims_,o+ pm(ce; h(9)) < pm(ce; f) takes equality only
when both f|g z(py and fliz(s),1) are linear functions. Therefore, 35y €
(0, pm(ce; f)] such that pp,(ce; h(60)) = pm(ce; f). We define La(f) to be h(dy).
Consequently, Inequality (C.20a) holds. It is also easy to check La(f) € Fy.
We use the following shorthand h := h(dp) when there is no need to emphasize
do. Now we will prove py,(g;h(0)) < pm(g; f) (Inequality (C.20b)) by proving
1h—gull > If — g1l = - By pm(ce: h(d0)) = pm(cs; 1), 89 < pm(cs; f), and
the construction of h(d), we have

{t : h(éﬂ)(t) < Pm(cg; f)} = [$l,m>xr,m]a

[0, 1]/ [@1,ms Tr,m] C {t 2 h(0)(t) = f(t)}.

Further, by the construction of i(8), we have
F() < () (1), for t € [U3).r(®) £(£) > (h(0)) (1) for t ¢ [1(5). (o))
Therefore, we have
0=[1f = gell* = 17(50) — gell?
= [ (00 - 00  (000) 0 - e0)7) at

Tl,m

= [ = - 1 - wya

Tlm
(C.21)

> / 2h — F)(pm(ce: f) — do)dt
(@1,m,1(80))U(r(00),Zr,m)

+ / b — 1) (pm(cs: f) — Bo)dt
[1(60),7(d0)]

1
>2pmesi )~ bo) [ (0= D)
0
It then follows that
b —gill> = IIf — ol

= [ (=P - - ) ar

l,m

(C22) = [ = pn-2o0a

l,m

- /m’m(h — F)(f+h—2gc)dt + /M 2(h = f)(ge — g1)dt

I,m Tl,m

1
Sl = gell? — I — ell? + 20pm(ess 1) — pm(: £) /0 (h— f)dt > 0.
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As a result, pp(e;h) < pm(e; f), which is pp, (g5 La(f)) < pm(e; f). This is
Inequality (C.20b).

Step 3. First, we show that p,(e; f) and pp,(e; f) are well defined for func-
tions in Fy;. As Fy C F., it is sufficient to show that p-(e; f) and pp,(e; f) are
well defined for functions in F,. This holds true as for any function f € F,,
f has a unique minimizer.

Now for each f € Fy;, we will define a class of functions L3(f) = { f(;l,gz €

Fui 61 > 0,02 > 0} such that

(0'23) ﬁm(g; f51,52) < pm(s; f)a lim inf ﬁm(cg; f61,62) > pm(Cé‘; f)
max{d1,02}—07F

We define function f51752 by defining its values on three intervals, (—o0, 0),
[0,1], and (1, 00). Specifically, for ¢ € [0,1],

f51,52 (t) = f(t)v

for t € (—00,0),

f~ ( ) — f(o) + f(ffl,;:r;)n:f(o)t7 TLm >0
e f(O) + Inin{_él_17111115—)07L w}ta Lim = 0 7

and for ¢t € (1, 00),

P F(OR e e Gt Trm <1
01,02 - f(l) + ma,X{(S,,_l,limS*>0+ W}(t — 1)7 Tim = 1 .

Clearly, fgl’gz € Fy. For ease of presentation, we extend the meaning of
max{-, -} to allow function-value arguments in the remaining of this proof.
Suppose g is a function defined on X and C' is a constant, then max{g, C'}
or max{C, g} gives a function on X: z — max{g(z),C}.
We proceed with showing Inequality (C.23) using the definition of L3(f).
Note that for any £ € (0, pm/(ce; f)),

max{511i7r(sr2l}_>0+ H max{f&ﬁw M(f) + pm<C€; f) - {} - f51,52H

= [|max{f, M(f) + pm(ce; f) — & — fIl < ce.

Therefore,

lim inf O, ;~ > Pm ; -G
g nf P (ces5 fo1,00) = pm(cg; f) — €
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Since it holds for any & € (0, pp(ce; f)), let € — 0T, we have

(C.24) Liminf  pu(ce; f5,.6,) > pm(ce; f).

max{d1,02 }—07F

For any 61,92 > 0,

H max{ﬁslﬁzv M(f)+pm(5; f)}_fN51,52H > H maX{fa M(f)+pm(€; f)}_fH > ¢,
which yields that 3

ﬁm(g; f51,62) < pm(E; f)
Now we have Inequality (C.23). Since Lz(f) C Fy;, we get

o om(Ef) . PmlE f)
flelgll pm(CE; f) Z flen]__f” ﬁm(Cg; f)

Step 4. We begin by defining several sets of functions such that Fu is the
disjoint union of them. Let

é(kh kQ) {f ~” :f —00,72 is k1-piece linear function,
(0.25) ‘( Z(F))
f‘(Z(f) oo) iS k:g—piece linear fUI’lCtiOl }

Then

Fu= |J Glhr ko).
1<ky ko <3

Clearly, F, = G(1,1), and

It remains to prove that

(C.26) inf M > inf M
reFu Pm(ces [) — pery pm(cs; f)
Let i
Gk)y= |J G, ko), for k=2,34,5,6.
k1+ko=k
It suffices to prove that for k > 3
ﬁm(g; f) M

inf ————% > inf ~ ,
FeG(k) pm(ce; f) — reGk—1) pm(cs; f)
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which gives Inequality (C.26) and complete the proof of step 4.
Similar to the arguments in previous steps, we prove it by constructing
mappings Ly : G(k) — G(k — 1) and Ls : G(k) — G(k — 1) such that

for any f € G(k), at least one of the following holds: ;:((cif}) > ;ZL(&E;;LLt({f))))’
ﬁm(E;f) > ﬁTVL(‘E;LS(f))

pm(ce;f) = pmles;Ls(f)) -
In this step, we keep using the extended definition of max{-, -} for function-

value arguments defined in Step 3. }
Let S; be the set of the knots of f € F, then |S;/{Z(f)} =k —2> 1.
Let

¥ =max{z € S¢: f(zr) =max{f(t):t € S¢}}, ¢, =minS;, ¢, =max5;.

Clearly, z* # Z(f). Without loss of generality, assume z* > Z(f). Then by
definition of x*, f [ 00) 15 8 linear function. We define a function L4(f) €

G(k — 1). Convexity of f ensures the existence of the left derivative f’(z*—).
Further, by definition of z*, f'(2*—) > 0. For t € R, L4(f)(t) is defined by

f(t), t<a*

(C.27) (La(f)) (t) = {f(:r*) + fla* =)t —a*), t>a*

If f(z*) > M(f)+ pm(ce; f), we have
pm(ce; La(f)) = pm(ce; [, pm(e; La(f)) < pml(e; f),

. . . ~m( ,f) ~m( ;L (f))
which implies that 5 (;f) > gm(;ﬁl(f))‘

If f(z*) < M(f) + pm(ce; f), we have f(t;) < f(a*) < M(f) + pm/(cs; f).
Denote py, p, to be the left and right root of f(t) = M (f)+pm(e; f). Then p; <
Tim <t < Z(f) < 2* < &y < pr. Now we will first prove Inequality (C.34),

and then construct a new function Ls(f) € G(k — 1) such that % <

ﬁﬁ;"((;f}) . We start with splitting || max{Ls(f), M (f)+pm(e; )} —La(f)||? into
three parts of integration. We introduce the shorthand 7 = M(fHJ"Z?(‘g(ﬁ;Q_f(:C*)
and note that

[mas{La(F), MF) + (e 1)} = La()] (8) =
0 t & [pi,z* + 7]
M(f) + pm(es f) = f(2) te [p,t] Ult, 2.
M(f) + (e f) = [ /@) + @™ =)t =a)]| tela”,a +7]
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We have
(C.28) | max{La(f). M(f) + pun(e: )} — La(P) =
[0+ s 1) - 50+ / M)+ Bl ) — £(0)dt

’ I Iy
L1 (s f) T M)~ F)
J(@*—) 3
I's

Similarly, || max{Ls(f), M(f)+ pm(ce; f)} — La(f)||? can be split into 3
parts as well.
(C29) [l max{La(f), M(f) + pm(ce; £)} — La(f)I?

t; x*
[ )+ putess )~ 1t [ + pless 1) - 1Pt

2

71
L (pmles )+ M(f) — f(a"))°
f'(x =) 3 '

3

1 ”maX{L (f)vM(f)"’ﬁ'm(a;f)}_L ( )”2
We will COMPALC [ LA 4 oo - Ea( I 1D
maxt f S P SDATL — 1, Now we split || max{f, M(f) + pm(cs; f)} -
fI? and || max{f, M(f)+ pm(c; f)} — f||* into 3 parts for each. Further, some

of the parts equal to the aforementioned parts.

(C.30) [ max{ £, M(f) + pmles: )} — fI
/ (M) + e ) — )2t + /t (M) + paless 1) — £t

L1 Gules )+ MO~ S
f(x*+) 3 ’

V4
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(C.31) [|max{f, M(f)+ pm(s; /)} — fII?
t x*
Z/‘Mﬂﬁ+@Aaﬁ—ffﬁ+l (M(f) + s ) — £t +
Dl l

T Ty
L (e )+ M(f) = f(z*))?
f(z*+) 3 '
Iy

Elementary calculation gives

(C.32a)
H<<Mm+M@ﬁ—ﬂmf<<m@ﬁ+Mm—mm>3

v = \M(f) + pmlesi ) = f(t) pml(ces )+ M(f) = f(z*)
(C.32b)

Ty _ (pm(Ef)+ M) = f@)N® ([ Bmles )+ M(f) = f) )
»DSQMmﬁ+MU%wa <QMmﬁ+Mm—ﬂwQ’
(C.32¢)

m_(%@ﬁ+Mm—ﬂm>iﬁe
v \pmless f)+M(f) = f(@*)) 23

Further, f/(z*+) > f/(x*—) > 0 implies that I's > 'y > 0. Consequently, we
have

I +Te+1I3 S I +Te+1Ty

TN+t T Mttty

which follows from the fact that % > ¢ifa,b,e,d>0and § > 7. Note that
the terms in Inequality (C.33) are exactly the split parts of the quantities
in Equation (C.28), Equation (C.29), Equation (C.30), and Equation (C.31).
Consequently, we have

I max{La(f), M(f) + pm(e: )} = La(HIP _ 1

[ max{La(f), M(f)+ pm(ce; f)} = La(f)II* ~ ¢

Define function Ls(f) € G(k — 1) by scaling L4(f) horizontally with scaling

factor A = (L M o DT L (T
(C.35) Ls(f) st = M(f) + [(La(f)) (t) = M(f)] N
Clearly,

(C.33)

(C.34)

pm(ce; Ls(f)) = Apm(cg; )y pm(e; Ls(f)) < Apm(e; f).

Thus the statement is proved. ]
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Now let us turn to the proof of the geometric property of the minimizer,
namely, for e >0, c € (0,1), and f € F,

p-(ce; f)
p=(&; f)

PROOF. The right hand side of the inequality is straightforward. For the
left hand side, we prove a stronger version,

3 2\&; 2 1 2\&3 3
4 \ pz(cs; f) 4\ pz(ces f)
Similar to Step 3 in the previous proof for the minimum, for any f € F, we

have a class of functions { f51752 : 01,02}, but with a bit of abuse of notation,
we define fs, 5, here as

f(t)a t e [0, 1]
F51.00(1) = { £(0) + min{— 61_1, lim, g LSOy t € (—00,0).
7(1) + mase{5; L lim, s ZOT0=03 (4 1) e (1, 00)

(C.36) max{(c/2)3,c} < <1

Similarly , we have

1 02 ; f = pPz\&i ] ), li 0 ; £ =0, . ).
max{ﬁlg;}_}mp (e fél,éz) p=(&; f) max{(sllg;}_}mp (ce f51752) pz(cg; f)
Hence
(C.38) sup P2E ) G PoE D)

feF pz(C€ f) f;lﬁ ﬁZ(CE f)

Similar to the proof of the minimum, for f € F., denote p;, p, as the two
roots of f(t) = M(f) + pm(e; f), and q, ¢ as the two roots of f(t) =
M(f)+ pm(ce; f). Without loss of generality, we assume p, = Z(f)+ p.(c; f).
We define four quantities:

Z(f)
Ay = / (3 ) + M(f) — f)%t,

Dl
Z(f)
Ay = / (mlce: £) + M(f) — f)2dt,
(C.39) “
Ay = / (Fmcss £) + M(f) — )2,
Z(f)

Dr
A= / (e )+ M(f) — P2,
Z(f)
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Then we know that

(C40) &= [[max{f, M(f) + pm(e; )} = fI° = A1+ Ag,
and that
(C.41) ?e? = ||max{f, M(f) + pm(ce; )} = fI° = Do + As.

We also have

Next we will show that

M><m—ﬂﬁf><m@ﬁ>3
As = \ar—Z(f)) — \p:(esi f)
For the ease of presentation, let us define four quantities wy = p, — Z(f) =

pz(e5 f)ywz2 = qr — Z(f) < p(ce; [y v1 = pml; f),v2 = pmce; f). Using this
notation, we can rewrite the expression for Ay/Ag as follows:

Ag _ 0 H(or + M(f) — f(pr —t))2dt
Az [ (2 + M(f) = fgr —1))2dt

wi [ (o1 + M(f) = fpy — w1 - £))2dt

wa [ (v2 + M(f) = f(gr — wa - 1))2dt

We also have the following inequality:

M(f)+v1— f(pr —w1-t) = f(pr) = f(pr —w1-1t)

_f(pr)*f(pr*wl't)w t(g) f(QT)*f(QT*UJQ't)w
N wy -t ! - wo -t

w1

= —(f(ar) = flgr — w2 1)),

w2

(C.43)

(C.44)

where step (iii) follows from the convexity of f and the facts that p, > ¢,
and p, —wy -t > ¢ — we - t. Continuing with Inequality (C.43), we have

(C45) E ws fo QT) - f(Q'r — wo - t))2dt

In addition, we have

o (57 ) — Flar —wa-1)) ;
A4 W1 Jo \ wy a) qr — w2 - _(w1> .

w2

w2

>17
3 7x(c: /)

(C.46)

l>‘l>
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Therefore,
2 3
L Dt (1) 2o t+24 ()
Ay + Az — Ao+ Ag
1w w1 1 pz(esf) ~
(C.47) R Y X CI IR <w1>2 N Y =) ( ACY) )2

_ 3<ﬁz(€;f) >2+1<ﬁz(€;f) )3
4\ pz(ces f) 4\ pa(ces f)
Since this inequality holds for all f € F, and together with Inequality (C.38),
we obtain

2 3
2 3 p:(&; f) 1 p:(g; f)
‘ Z4<§‘é§ﬁz<ca;f>) +4<?2§ﬁz<ce;f>> |
O

C.3. Proof of Proposition 2.2. We begin by establishing the lower
bound on the local modulus of continuity w,(e; f), namely, p.(g; f). We define
ue = sup{u : || f — full2 < €} for given f and €. Let ¢y and ¢, (t, < Z(f) < t;)
be the two end points of the interval {t : f(t) < u.}. Without loss of
generality we assume that [t, — Z(f)| > |t — Z(f)|, which implies that
pz(&; f) =t — Z(f). For any § € (0,t, —ty), consider the function g5 defined
as

— flt, =96
(C.48) g5+t max 4 f(t), e — e = Fr =9y 1
ty—ty—0
It is easy to verify that g5 is convex with minimum point at ¢, — d, and that
| f —gsll < ||f— full <e. See a graphical illustration in Figure 20. Therefore,
taking 6 — 0+ gives

w:(e; f) 2 Jim (tr = 0) = p2(es f).

Now we switch to the upper bound. Suppose ¢ is a function such that
If — gl < e, with minimum point at Z(g) > Z(f). We will use proof by
contradiction.

If Z(g) > Z(f) + 3pz(g; f), then 1 > Z(f) + 3p.(&; f). Recycling our
notation, we define ty(uz) = inf{t : f(t) < u.} and t,(us) = sup{t : f(t) <
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Fig 20: Illustration of construction of gg, colored red in the plot

ue }. Convexity of f implies that f is continuous, hence f(t,(us)) = u.. We
have two cases: 1, g(t,(us)) > ue, 2, g(tr(ue)) < ue.
For case 1, we know ¢(t) > u. for t;(us) <t < t,(us), so

tr(us)
I - gl > / (ue — F(£))2d1 = <2,
t

1\(Ue

For case 2, we know ¢(t) < u. for t,(us) <t <t.(us)+ 2p.(e; f), so

tr(us)"‘sz(a;f) U
17— gl? > / (Mt to(un)))dt
t

" 1o(ue) — 207)
u? 8p.(e; f)3 8 . 42
> Gz 3 ez

Either case, the there is a contradiction. Therefore, Z(g) < Z(f)+3p.(c; f )
Let us now turn to wy,(e; f) and firstly show that wp,(e; f) > pm ( )1
fact, if we take the convex function gs as defined in Equation (C.48), we have

that ||f — gs|| < e and that
hm mlng(;( ) = Z(f) = pm(&; f),

6—0t

which completes the proof.
Next, we will show that wy,(g; f) can be upper bounded by py,(g; f) up to

a constant factor of 3.
For any g € F such that ||f — ¢|]| < &, we can immediately obtain

M(g) = M(f) < pml(s; f)-
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Otherwise, if M(g) — M(f) > pm/(e; f), then g(t) > pm(g; f) + M (f) for all
t, and hence €2 > |[f — gl[2 = (M(g) — M(f) = pm(&s )2 (tr(uc) — ti(uc) +
| fue = fIP > €%

On the other hand, we need to show the minimum value of g cannot be
too small compared to M (f). For the ease of presentation, we assume that
M(f) = 0 only for this part. As in the previous parts, we write ¢, = inf{¢ :
f(t) < uel, tp = sup{t : f(t) < u.}, and v, = t, — t;. Graphically, v, is
the width of the water-filling surface. Suppose that M(g) = —au. for some
a > 0. Consider the width of the set {t : g(¢) < 0}, which we denote as v,
for some v > 0. From Figure 21, we see that the integral ||f — g||3 has to
contain the ¢ area of the three shaded triangles (the two triangles on the
side might not exist). Given that M(g) = —au. and |{t : g(t) < 0}| = 7o,
some calculation shows that

1 1 a+1)?
If—QIIQZU§vs-3a27<1+<— ! ) vo)

v

1 1 1\?
252-a2'y<1+<—a+ ) \/0)
3 ¥ @

where the second inequality follows from u2v. > £2. Fixing o and minimizing
over v, we have that if a > 3, || f —g||? > €2, which is contradictory. Therefore,
we have

M(f) = M(g) < 3pm(s; f)-

Fig 21: Illustration of upper bound proof

C.4. Proof of Theorem 2.1. We begin with the lower bounds by
first proving that R,(e; f) > ®(—0.5)w.(g; f). The proof for R, (e;f) >
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®(—0.5)wm(e; f) is analogous and will hence be omitted.

Let f € F. Let g € F, which we will specify later. Take 6 € {1,—1} as a
parameter to be estimated and let f{ = f and f_1 = g.

Any estimator Z of the minimizer Z (fo) gives an estimator of 6 by

g Zh)+Z(f-)
= 2
- Z(fl)—2Z(f71) ’

and therefore Eg|Z — Z(fo)| = | Z(f1) — Z(f_l)\Eg‘HQi. On the other hand,
a sufficient statistic for 6 is given by

Jo (F1(8) = f1(D)dY () = § fy (F(8)? = f-1(£))dt
ellfi — f=ull '

Let Py be the probability measure associated with the white noise model
corresponding to fy. Then W ~ N (g . M, 1) under Py.

Note that for any w,(e;f) > § > 0 there exists hs € F such that
If = hsllz = € and |Z(f) — Z(hs)| = w:(e;f) — 0. Let g = hs. Then
we have R.(e;f) > (wz(e; f) —9) - r1, where r; is the minimax risk of
the two-point problem based on an observation X ~ N (g, 1), ie, r =
inf; maxg—+, Eg@. It is easy to see that r; = ®(—0.5). Taking § — 0%,
we have R (e; f) > ®(—0.5)w.(e; f), so a; > ®(—0.5) ~ 0.309.

Next, we show for 0 < a < 0.3 that L, ,(e; f) > baw.(e/3; f) where
bo = 0.6 — 2. A lower bound for Ly, o(e; f) can be derived following a

similar argument. We begin by recalling a lemma from Cai and Guo (2017).

(C.49) W=

LEMMA C.4 (Cai and Guo, 2017). For any CI € Z, ({f, g}),
EfL(CT) = |2(f) = Z(9)|(1 = 2a = TV (Py, Fy)),

where TV denotes the total variation distance between the two distributions
of the white noise models corresponding to f and g. Similarly, for any

Cl € Lna({f 9},
E;L(CT) > [M(f) — M(g)|(1 — 20 — TV(Py, Py)).
Again let g € F. Then for CI € Z,, ,({f, g}), by Lemma C 4,

EfL(CI) > |Z(f) = Z(9)|(1 = 2a = TV(Py, Fy)).
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Note that TV (Pf, Py) < \/X2(Py, Py), where x2(Py, P,) = [ (jﬁf) P, — 1

is the x? distance between P; and Py. Girsanov’s theorem yields that de =

exp (f ft) Lot dY —3f 1) _g(t ) and hence

Py, P, / exp(z [ TS 20 1) / IO 9@ yyap, 1

T
= exp(Hfang) —1.

Using it to bound the total variation distance, we get

B/L(CT) > |2(5) - Z() (1 ~20- \/exp (5h) - 1) |

We continue by specifying g. For any w,(g/3; f) > 0 > 0, picking g = g5 €
F such that ||f — gs5]| = ¢/3 and |Z(f) — Z(gs)| > w.(¢/3; f) — 0, we have
E;L(CI) > (0.6 — 2a) (w(¢/3; f) — ) . By taking 6 — 07, we have

L.o(g5f) > (0.6 —2a) w.(e/3; f).

Now we turn to the upper bounds and introduce two lemmas, one for the
minimum and another for the minimizer, that will be proved later.

LEMMA C.5. For0< a<0.3 and any f € F,

(C.50) Ru(ssf) < Ampml(s; f)
(C.51) Lina(eif) < Bmapml(s f)

where Ay, = 1.03 and 0 < By, o < 3(1 — 2a) 2z,

Amwm(g; f)a
Bm,awm(5§ f)v

<
<
LEMMA C.6. For0<a<0.3 and any f € F,

(C.52) Rz(z’f; f) < Azpz(g; f) < Azwz(g; f):
(C.53) Loa(e;f) < Baap:(s;f) < B.oaws(ef),

where A, = 1.5 and 0 < B, o < 3(1 — 2a) min{zq, (224)%/3}.

The theorem follows as By, > max{B. o, Bm o} and A1 > max{A4,,,A.}. O
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ProOOF oF LEMMA C.5. For any function g € F, define fy with 6 €
{-1,1} and f_1 = f and fi = g. Recall that for W defined in (C.49),
W ~ N - Hfl f-all ,1). Let M = sign(W) - M(g );M(f) + M(Q)JFM(f)' Then

Ep(|M — M(f >\>—|M< ) — M(g)|@(— LIy = B (1M1 — M (g)]). Therefore,
Rz £) < sup M (1) - M@)o~y L supi (es: pra (=)
geEF c>0

(ii)
< max{3pm (= ) sup AB(—5), supwn ez f)B(—)}

0<c<1 c>1 2
(iii) 1 ¢
< max{3pm(e; f)@(—i),sg;fwm(ce;f)@(—i)},

where (i) is due to the definition of wy,(cs; f) in Equation (2.2), (ii) follows

from Proposition 2.1, (iii) is due to the fact that c§<I>( §) increases in
¢ € ]0,1]. Furthermore we have,

supan(cs: £)9(= )} < sup3pn(ess B(=5) € 3pu(ei ) - suped(—5)

c>1 c>1 c>1

(vi) (vii)

< 3pm(e; f) x 0.3423 < 1.03wn(c; f),

where (iv) is due to Proposition 2.2, (v) and (vii) are due to Proposition
2.1, and (vi) is due to a bound for sup.»; c®(—§), which follows from the
C2

elementary inequalities: ®(—c¢/2) < %\/%exp( %) for ¢ > 0; W =

@(—0/2)—%\/;@(10 (‘%) < 0 for ¢ > 2; and sup . 1./100,(k+1)/100] €®(—¢/2) <
0.01(k 4+ 1)®(—0.01 x k/2) for k = {100, 101, --- ,200}. Therefore, we can
take A, = max{3®(—1/2),1.03} = 1.03.

For inference of the minimum, consider the following confidence interval:

{M(1)} W < —zq + 122
Clpa =1 {M(g)} W > (2 “f%g”) V (—zq + 14l
[M(f)NM(g), M(f)V M(g)] otherwise

Note that P,(M(h) ¢ Cl,.q) < o for h € {f,g} and for 6 € {0, 1},

If = gll

Ef L(Clna) < |M(f) — M(9)|Pfy(—2a + 0.5—— : Hf;gH

<W <zy4—0.5

< IM(f) ~ M(g)|(D(z0 - M) ~a)s.
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Therefore, it follows from Proposition 2.1 that
Lina(e; f)

< sup [M(f) = M(g)|(B(z0 — W29l — o), < supum(ess (@0 — ) - a)

< max{u (2 £)(®(20) — 0) 0P (53 £) (@20 — ) — @)}

= max{i (€ £)(1 = 20). sup s (es: F)(B(z0 — ) — )}

Further, recalling a < 0.3, we have 2z, > 1, thus

sup wp, (cg; f)(P(za — ¢) — @)+ < sup3pm(ce; f)(P(zq — ¢) — )+
c>1 c>1

< 3pm(e; f)supc(P(za — ¢) — a)y =3pm(e; f) sup  ¢(P(za — ) — @)
c>1 2zq>c>1

2 (e ) = 20)7a{z0 > 1} + (05— a) - 2201 {20 < 1}]
< 3Wm(5; f)(l - 20&),2&,

where (viii) follows from sup.c(4 g ¢(®(2a —¢) — ) < B(®(zq — A) — «) for
any 1 < A < B < 2z,. In conclusion, Ly, o(¢; f) < 3(1 — 20)zapm(e; f) <
3(1 = 2a) zqwm (g5 f). O

ProOF OF LEMMA C.6. For any g € F, consider fp with 0 € {—1,1},
f-1 = f and fi = g. Recall that for W defined in (C.49), W ~ N(6 -
IAotorll 1), et Z = sign(W) 29)_2(1) 4 Z@IZD Then By (12— Z(f)|) =
1Z(f) - 2(g)| (- 12y = By(1Z — Z(g)]). Therefore,

Ro(e: ) < sp|2(5) ~ 20Ty < upo(ess pya(-9)

(C.54) 9&F o0

< max{0.5w; (¢; f),supw,(cg; f)®(—=)}.

c>1 2
In addition,
supws (ez: )@(—5)} < sup3ps (et f)2(~3)

C.55 = =
( ) < 3supmin{c, (20)§}pz(€;f)<b(—g) < 1.03p.(g; f).

c>1

Inequalities (C.55) and (C.54) together with Proposition 2.1 show that we
can take A, = 1.5.



64 T. T. CAI, R. CHEN, AND Y. ZHU
For inference of the minimizer, let

{Z(f)} W < —z, + 0.5l

Cloa =1 {2(9)} W (20— Lol v (2 + Upl)
(Z(f)NZ(9),Z(f)V Z(g)] otherwise

Clearly, we have Pr(Z(f) ¢ Cl. o) < o, Py(Z(g) € Cl. o) < .
For the expected length, similar to the proof for Lemma C.5, we have for
0e{-1,1},

(©56)  EgLICLa) <12(07) ~ Zo)l(#(ze — L9 0y,
Therefore
Lol f)
< EZE'Z(” — Z(P(®(za — @) —a)y < ig}ng(ff; N®(za —¢) — )y

< max{w:(; f)(®(za) — @)y, supw:(c; f)(P(za — ) — )y}

< max{w,(e; f)(1 — 2a),supw,(ce; f)(P(2a — €) — @)+ }.
c>1
Note that 0 < o < 0.3 implies 2z, > 1. Hence
supwz(cg; )(P(za — ¢) — )4 < sup3pz(ce; f)(P(2a — €) — )4
c>1

c>1

< 3ps(e: f)supmin{e, (20)*2}(@(20 — ¢) —a)

< 3p2(&; f) max {(1 — 2a) min{za, (22a)*/*}1{za > 1}, (0.5 — @) min{2za, (420)**}}
< 3wz (g; f)(1 — 2a0) min{za, (2za)2/3}.

In conclusion, L, (g; f) < 3(1 — 2a) min{za, (224)% }w. (&; f). O

C.5. Proof of Theorem 2.2. It follows from Theorem 2.1 and Propo-
sition 2.2 that Adw,(; f) - wm(e; £)? > R.(g; f) - Rn(e; f)? > adw.(g; f) -
wi(e; f)? and ps(&; f)-pm(e; £)? < wales f)-wm(e; £)? < 27px(e5 f) pmls; )2
Furthermore,

52

(C.57) 9 < p:(&5 f) 'Pm(5§f)2 < 3%
This can be shown as follows. Let u = py,(e; f) + M (f) and define f,,(t) =

max{ f(t),u} as in Section 2.1. Note that || f — fullco < pm(e; f) and it follows
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from the definition of p,,(e; f) that ||f — ful|l2 = €. As illustrated in Figure 1
in Section 2.1 (with special attention to the rectangle ABCD and the triangle
EDF),

(55 1) - ple: )2 > / (1) — fu(t)dt = €2

Z(f) 1
ZmaX{ / (F(8) = fult))dt, / <f<t>—fu<t>>2dt}z P21 1) - ol )2
0

Z(f)

To conclude, we have for any f € F

3
274 > 81A3e* > R, (g, f) - Rin(e; f)? > 2e? > — &2
Similarly, we have

£ e o (0.6—2a) ,
gaf)wm(gaf) zTea

and L, o(&; f) - Lm.a(e; f)? < B3w.(&; flum(e; /)2 <37 (1 —2a)3e2. O

Lz,a(g; f) : Lm,a(g; f)2 > (06 - 20&)3 : wZ(

C.6. Proof of Theorem 2.3 . We will first introduce two propositions,
the proofs of which are deferred to the next section. Based on these two
propositions, we will complete the proof of the theorem.

PROPOSITION C.1 (Penalty for super-efficiency in estimation of the mini-
mizer). For any estimator Z, if 3f € F such that E¢|Z —Z(f)| < cR.(e; f),
then 3f1 € F, such that

Ef,(1Z — Z(f1)]) > hz(c)Ra(e: f1),

for0 < ec< %, where h,(c) is a constant only depending on ¢ satisfying
that h.(c) > 1{0.0007 < ¢ < £}0.111 (1 — @1+ 27 '(3c))) + 1{0 < ¢ <

2

0.0007} max{4®~ (1 — 3¢)3,0.111 (1 — ®(1 + ®~1(3¢)))}.

ProrosiTioN C.2 (Penal:cy for super-efficiency in estimation of the mini-
mum). For any estimator M, if 3f € F such that E|M—M (f)| < cRn(c; f),
then 3f) € F, such that

Ef, |M = M(f1)] > hm(c)Rm(e; f1),

for 0 < ¢ < 0.1, where hy,(c) is a constant only depending on ¢ satisfying
hi(c) > 1{01> ¢ > 2

—1 d(—1 2
=110.208118 + 1{0 < ¢ < TGPV 23 o /412,
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In the propositions, we will use ¢ instead of v as used in the main paper.
We will keep this change in the remaining proof of the theorem to avoid
confusion with the usage of «v in the proofs of supporting lemmas that we
deferred to the next section.

By Proposition C.1, we have

1 2
h:(c) > —z3., for ¢ < 0.0007.

24 ¢

Suppose h(c) = 0.111(1 — ®(1 — 23.)). Clearly, h.(c) decreases as c increases.

i
Moreover, we know that (log (%))3 also decreases as c increases, when
¢ € (0,0.1). Thus,

h h
inf Zi(c)l >  min inf =(0) -
¢€[0.0007,0.1] (log (%))5 7<k<999 CG[TSUW%} (log (%))g
7o k+1
> min M > 0.0266 > —.
T 7<k<999 (log (10200))5 - 38
By Proposition C.2, we have
h 0.208118 1
inf m(©) o r 2 0.1520614 > .
p(—1 1 = . 3
o550 (1og (1))F (g (229))

2 2
Therefore, it remains to understand relationships between 23 ., 23, and
1
(log (%)) 3. We have the following lemma that we will prove in Section D on

page 108.

LEMMA C.7. For a < 0.08, 22060 > 0.61y/logl/a. For o < 0.005,

230 > 0.5994/log 1/ .

Since 0.08 > 4)2(.6;), we have for ¢ < 0.1,

1 1
1 2 1\3 1 1\ 3
hy(c) > min{=,0.615 /4.12} (log= ) == (log=) .
(c)_m1n{706 3/ }(ogc> 7(ogc>
For h,(c), we have, for ¢ < 0.1,

1 1
1 1 1)\3 1 1)\3

Now we prove the propositions.
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PROOF OF PROPOSITION C.1. We have the following two lemmas, which
we will prove in Section D on page 109 and 115.

LEMMA C.8. For any estimator Z, if 3f € F such that IEf|Z —Z(f)] <
cp.(g; f) , then 3f1 € F, such that

Ef1(|2_ Z(f1)l) = (C)Pz(g;fl)
for ¢ < 1. For 0 < ¢ < 0.0011, hy(c) > & 1(1 — 2¢)5.

LemMA C.9.  For any estimator Z, if 3f € F such that E¢|Z — Z(f)] <
cp.(e; f) , then 3f1 € F, such that

Ef,(1Z = Z(f1)]) 2 ha(e)p:(e; 1)
for ¢ < 1. For 0 < ¢ < 0.2, h.(c) > 0.1666 (1 — ®(1 + ®1(2¢))) .

Recall that, by Lemma C.6, 0.308p.(c; f) < R.(g; f) < 3p.(e; f). There-
fore, for any estimator Z, if 3f € F such that E¢|Z — Z(f)| < cR.(s; f),
then 3f; € F, such that

E,(1Z — Z(f1)]) > h(c)Ra(e; f),
for ¢ < &. h.(c) > 1{0.0007 < ¢ < £}0.111 (1 — ®(1 + 7 1(3¢))) + 1{c <
0.0007} max{ L ®~(1 — 3¢)7,0.111 (1 — ®(1 + d~1(3¢))) }.
O

PRrOOF OF PROPOSITION C.2. Again we introduce a lemma and prove it
in Section D on page 115.

LEMMA C.10.  For any estimator M, if 3f € F such that Ef|M—M(f)| <
cpm(e; f) , then 3f1 € F, such that

Ep, (IM = M(f1)]) = hum (C)pm(6'f1)
for ¢ < 1. For ¢ < 0.103, hun(c) > 1{0.103 > ¢ > 20110214362 + 1{c <

Z9¢

According to Lemma C.5, we have R, (g; f) < 1.03pp(e; f). Therefore, we
have, for any estimator M, if 3f € F such that E¢[M — M(f)| < cRp(e; f),
then 3f; € F, such that

Ef, |M = M(f1)] > hon(¢)Run(e5 f1)
for ¢ < 1. For ¢ < 0.1, hp(c) > 1{0.1 > ¢ > 2110208118 + 1{c <

2 2.06
d(—1)y 2
2(.06) 123 060/ 4-12.

O]



68 T. T. CAIL, R. CHEN, AND Y. ZHU
C.7. Proof of Theorem 3.1 . Recall that j is defined in Equation
(C.1) and only depends on Y;. Then, We have

(C.58)

We will show separately that

(C.59a) E(1{j < j}1.5m;) < 32.1p.(c; f),
(C.59b) E(1{j > j}Z — Z([)]) < 20.9p.(e; f)-

Bounds in Inequality (C.59) combined with Theorem 2.1 and Proposi-
tion 2.2 give the statement:

(C.60) E(Z — Z(f)]) < 53p-(s; f) < i‘:’Rz(s; f).
C.7.1. Proof of Bound (C.59a).

Eyo(1) < j}m;)

j =1 0
(C61) =N "my By (1{j < j.j =i} + Y mjEs(1{j < j.j =5}
J1=3 DA J1=j*

n0(j1)

~
K

Next, we will analysis x and n9(j1) for j; < j* — 1 separately.

Analysis of k. Clearly,

(C62) k< > mpB(1{j < j,j = j1}) < mpPF* < j < j)
=3*

Analysis of no(j1). Note that we have the following relationship between
events:

(C.63) {j1 <j.j=n}C{Ty <2Vbeymy,, jr < j}
CAXG a6 = Xy 45 < 2v/6e/mjy, i < jIU
{levih*ﬁ o Xj17%j1*5 < 2\/65\/7717]'1,]'1 < j}
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Therefore, the expectation of indicator function of the first event is no
larger than that of the last event (the union). Further, taking conditional
expectation first with respect to Y; gives

(C64) m(jn) < Ei(By(1{X,, 5 16— X5 15 < 2VBe g, 1 < HY))

n1(j1)
+E(EB (UK, ;o — X5, 5 < 26y < JHY))-
nzzgl)

Bounding 71 (j1) and n2(j1) for j1 < j* — 1 take similar steps, so we only
walk through the steps for n;(j1) for j1 < j* — 1. Note that only when
%j1 + 6 < 271 the indicator function in the expectation can take 1, so in the
following we have indicator function ]l{%jl +6 < 271} in the expectation
without writing it out.

We introduce the following quantity for the (partly standardized) noise
part of the statistic defined in stopping-rule Section 3.1.3.

1

(C.65) Eji = N (Wa(tji) — 2Wa(tji—1) + Waltji—2)),

where W3 is define in Equation (3.2).
Then for 2 < i < 27, we have

Eji ~ N(0,6¢%).

Hence for j; < j* — 1 we have

771(]'1) = EI(ES(R{lethrﬁ - Xj172j1+5 < 2\/65vmj17j1 < 3}|Y2))
= EI(ES(H{(NJ'L{].1+6 - Mjljjl.‘_g,)\/mh —2V6e < —5j17zh+6}|Yl)1{jl <Jj})
< By (B (M (s iz, +5 — M iz, +4) /gy — 2V/6e < =€ 46t YD1 < i}

Further, for (“j17i§1+5 = Mz, +4)/mMyj,, we have
@ pm(e; f)
(Mjl,i;l+5 - /j’jlyi;1+4)\/ mjy > (mmh)vmh
3
sk : 5+ 2
SEATEC) (& f)

3
(“) 1 3% . m 5= 2 (“Z) 1 3% . 9
> £25 (G =) <9> > 220" i3
V2 p=(&; f) V2
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where step(i) follows from j; < j*—1, step (ii) follows from Inequality (C.57),
step (iii) is by the definition of j* in Equation (C.2). We will use both bounds
after step (ii) and step (iii) in Inequality (C.67) later. Continuing with
Inequality (C.66), we have

m(j1)
<y (E, (1{ —ze230" -2 (pSij)) — VB < -, oY) L < 7})
cufoor s ) )
ns(jn)
<E <<1> (2 — 2307 —1=3)- \}g)]l{jl <j}) .

74 (j1)

Therefore, we have 71 (j1) < n3(j1) < ma(j1) for j; < j* — 1. Following
almost the same steps, we also have 12(j1) < n3(j1) < na(j1) for j1 < j* —1.
This gives

(C.68) no(j1) < 2n3(j1) < 2na(j1) for jy < j° — 1.

< j* —1) and k back into In-

equality (C.61), together with the facts that mj;, = 27" Jim;« and 2 —
2%(j*—j1—3)_1% <0 for j; < j* — 5, we have that

Plugging in the bounds for ny(j1) (j1 < j

(C.69)
Eis(1{y < jim;)
i*=5 =1
<mp P < <G+ Y P e 2m(i) + Y 2 mye - 2m3(5)
Jj1=3 Ji=7*—4
5j*76 *—j1—4 2" —j1—4) 2 3 2.5
<mye x 20 PTTITAP(2 — 2207 3) +20(2-22 4/ 5)2m;e

Jj1=3

p-(e; f) 2758m \/5 2 k8m . \ 2 ‘
P PYNCy s () e

(a) 40(2 -8 x /2/3
< mj x 2° x ( T 0,008 /3) +24.3mj= 4+ 2p.(e; f)(24+ 1+ 0.5 4 0.25) + m-

< 25.4mj 4+ 15p.(e; f) < 21.4p,(e; f).
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Therefore,
(C.70) Eps(1{j < j}1.5m;) < 32.1p.(e; f).
The detailed calculations of step (a) are based on Lemma C.2.
C.7.2. Proof of Bound (C.59b).

E(]l{3 > j}Z - Z(f))

J *—4 o0

< YEQ 2= 2 -2+ Y EW{i=4.5=3}Z-2Z(f))
Jj=1 Jj=j*=3

i) It .

< 3w —ij*lE(lt{pj}([M{ jir—3 < Xpir o1} +4L{X 0 < Xjo1)
j=1

+O1{Xj x4 < Xjis 1}} L{tjiz—1 > m} + {51{ijz';+3 < Xjizta}

+ 6]1{Xj,i;f+4 < Xj,i;+1} + 4]].{Xj’i.’;+2 < Xj,i_;+1}} ]l{tj’i;Jrl < 1})) +6 x 8 X m;-

(#47) it—4

< 23 20" my (49(~ PlEiS) ) VI g (oPm ES) L VT

= p-(e ) Ve ACTIRE
oPmlEf) My )
6D ( 3pz(€;f) Uy )) + 48m;
i =4
<A8mj- +2 27 Tmy. (40(— 2/3(%)% x 230714
j=1

_\/ﬂ.g(%)% 2307 =7-1) 4 60(—+/2/3 -3 é 3 930G i~ ))

(a) 2 1 1

1 =2x 5=
5><<I>(2\/§)><16>< 1 6x (V) x
3 1—2x 2E8/8) 1-2x 2EAvs)
®(—24/2/3) ®(—/6)

<2090 (c; f).

Step (i)(ii)(iii) follows from splitting, simplifying, and analyzing the events
in the indicator functions. Step (a) follows from the fact that & (2\[)36)
decreases as > 0 increases.

C.8. Proof of Theorem 3.2. We will show the coverage guarantee
and the upper bound of the expected length separately.
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C.8.1. Proof of Coverage Guarantee. Recalling that we introduced the
notation j* to denote the step that the localization procedure chooses an
interval relatively far away from the right one:

(C.71) 4 =min{j : [i; — i}| > 5}.

Then we know that [ijw_1 — ijw_1| < 4, so we have that ok — Guygl <
6528+ —2 for all k > —1. We now introduce a lemma that provides an upper
bound on the probability of stopping at least K + 1 steps after reaching jv.

LEMMA C.11. For j* defined in Equation (C.71), and for K > 0, we
have
P(j > ¥+ K +1) < o(-2)%.

~

In particular, for K, = (&%L P(j>j"+Ky+1) <o
Note that when 7 < j% + K,, we have |§] — z;| < 12.2%e — 2 implying
that Z(f) € [L,U]. Therefore, we have
P(Z(f) € CLa) 2 P(j < j"+ Ka) =1-P(j 2 j* + Ko +1) 21~ a. O
It remains to prove Lemma C.11.

Proor orF LEMMA C.11. Now we will calculate the probability that the
stopping rule does not stop K steps after j*. When j% = oo, j can never be
larger that j*, so it suffices to consider the event {j¥ < oo}.

By (147 2 57 + K+ 1}1{j" < oc})

o0
B (Y10 2 0 K 11 =)
j1=3

C.72 o
(€7 :El<ZES(]I{j'2j1_|_K+1}]Yl)]l{jw:j1})
Ji1=3
0 & PR X
<E (Y o-2F1{" = ji}) < o(-2)%
j1=3

The rationale for step (i) in Equation (C.72) is as follows. Define the set of
possible localization sequences with 7% = j; truncated at step j; + K + 1:

G, K +1) = {(z’o, . ,z'jl+1+K)’(1 V2i; —2) <ijpq < (265 + 1A 271,

VOSijl—i—K,&io:l,&‘ijl —7;;1| Z5,&|ij—i;’ §4,V0§j<j1}.
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Vs € &(j1,K + 1), denote (if,...,4) in s as s(l,h), and denote the
sequence (%h . ,%h) produced by the localization procedure as §(I,h). If
[ = h, we will abbreviate s(l,[) into s(!) and §(I,[) into 5(1). Then we know
that for s € &(j1, K + 1) with s(j1) <4}, — 5, we have s(j) + 6 < i} for
J=n+1...,K+1, therefore, y1; sj)+6 — Hjs(j)+5 < 0. On the other hand,
for s € &(j1, K + 1) with s(j1) > 4}, + 5, we have p; (;)—¢ — Hjs(j)—5 < 0.
Now we define a sign function indicating which side s(j) is on to 4},

sg(s, j) = sign{éj — s(j)}.

We introduce the shorthand 7;; = Wa(t;;) — Wa(tj;—1) . Now we proceed to
the analysis of the first inequality in Equation (C.72), and without confusion,
we write &(j K + 1) as & and sg(s, j) as sg.

Eo(1{j > j1 + K + 1}Y7) 1{* = jn}
=Eo( D> 1{j > j1 + K +1,5(0,j1 + 1+ K) = s}V)) 1{" = jr}

SES
< B (Y UH{min{X; sy 16 — Xjs()+5: Xjus(i) -6 — Xjs(i) -5} = 2V 2¢5e /M5,
seS

Vi=ji+1,- 51+ K}{3(0,51 + 1+ K) = s}|V))1{;" = j1}
< Z Es(l{Xjﬁs(jHﬁw - ~J}S(j)+5sg > 2\/5035 mj,
SEG
Vi=ji4+1- 51+ K}{8(0,51 + 1+ K) = s}[V1) 1{j" = ji}
< Z Es(ﬂ{mj " Hj,s(i)+6sa — M Hjs(j)+55g T Tj,s(j)+6sg — Tj,s(j)+5sg = 2v/2¢,e Mj,
s€EG
Vi=j1+1- 51+ K}{3(0,51 + 14+ K) = s}Y)) 1{;" = j1}

<Y B (1{T),s)+655 — Ti.s(i)+5sg > 2V 2CsE1/M5,
se6

=" ®(-2)FE, (L{3(0,51 + 1 + K) = s}|Y))1{;* = ju}
sES

= (=2)"1{j* = j1}. O

C.8.2. Proof of Upper Bound of Expected Length. We have the following
lemma for the length of the confidence interval for the minimizer.

LEMMA C.12 (Length of Confidence Interval for the Minimizer). For
0 < a < 0.3, the expected length of the confidence interval given in (3.6)
satisfies

E(CLa(Y)) < (24 x 25 —3) x 17.5 X p2(&; ) < Cealzal(e; f).
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PROOF OF LEMMA C.12. Recall that we denote by j the stage where the
localization procedure start choosing an interval not close to the target:

j=minj : [i; — i3] > 2}.

To prove the lemma, we only need to upper bound ]E(m) Splitting the
entire probability space into smaller events gives

(C.73) E(m;) =E(m;1{j > j* - 3}) + E(m;1{j < j* —4})
<8mje + E(m:1{j > j,j < j*—4}) +E(m;1{j <j—1,j <j* —4})
Jjr—4
<2p.(s /) +E(my1{j <j<j* =4+ > mE({j=4,j > j+1}).
j=1

m

n2
We bound n; and 7, separately as follows. We start with ;.

"4

m =E(m;1{j < <5~ 4) SE(m1{ < - 4) = 3 mE(1{j = j))

i*—4
< Z mj]E(]l{Xj,i;+3 < Xjirg1, tjiz4s < 1} + l{Xj,i;+2 < Xjrg1 iz < 1}
j=1
+ 1{X Jyii—3 XJZ* Jl*3>mj}+]1{ Jyi5—2 XJ%* J2*2>mj})
+ H{Xjir—a < Xjar—1,tj0-a 2 myt + W{Xjinqa < Xjisga, tjarea < 1})
<Ji42f R G TR SR BT P
! (e f) cnfs P (e; ) i cxfs

pm(; f) 1
+CI)( (E f) Smj\/nTJClﬁE))

= p=(&: f) 1 1
< Z 05 =i P2\S ) (& o5 —i) (2 P(—23G" 1) w9 % (=

3
2

1
7)
a

i -4

-4 21" =1=3 ) (<I> _93G"-i-9) + ®( _722(1 —3j=3)
3 B VETS) + (- 209 )

(-3 x 2%“*—1'—3)\/2/3))

< 8p.e: 1) % (8(—/2]3) + B(~21/373) + B(~

20 (—4/V3) + 20(—8/V3) + 20(~12/V3)] !

| _ 928V2/3) 84/2/3 ))
®(—4/V3)
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Step (a) follows from the fact that ((27\[)@ decreases as = > 0 increases.
Now we bound 7y in Equation (C.73).

j*_4 ] *_4
m= mEA{=jj>j+1}) = Z miEy (oG = VD)1 > j +1})
j=1
Jj*—4
= Z myBI(Ea(X 5 16— X5 45 < 2V208 M [Y)L{G > j + 11+
Es(Xjﬁj_ﬁ — Xji 5 <2V 2 ymi M) I{j > j+ 1)
j*—4
pmlesf) \/m
< ) miE(29(2 - ' J1{j >j+1}
; ’ p=(&; f) csV/2e )
= : 3G -3-3)
j*— pZ(Eﬂ f) 22 =i ~ .
< 2 I e 29(2 — T )Ey (15 > 1
—; x 29( 2. JE ({7 > 5 +1})
j*—4
3% -
< Z 27 _]pz X 2@(2_25(3 —j—4) 2/3)

gspz(e;f)(cm—M)+2¢>(2—4/\f)+4¢ 2-8%1/2/3) ooog)
Plugging the bounds for 7, and 7 back to Equation (C.73) gives

(C.74) E(m;) < 17.5pz(z; f).

Therefore,

(C.75)
E(CLa) < (24 x 28 — 3) x E(m;) < (24 x 28 = 3) x 17.5p(e; f).

Further, by Theorem 2.1, Proposition 2.1, and Proposition 2.2, we have
L, o(e; f) > baw:(g/3; f) > bapz(g; f)/3 when 0 < o < 0.3, which gives the
statement.

O]

C.9. Proof of Theorem 3.3. We introduce two quantities associated
with (Y7,Y5) induced error and Y, induced error.

f= / (it 3= (Wlti ,a) ~ Walti s 1)

2+A1 .7
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where

A_Z(IL{ _X

a5 < 207} — (X

jiz—6 Xj,%rs) = 203'}) ‘

Clearly, f only depends on (V},Y;) and 3|(V},Ys) is independent with (Y7, V).
Therefore, we have:

Jz+6

(C.76)
Epse (M = M(£))?) = Epse((f = M(£))? + 3% +23(f — M(f)))
@ Ez,s((f - M(f))?+ ?;;2) < Ehs((f — M(f))Q) + pz(li&ff)E(23_j*>_

Step (a) follows from taking conditional expectation on (Y},Y;) and the
mutual independence between Y7, Y and Y.

For the second term of the right hand side of Inequality (C.76), we have
the following lemma that we will prove later.

LEMMA C.13.

85 _ 35 pule: om(e: /)
8 — 4 g2

For the first term of the right hand side of Inequality (C.76), we have

(C.77) E(27") <

l,s((f - M(f))Q)
= Eus ((f = M(£)*1{ < 7}) + Eis((f = M(f))*1{7 > 7})-

To bound the first term in Equation (C.78), on the event {j < 7}, we have

(C.78)

(C.79)
(F =M < ((F =55 ++(uﬂ—M(f)))
<2(f - i, ) +2(M3’,;}, — M(f))*
<2(f—u55)5 + g(/{;,zj — w355 8y — M)
Therefore, going back to Inequality (C.78), we have
(C.80)

El,s((f - M(f))2)
< 2B, (((f = 155.)+)° 145 < J3) + Eus ((F = MDY > 1Y)

+ 2,5 (g((ﬂjﬁ} - M;,%3)+)21{j < 5}> + 2 (4(M3,;3 ~M(f))*1{j < 3}> :
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To bound each term in Inequality (C.80), we introduce and prove the following
proposition.

ProrosiTioN C.3.

(C.81) Eis((F = M(f)*1{j > j}) < 15949pm(<; )%,
(€82 En(((F = py)+)"20 <5}) < 130649, (<5 /)2,
(©83) By (55 — M(N)* 10 <)) < 3104pm(s: 1),

(C84) <((u;,zﬁ —u;,a3)+)211{5 éi‘}) < 50857p (€3 f)*.

By applying Proposition C.3 to Inequality (C.80) and using Lemma C.13,
followed by plugging in Inequality (C.76), we arrive at the statement of the
theorem. Now we are left with proving Proposition C.3 and Lemma C.13.
Before we proceed, we introduce and prove the following lemma, which makes
the equation E(Y)) = E(9 > ;5 1{j = j}) holds for any random variable ).

LEMMA C.14. P(j < o0) = 1.

ProoF. To prove this, we only need to prove lim;_,., P(j > j) = 0.
Suppose j > j* + 3. For j; > j* + 2,

pm (e f)

mln{ujlv%h +6 Mjh%h +5 Mjlv%jl —6 'Uljlvijl _5} < 13.5mj1 m
Note that we have inequalities

2, and pa(c; f) > 4mje,

N =

(C.85)  3e* > pale; [lpmles )* =

which gives

. =3(j1 3" +2)
mln{ujb;lerG = Wi 45t iy -6 ,ujl’;jlif)}mjl/(cs\/2m]—152) <13.5-2 3
Therefore,
(C.86)
P(j>3)
_ j-1 % ¢ ¢ % ,
= By (B (T T mind X 5 o= K5 a0 K6 Ko, s} > 200100

. 301 —5* +2)
<E <HJ. L, ®(—2 413527

A )) < @185y 72

Therefore, lim;_, P(j>j) < lim; o ®(—1.85)7777 72 = 0.
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Continuing with the proof of the Proposition C.3, we have the following
lemmas that we will prove in the Section D (page 117, 122, 123 and 125).

LEmMA C.15.
Epo((f = M()*1{j > j})

<(T680V + 2)pu (&3 /2 + T8V p(e3 )2 + 1 m (=5 )2

(C.87)

where V = sup,>q 2°®(2 — z).

LEmmA C.16.
(©88)  Euo(((f —n5)4) 14 < J}) < 63552V pua(e: )%
where V = sup,>q 22®(2 — z).

LEMMA C.17.
(C.89)

2 ~ ~ —1.
B (175, — M()"10 < J}) < 32° + 28 550500 om (. DA(231)Q.
where Q = sup, o x*®(—x).

LEMmMA C.18.
(C.90)

2
Ei s (((u;,;j —u;,;5)+) 1{; s.ﬂ) < 27T7075Qpm (e f)? + 23850.1Qpm (s f)?,
where Q = sup, o #2®(—x).

These four lemmas combined with Lemma C.3 give the statement of
Proposition C.3.
Finally we will prove Lemma C.13.

Proor orF LEMMA C.13. Splitting the entire probability space into smaller
events gives

E(27") = B2 1{j < j* +2}) + E{2 7 1{j > j* +3})
<A+ E 1 > +3))

B T T 7Pm(€§f)
(Co1)  =4+E,( Z G =ty < T+ 2D
Jj125*+3
i Tpm(e; f)
J1—J ]1 = A a —_— .
+ ) 2 (i =iuty; > =1~ +2(HH

J12J*+3
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Now we will bound the second term and the third term in the Inequality
(C.91). Without loss of generality, we can assume

sup{t > Z(f) : f(t) < pm(e; )+ M(f)} = pz(&; f) + Z(f),

because otherwise the following would hold:

min{t < Z(f): f(t) < pm(s; f) + M(f)} = Z(f) — p=(s; f),

for which one only need to flip everything around with Z(f) being the center.
Then for the second term, simplifying event, taking conditional expectation
and calculating that gives

(C.92) (e )
A Pm (€;
Eio( Y 271G =dty; < P Z())
1>57+3 ’
ko Tpm(€;
:Ehs{ Z 211" 1] =Juty ;. < W—FZ(JC),
Jj123*+3
. . . 1 J/m
Vit +2< S]l_lvgj’gj_%mZQ NI (N”J.:,.ﬁ ijj_._:a)}]
Tpm (€;
Z 9d1=] El|: ﬂ{tgli < Pnl(g f) +Z(f),
J1>J*+3
" L 1 VM
v] +2 S] < J1— 1753’,%‘-&-6@ > 2— \[C (M]7,]+6 u]7£]+5)}|Y2):|
S
o Tpm(g;
Z 211", {ﬂ{tjl,gjl < % +Z()}
J12j*+3
&, VI ol )G pa(: £) + 6my)
B (1{Vj* +2<j<j— 1,240 59 AN ERAS (LA Se J Y],
S( { ] _.7 _]1 \/§CSE \/QCS(—: pz(g,f) }| l)
Tpm(g;
< Y 2R [ﬂ{tﬁ i s%wm}
J12j*+3
.y
| pmes F)V/p:(: ) 2° 7 _
T o ®(—2+ . 75 (g +6+2"77%)
S
o Tpm(g;
< 3 omfuy,;, <2280 )
Ji12j*+3
975 ¢
L, 0(—2+ % (15 +6%2"77)

< Z 2]417]4*1[431 |:]l{tj1’2j1 < 7pm1(g§f) —I—Z(f)}] (1)(_1.8)]'1*]‘*,2-

J123*+3
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Now we go to the third term in the Inequality (C.91).

(C.93)
SRS . 7pm(5§ f)
]E J1—J = ~a —_—
(D0 PTG =gt > T+ 20D
J125*+3
S 3 ~ . 7 8;
X PELAG =, > PO
J12j*+3
L ~ . 7 E;
= Y 2 TE G =gt > D g,
12743
: o VT
Vit+2<i<pn—1,-E; s>2- T(“inj—ﬁ ~Hyi,-5)})
o 7 €;
< ¥ 2Euy,; > D gy
2743
" . 1
ES(H{VJ +2< J < - 17 _gj,ij—S \/WC c > 2}‘le)
9Cs
o 7 . L
< ¥ PR, > ER 2 |eca
J12j*+3

Plugging Inequality (C.92) and Inequality (C.93) back to Inequality (C.91)
gives

(C.94)
E(2/77")
- Tpm(e; f) g2
J1—7 N LA e A _ J1=7
§4+< y o o2 Ez[ﬂ{tﬁ,iﬂé 16 T2 2(=18)"
Jj127*+3
g Tpm(e; f) 2
J1—J N AN _9)J1—J
+_Z 2 El[ﬂ{tmh> o 2D} 2(-2)
J123*+3
- — 1
<4 2N P(—1.8)1 2 =4 4+ 8D(—1.8) % ————
<4+ ) (—1.8) MR A Y iy
J123*+3
35

< —.
8

Therefore, we have

35
8

< ?fpm(e;f)%z(e;f)‘

j—i*
E(277) < .
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C.10. Proof of Theorem 3.4. We will prove the following two lemmas
separately, which give rise to the theorem.

LEMMA C.19 (Coverage of the Confidence Interval for the Minimum).
For any 0 < o < 1, the confidence interval Clp, o given in (3.10) is a 1 —«
confidence interval.

LeMMA C.20 (Length of the Confidence Interval for the Minimum). For
0 < a < 1, the expected length of the confidence interval given in (3.10)
satisfies

E(| fhi = fiol) < cmapm(e; f), for all f € F,

where ¢y o s a constant depending only on .
Further, when 0 < a < 0.3, we have

E(’fhz - flo’) < Cm,apm(5§ f) < Cm,aLm,a(E;f>v fOT all f € F,

where Cp, o 15 an absolute constant depending only on o.

PrRoOOF oF LEMMA C.19. Define five events:
E={Z(1) ¢ ltG_x,

E1={j>j"+Kes+1}
F={j<j —2-Ks}
G = {fm < M(f)}
H = {fi, > M(f)}.

By definition {M (f) € [fio, fril} = G¢ N H¢. We will bound the probabili-
ties of the above events.

Recalling K, = ﬂogl(()pg(cigﬂ, then with Lemma C.11 we have

K g =1y, +4)

+v% K —1), 0
€] 2 )+ 2

(C.95)

P(3>j"+Kq+1) <a,

so P(Ey) < ¢.
When the event E{ = {7 < j%+ K,} occurs, we have

Z(f) € [t(i—Ka—1)+£(;,Ka,1)+—5’ t(ﬁ—Ka—1)+,%(3,K +ab

a*1>+

so P(E) < .
To bound P(F), we introduce the following lemma (proved in Section D
page 130), showing that the procedure can not stop too early.
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LEMMA C.21. When K > 4, we have

P(j<j —2-K)<®(-2:K273 4 D1 oo i)'

Using this lemma and setting K, = max{4, 2+ [log, (2 — LN} >
max{4, 2+ [2logymax{2 — &~ 1((1—e719)%),1} + 1]}, we can conclude
that

PG<j* —2-K,) <a.

Therefore, we have P(F') < §.
We now present two more lemmas that establish the remaining foundation
of the proof. The lemmas are proved in Section D (page 130 and 131).

LEmMA C.22.

(C.96) P(G|E®) < %
LEmMA C.23.

(C.97) P(H|E°NF°) < %.

With these additional lemmas, we have

P(M(f) € CLyo(Y)) > P(ECNF°NG°N HE)

(1 — P(H|E®N F¢) — P(G|E° N F)P(E° N F°)
—P(H|E°NF®) 4+ P(E°N F°) — P(GN E°N F°)
—P(H|E°NF°)+1— P(E) — P(F) — P(G|E)

« « (07 «

(C.98)

AVARAVARIV]

Y
|
—_

Proor or LEMMA C.20.

E(|fni = fiol)
= E((Sig—iy,ace +zace + V3)———)

(C.99) Kg
272 cee
< (SiR*iLv% + Za + \/g)

< (Sip-ip,e + 22 + V3)272 ¢, - dpp(e; fIE(2209)),



SUPPLEMENT 83
Similarly to the way we bound variance in Theorem 3.3, we have
E(g%(i—j*))
< 2B(1{j < j* +2}) + B0 > j* + 3})

(C.100) /3 1

<24 2V2P(—-1.85)——————

S 2 2V20(=L85) T sy

< 2.16.
According to the definition of S;,_; 0% Sip—i 02 is decided by the following
(C.101) (1-— (b(_SZ,R_iL”%))Z‘R*iL -1 %.
Therefore,

1 N

(C.102) SiR*iL,% =3 '1-(1- Z)iRﬂ'L ).

Furthermore, we have

(C.103) in—ip =9 x2x25% x 2%,

*q
so we know that (S’iR*iL»% + 2o + \/5)2706 only depend on «. Therefore,
(C‘104> E(‘fhi_flo‘) Scm,apm<€;f)'

Since for 0 < a < 0.3, using Theorem 2.1 and Proposition 2.2, we have

ol £) < Bom(e/3:1) < 2Ll ),

which gives our statement.

O]

C.11. Analysis of Lower Bounds of the Benchmarks in Regression
Setting. To establish the optimality of the procedures, we need to analyze
the lower bounds of the benchmarks. Compared with the white noise model,
we will incur an additional discretization error.

This discretization error is caused by the fact that a set of convex functions
can have the same values as f on the grid points (i.e., xo.x1,...,zy). This
fact implies that when we only look at the observations, this set of functions
are equivalent. We denote this set of functions by G, (f):

(C.105) Gn(f)={g9€ F:g(xi) = f(a;), forall 0 <i<n}.
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However, functions in G, (f) can have difference minimizers and minimums,
giving rise to discretization errors for Z(f) and M(f) defined as

(C.106a)  D(n, f) = max{Z(g) : g € Gu(f)} —min{Z(g) : g € Gu(f)},
(C.106b)  Dm(n, f) = max{M(g) : g € Gn(f)} — min{M(g) : g € Gn(f)}.

It is easy to see that 0 < D.(n, f) < 2 and any value in [0, 2) can be
taken by ©,(n, f) for some f € F.
The lower bounds for the benchmarks are given as follows.

PROPOSITION C4.  Let R. (03 f), Rinn(05 f), Lzan(05 f), Linan(o; f)
be defined in Equation (4.2). Let G,(f) be defined in Equation (C.105). Let
D.(n, f) and D (n, f) be defined in Equation (C.106). Suppose 0 < @ < 0.3.
Then there exist constants C’z, C’m, C‘Zﬂ, é’m,a > 0 such that for oll f € F,
(C.107)
~ ~ o o 1
R.n(o; f) =2 C: sup pz(%;g) (1 A npz(\/ﬁ;g)> V1 9:(n. f),

9€Gn(f)

R0 )2 G510 (i) (10 fupel i) ) ¥ {0l )

gegn(f)
~ ~ o o (1-2a)
Lz,a,n(g; f) > Cz,oc sup pz(i;g) <1 A npz(i; g)) \ 79,2(”7 f)a
- - o o (1 — 2a)
Linan(03f) 2 Cma sup  pm(—=:9) (1 A npz(;g)) v Om(n, f).

Compared with the lower bounds in the white noise model, the lower
bounds in the regression model include additional discretization errors, which
do not vanish with the noise level 0 — 0 for fixed n and f.

PROOF OF PROPOSITION C.4. Similar to white noise model. The proba-
bility density under truth f is:

R )2

Hence the likelihood ratio is
P(Yo, -+ yn|f) Lizo(f(w1) = 9(x:)) 2y — f(ws) — g(ws))
P(Yo,** Ynlg) 20°

Let 6; = 1 denote the truth being f, and #3 = —1 denote the truth bemg g.

= exp (

1o(e,
Suppose 0 is an estimator of . Then we know that Lizol/(@)- g(wl))(yz 2/ (@)= 39(z1))
is a sufficient statistic for 8. We further standardize this statistic by I.(f,9) =
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\/Z" L(f(x;) — g(x;))? and o, which results in the following sufficient

i=0 n
statistic for 6:

U — o)~ 3 )~ de)  la(f.g)
W= L(F.9) n; 2 ~ N(6 s J1).
Letting 6 = —QZ_Z((?)(f );é)(g)) gives
B4(12 - Z(F))) = |2(f) - Z(5)[Eo (510 — 6],

N 1 4
Ey(12 = Z(9)l) = 12(f) = Z(9)[Eo=—1(510 — 0]).
Therefore, similar arguments as in the white noise model give
(C.108)
R.n(os f) 2 sup{|Z(9) — Z(f)| : g € F,ln(f,9) < 0/vn} ®(-0.5).

wz(o/v/n;f)
For minimum, similar procedure shows that
(C.109)
R0 £) = sup{|M(g) = M(f)| : g € Flu(f.9) < o//i} (~0.5).
wm(o/v/n;f)

For confidence interval with 0 < o < 0.3, using similar arguments as in
the white noise model, we have that for CI € Z  ,({ f, g}),

EfL(CI) = |Z(f) = Z(9)|(1 = 2a = TV (Py.n, Pyn))

> |Z(f)—Z(g)|(1—2a— XQ(Pf,nan,n))a

where Py, is the distribution of the regression model with 7+ 1 observations
corresponding to f.
Further, elementary calculation of chi-square divergence gives

X*(Pran Pyn) =

[ ool — oD @ = T = 900N+l 1
— exp(ln(g’/i)Q) —1.

Picking g € F such that [,,(f, g) < %% gives E;L(CI) > (0.6—2a)|Z(f)—
Z(g)|. Therefore,
(C.110)

Ll £) 2 (0.6~ 20)sup{|2(9) ~ Z(1)| - 9 € F,n(f,9) < 30/v/)

w2 (50/v/n;f)
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Similarly, we have
(C.111)

Eman(7:£) 2 (06— 20) sup{[M(g) ~ M(f)| g € F,n(f,) < 30/v/)

mm(%a/\/ﬁ;f)

Therefore, it remains to find w,(c/y/n; f) and w,,(c/y/n; f), which are
analogies of continuity moduli in white noise model.

We have the following lemma that constructs convex functions g such
that 1,(f, g) < o/v/n. We will use these functions to calculate lower bounds
of w,(o/v/n; f) and w,,(0/y/n; f). The proof of this lemma is deffered to
Section D (page 131).

LEMMA C.24. Suppose h € G,(f), where G,(f) is defined in Equa-
tion (C.105). prz(\/%;h) > 1/2n, let gn o n(t) = max{h(t),M(h)—%pm(\/%; h)}.
Then we have

ln(f7 gn,a,h) < 02/77"

prz(\/%;h) <1/2n, let

g

n,oh(t) = max{h(t), M(h) + pm( anz(\/ﬁ;

) h)}.

T
Voén’
Then we have

ln<f7 gn,a,h) < 0'2/77,.

Let t;(h) = inf{t € [0,1] : gnon(t) > h(t)}, and t,.(h) = sup{t € [0,1] :
Gn,o.h(t) > h(t)}, where we will omit 2 when there are no ambiguities. Clearly,

tr—t > pz(\/%; h) (LA W)’

g (o2 g
M(gn,on) = mind pp(—=;h), pm(—=;h), | 2np.(—=;h
(n) 2 10 (i ) i), 20—

Similar arguments as in Proposition 2.2 give that for any § > 0, there
exist gn.o,n,505 In,o.h,sr € F,such that

b+ M(h).

ln(f, gn,a,h,&,l) < UQ/na ln(f> gnp,h,&r) < Uz/”?
Z(gno,ns1) <t + 0, Z(gnohsr) > tr — 6, and

O- .
M (gn.ons5:) = M(gnons1) =Pm(—=;h) min{l,

N :h)} + M(h) — 6.

g
2nps( Ton
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Then we have the following lower bounds for 1w, (o /v/n; f), W (o //n; ),
mz(%a/\/ﬁ? f), and mm(%a/\/ﬁS f)-
w.(o/v/n; f)
=sup{|Z(g) — Z(f)| : In(f,9) < 0/v/n,g € F}

1 1
> sup 5 im (Z(gn,onsr) — Z(9nohsy)) = Sup §(tr — 1)
heGn(f) < 007 heGn(f)

g g
> = sup p(——=;h)(LA/[2np.(—=;h
2 e ( o ) ( o )

1 10 o (.
>, 54 () (m ol \/ﬁ’h)>’
1, (0/3v/n; f)

=sup{|Z(g) — Z(f)| : ln(f.g) < o/3V/n,g € F}

1 1
> sup = lim (Z —Z = sup —(t,—t
= hegnlif) ) 6ﬁ0+( (gn,a/3,h,5,7") (gn,a/3,h,5,l)) hegnlz()f) 2( r l)

1 o o
> = sup pa(=———=;h) (1A [2np.(=—=:h)
3 oo e e

1 1 1 o o
> sup —671p.(—=;h <1A npz(—=;h )
2 hegn () 9 (\/ﬁ ) (\/ﬁ :

= sup{|M(g) — M(f)|: l.(f,9) <o/vVn,g € F}

L AN N
Zimln{pm(\/ﬁvh)vpm(\/%ﬂh) 2 pZ(\/GTfh)}
> 554 min{p (i), pu (i )y (=i ). and
W (0/3v/n; f)
= sup{|M(g) — M(f)| : ln(f,9) < 0/3Vn,g € F}
1 . o o o
= imln{pm(m’h%pm(?ﬂ/@vh) 2”/02(3\/6*”7}&)}
1 1 o o o
> 156 4mm{pm(\/ﬁ;h)mm(\/ﬁ;h)m}-
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Returning to Inequalities (C.108),(C.109), (C.110), (C.111), we have
Bon(o: f) > 20(~0.5)547% s i ( AL h)>
zm\0; = up pz —=h an ; )
2 hega(f) V1M vn
Rpn(os f) > 1@( 0 5)54*i sup p 7 < N h)>
m,n\0; Z 5*¥(—U. (—=;h z ; >
2 heGa(f) VT
L (o5 f) > 1(06 204)16_% sup p ( i h) < np.( g h)>
z,0,n\ 05 = 7\U.b— = 2 =5 )
2 9" hega(s) VN \ vn

Lpan(o; f) > (0.6 - 2a) T heb;fgf) pm(\;ﬁ h) <1 A W) .

Now we turn to the discretization error. For any g € G,(f), we have
d f (y()ayla"' ayn) = 1 for all (y()ayla"' ayn) € R" Therefore, for any

estlmator Z, we have

4
N

Byl Z ~ Z(9)| + BslZ = Z()] = By (12 = Z(9)] +1Z - Z())))
> Byl Z(f) - Z(9)| = 12() = Z(9)].

Hence we have

Rzm(“? f)>

sup 1Z(f) ~ Z()| 2 {D:(m. f).
9€Gn(f)

Similarly, we have Ry, ,(o; f) > 1D (n, f). For the confidence interval, we
have that for any g € G,(f), and for any CI € I, o ,({ [, 9}),

ErL(CI) > (1= Pr(Z(f) ¢ CI) — P(Z(g) ¢ CI)) [|Z(f) — Z(9)]
> (1=2a)|Z(f) — Z(g)I-
Hence we have ) 1
Loan(@i ) = (1= 20) 59.(n, )
Similarly, we have Ly an(05 f) > (1 — 2a) - 3Dy, (n, f).
O

C.12. Proof of Theorem 4.1. With the lower bound in Proposition
C.4, we only need to prove the following two propositions to prove the

theorem.
PROPOSITION C.5. For Z defined in (4.5), we have

(C.113) B(Z = Z(D)) < Cupo( =)+ 2
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PROPOSITION C.6.  For Z defined in (4.5), ifsuphegn(f){pz(ﬁ; h)} < %,
we have

7 h)+D.(n, f).

(C114) E(Z-Z(P) <Co sup pul nos(S=

(o2
—;h)
heGu(f) VN

The statement of the theorem follows from letting C =

where C. is defined in (C.107).
Now we proceed with proving the Propositions.

\/5015-4-&-02 +4,

PrOOF OF PrOPOSITION C.5.
E(Z - Z(f))) =E@{] <3}Z - Z(H]) +EQ{] = 3} Z - Z(f)])
<E(1{3 < j}1.5m3) + E1{3 > 3}|Z - 2(5)|)

To bound the two terms, we give two lemmas below, the proofs of the
lemmas are in Section D (page 132, 133).

LEmma C.25.
- o 1.5
. ] jrl. ) < —; — < i*—3L
(C.115) E(1{j < j}1.5m3) < Czlpz(\/ﬁuf) +—H{J <37 -3}
LEMmMA C.26.
< it > o
(C.116) E(1{3 = JHZ - Z(f)‘) < Cz2pz(%; )-
Therefore,
(C.117)

1.5 . o 1.5
SEUT <353 < Cupu(—; f)+—=.
)+n {J <3 3}_019(\/ﬁf)+n

O]

g

E(1Z-Z(f)) < (Czl"‘cz?)pz(\/ﬁa

PROOF OF PROPOSITION C.6. since supyeg, (5){pz(F5:h)} < =, we know
that [{i: f(x;) = min{f(x) : 0 < k <n}}| = 1. Suppose imi, € {i: f(x;) =
min{f(z;) : 0 < k < n}}. Let h be the piece wise linear function such that
h(x;) = f(z;) for all 0 < i < n, and h is linear on all the sub-intervals

[k/n,k+1/n], for 0 < k <n — 1.1t is clear that Z(h) = z;,_, .

Then we have
E(Z — 2(f)) SE(Z - Z(0))) + | 2(h) — Z())| < E(Z — Z(R)]) + Da(n, f)
=E(1{j < 0o}|Z — Z(h)]) + E(1{j = 00}|Z = Z(R)]) + D (n. [).
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Splitting the first and second terms by the {j < j} and {j > j} gives

E(1{j < oc}|Z — Z(h)|)

= E(1{j < 00}1{j < 3}Z — Z(W)]) + E(1{j < 00}1{j > 3}|Z — Z(h)]),
and

E(1{j = 0c}|Z — Z(h)])

=E(1{j = 00} 1{3 < 3}Z — Z(h)]) + E(1{j = 00} 1{3 > J}|Z - Z(h)])

5 pm(ﬁ;ﬁ)

<2 ey BT = 01103 2 312 - 2GR

< ezopz%ﬁz) npz(%;ﬁ) +E(L{j = 00} 1{3 > }|Z — Z(h))).

Therefore,

(C.118)

E(|Z - Z<f>|><ézopz<%;ﬁ> m(\jﬁ h) +E(1{j < oo} 1{j < 5}Z — Z(h)))
E(L{j < 0o}1{j > F}IZ — Z(W)]) + E(1{j = 0o} 1{] > F}IZ — Z(R)|) + D=(n, f)
(ﬂ{y<oo}n{y<a}|2f Z(h))) +E(1{3 = F}Z — Z(R)]) + D.(n, f)

+czopz<%;ﬁ> np:( =i ).

Finally, with the help of the following lemmas (proved in Section D, page
134, 134), we prove the proposition.

LEMMA C.27.

(C.119) E(1{5<oo}ﬂ{j<i}\2—2(ﬁ>|><cz1pz<% ) npz(%;m
LEMMA C.28.

(C.120) E(U3 2 THZ = Z(0)) < eaapa( i h)y fo (i)

C.13. Proof of Theorem 4.2. With Proposition C.4, we only need to
prove following three lemmas to prove the theorem.
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LEMMA C.29 (length of the confidence interval for minimizer).

E;L(CI, o(Y)) < C2.ua(Cops( N+ %)-

=

LeEmMA C.30. When suphegn(f){pz(ﬁ;h)} < 5=, we have

E;L(CL, o(Y)) < Cha sup ps(——=:h) 7 h)+29.(n, f)

—=1h)y [np(—=

heGn(f) VT “n

LEMMA C.31 (coverage of the confidence interval for minimizer).
P(Z(f)eCl,o(Y)) >1—q.

Ca,0( C’o+2)\/ Cz o
Cz,oc

Let C5, = max{

of the theorem.

T -}, then we have the statement

Proor or LEMMA C.29.

(C.121)
EfL<CIz,a (Y))

=24 %2 nE(ZQ J1{3—3}+22 "1{3 =4})

*

j*—1

<24 %2085 —(>_ 27E{j=4]i>it+1{j=43<ihH+27)
7=1

To bound the first two terms, we will introduce two lemmas. The proofs
of the lemmas are given at Section D (page 134 and 135).

LEMMA C.32.

i1

(C122) Y EQ@V{j=jj> ) <2 e +27L{J <5 -1}
j=1
LEmMA C.33.

i1
(C.123) Y EQV1{5=5i<ih) <2 cu
j=1
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With these lemmas, we have

EL(CL.(Y))
Ko 2J7j* 1 sk
(C.124) <2x278 (F—(caten+ 1)+ —1{J <3 -1}

< Ooa(Cope(-T=s )+ 11T < 7 1)),

=E

where C~’27a =24 x 2Kar2 = %. O

Proor orF LEMMA C.30. To prove the lemma, we introduce the following
lemmas while postponing their proofs.

LeEMMA C.34. When suphegn(f){pz(ﬁ;h)} < 5,

. o

C.125) E(1{j < oo}L(CI.n(Y))) < é1a sup p. np,(—:;h).

( ) E(I{ JL(CI:a(Y))) acap (\f) (\/ﬁ)
LEMMA C.35. When suphegn(f){pz(%;h)} < 5,

(C.126)
E(1{j = 0o} 1{tn; — tio > 2}L(CI. o (Y))) < 2,0 SUDpeg, (1) p=( 75 W)y [ro= (753 h).-

LEMMA C.36. When suphegn(f){pz(%;h)} < %,

E(1{j = 0ol {thi 1y < > }L(CL..a(Y))
(C.127) ~
< Ba N pz(\f h) ”Pz(\/ﬁ7h) +29:(n, f).

With these lemmas, we have the statement of Lemma C.30.

The proofs of the lemmas are in Section D (page 135, 137 and 138). Here
we point out the common thing that will be used in all these proofs.

When supyeg, {pz(%; h)} < 5-, we know that |{k : f(z)) = min{f(z;) :
0 <i < n}}| =1, we denote this unique element to be ip,.

Let h be the piece wise linear function such that h(x;) = f(x;) for all
0 < i < mn, and h is linear on all the sub- mtervals [k/n,k + 1/n], for
0 <k <n—1. Then we know that pz(f, h) < 5.

Suppose Ye1 = {yei + V3023, : (L—1)V0<i< (U+1)An}, Yoo =
{Yei — V3023, : (L—1)V0 < i< (U + 1) An}. Then we know that
Y;,Ys,Ye 1,Ye 2 are independent.

O



SUPPLEMENT 93

ProOOF oF LEMMA C.31. For clarity of the main idea of the proof, we
postpone the proofs of the supporting lemmas to Section D.
With a bit abuse of notation, define the following events:

2/-3 1

n on’

E _{Z(f) € [(ij — (6-2%a2tt —2) 1)

(35 + (6 2%/ —2)) 2? zlrJ nio 1]}

(C.128)
Fy :{il < min {z : f(z;) = min{f(xg): 0 <k < n}}}

Fy :{z‘r + 1 > max {2 s f(x;) = min{f(xg) : 0 <k < n}}}
For j¥ defined in equation (C.5), we have the following lemma (proved in
Section D, on page 146).
LEmMA C.37. For K > 1,
(C.129) B(F> "+ K+1)<d(-2)F

Therefore, with this lemma, we have

Ka+1

(C.130) P(E°) < P( > 6-2

1»—1~

2) < P(I{3 > j"+ Ky )2}) <

N’\Q

Therefore,
(C.131)
P(Z(f) € CL.a(Y))
=E(I{Z(f) € CL..o(Y)}I{E}) + E(1{Z(f) & CI.,a(Y)} 1{E"})
< E(I{Z(f) ¢ CL.,o(Y)}I{E}1{j < o0})+

E(L{Z(f) & CT..a(Y)F{E}1{j = 00}) + 5
E(L{Z(f) & CL.a(Y)}H{E}1{j = o}) + 5
<E(L{Z(f) & CL.a(V)IHEN{ = oo} (1{F N Fo} + L{Ff} + 1{F5})) + 5
< E(L{Z(f) ¢ CL.o(V)}{E}] = 00} 1{F1 N F2})

+E(H{E}L{j = oo} (1{F} + H{EED) + 5

We introduce the following lemma, which is proved in Section D on page
146.
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LEmMA C.38.
(C132) E(L{E}L{ = oo} {F{}) < o, B(L{E}IL{ = 00} 1{F5}) < an.
Therefore
(C.133) P(Z(f) ¢ CL.a(Y)) <
E(U{Z(f) ¢ CL.a(Y){BN{ = 0ol l{Fi N F}) + o +2a1.

The only term needs analysis it the first term on the right hand side. Note
that the entire probability space is the union of the following three disjoint
events.

{(i —U)(ir — L +1) =0},
{(i;—U)(ir —L+1) £ 0} N {in — i1 < 2,0 < ijp,ip; < nt,
{(il - U)(Zr — L+ 1) #* O} N {ihi — 1o > 3 Or (ihi — n)ilo = 0}

Further, on the event ENFy N Fo N {j = oo} N {(i; — U)(i, — L + 1) #
0} N {ini —d1o > 3 or (ip; —n)ip = 0}, Z(f) € CI,o(Y). The first term on
the right hand side of Inequality (C.133) therefore simplifies to

(C.134)

E(HZ(f) ¢ Cloa()H{EYL{ = 00} 1{F1 N B} 1{(it = U)iy — L+1) = 0})
+E(UZ(f) & CLa(Y)}{EN{ = 00} 1{F N B} {(is — U)(ir — L+ 1) # 0}
L{ini — it < 2,0 < i, ini < n}).

We have the following lemmas, which are proved in Section D on page 147
and 147.

LEMMA C.39.
(C.135)

E(H{Z(f) # CL.a(Y)}L{EN{ = o0} L{F N Fa}1{(is = U) iy — L+ 1) = 0})
< 3oF (1{j = oo} 1{F N Fo}1{(i; — U) (i, — L +1) = 0}).

LEMMA C.40.
(C.136)

E(1{Z(f) & CL.a(V){E}{] = 00} 1{F N Fa}1{(i — U)(iy — L+ 1) # 0}
Lins — ito < 2,0 < 1o, ipi < n})
< 60z P (1{E}{j = oo} 1{F N B}1{(i1 — U)(iy — L+1) # 0}

Lin — ito < 2,0 < 1o, ins < n}>.
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With these two lemmas, we finally have
(C.137) P(Z(f) & CL.o(Y)) < 60z + % 42 <a
O

C.14. Proof of Theorem 4.3. With the lower bound in Proposition

C.4, we only need to prove the following two propositions to prove the
theorem.

ProprosiTiON C.7.
(C.138)

E(IM — M(£)]) < Cs0pm(~=: f) + V2 (min{f(z;) : 0 < i <n} - M(f)).

vn'
ProPOSITION C.8. When SuPhegn(f){PZ(ﬁ? h)} < 5, we have

E(|M — M(f)) < C (= 1) [np.(—=: h
(€.130) (1 (N < 3h€salzf)p (\/ﬁ )4/ ( )

+ V2 (min{f(z;) : 0 <i < n} — M(f)).

B

Let C3 = % + 4+/2 gives the statement of Theorem 4.3.

PrOOF OoF PROPOSITION C.7. We have
(C.140)
E((M — M(f))*) = E(M — M(f))’1{j < 00} + (M — M(f))*1{j = oc}).

For the first term we have

(C.141)

2
R((V - M(f)*1{j < 0o}) = E (((f - M) + &,y ) 1< oo}>
= E((2 = M(N)? +2( = M(N)E} 5, o7+ <ej7;5762}_5>2)1{; < o0})
=E((f - M(f))’1{j < 0o}) +E ((@,5715,62}5)211{5 < oo}) :

We introduce following two lemmas (proved in Section D on page 149 and
149) to bound the two terms.

LEMMA C.41.

1 <
(C142)  E((€)5 057514 < 20}) < G

g

\/ﬁ;f

)%
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LEmMA C.42.
(C143)  E((E = M1 < oo}) < cmapm( =i )
For the second term in Equation (C.140), let
i= argmin f(zi-1),
1,-2<i<i;+2
(C.144) fi=f(zi-1),

0 = Ye,i—1 — f(xiz1),
n=min{§;: 1, -2 <i<i;+2},

then we know E(n|i;) <0, and we have
(C.145)

E((M — M(£))*1{j = oo})
<E((fi — M(f) + 6:)*1{j = 0o} I{M > M(f)})
+E((fi — M(f) +n)°1{j = oo} 1{M < M(f)})
< 2E((fi — M(£))*1{j = 00}) + 2¢20°E(1{j = oo})
+E(E(n*1{n < 0}|¥;, Y)1{j = oo})
<2E((fi — M(f))*1{j = 00}) + 2720°E(1{]j = o0}) + 0277 Q2E(1{j = o0}),
where Q2 = [;° 2?5®(x \/—7 exp (—%Q)da: <5

To bound it we have the following lemmas, which are proved in Section D
on page 159 and 160.

LEMMA C.43.
E((fi = M(f))*1{j = o0})

(c.u6) oo i )7+ (min{ () :0 < i < n} = ()"
LEvMma C.44.
(C.147) o’ E(1{j = oo}) < 3zpm<%; )?

Combining them together, we have
(C.1f18)
E((M — M(f))?)
T P 2 (min{ () 0 i <} — M)
S F)? 42 (min{f(z;) : 0 < i <n} - M(f))*.

< (em1 +cm2 + 144'73 + 2Cm6)pm(

ag
< C30pm(

NG
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Therefore,

BN — M(f)]) < \/E(( - M(f))2

)
C.149 ] U
( ) gC’g,Opm(%;f)—i—\/i(min{f(xi) 10<i<n}—M(f)).

PROOF OF PROPOSITION C.8. Since we have

(CI0) s ol T\ ) 2 Vi =
we only need to prove that
(C.151) E(\M — M(f)|) < énio+ ﬁ(min{f{xi) :0<i<n}-—M(f)).

We recycle all the notation in the proof of Proposition C.7, especially in
Equation (C.144) and (D.103).
Similar to the proof of Proposition of C.7, we have

(C.152)
E((M — M()))?)
— E((2 — M(7))*1{] < o0}) + (&7, 51T < och)+

2E((fi — M(f))21{5 = 00}) + 2920 E(L{j = 0o}) + 0*12Q2E(1{j = oo}),

where Q2 = 2. 50(x)* \/2—exp (—%Q)dx <32
Since we have
1 o - ., 0P
(C.153) E((@j,ii,ezj_j) 1{j <oo}) = (2711{3 < oo}) <

we are only left with bounding the terms: E((f — M (f))?1{j < oo}), E((f; —

M(f))*1{j = oo}).
We have the following two lemmas, which are proved in Section D on page
160 and 163.

LEMMA C.45.
(C.154) E((2 — M(f))*1{j < o0}) < &,p0°.

LEMMA C.46.
(C.155)

E((fi — M(f))*1{j = oo}) < éh30” + (min{f(z;) : 0 <i < n} — M(f))°.
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With these lemmas, we know that

(C.156)
E((M — M(f))?)
< (g + 142605 + 292 +72Q2)0” + 2 (min{ f (z;) : 0 < i < n} — M(f))*.

Therefore, we have

(C.157)
E(|M — M(f)])

<@g+ 14282 5+ 292 +92Q20 + V2(min{ f(z;) : 0 < i <n} — M(f))
203\% +V2(min{f(z;) : 0 < i <n} — M(f)).
O

C.15. Proof of Theorem 4.4. With Proposition C.4, we prove the
theorem by proving the following lemmas.

LEMMA C.47 (length of the confidence interval for minimum 0).

T D VA (min{ (@) i =01, n} ~F),

where h = inf{M(g) : g € F, and g(z;) = f(x;),i =0,1,--- ,n}.

EfL(CLya(Y)) < Crapml

LEMMA C.48 (length of the confidence interval for minimum 1). When
Suphegn(f){PZ(ﬁé h)} < ﬁ, we have

E;L(CLya(Y)) < C500 + V2 (min{f(z;) :4=0,1,--- ,n} — h),
where h = min{M(g) : g € F, and g(x;) = f(x;),i =0,1,--- ,n}.

Note that we always have

ag ag g
sup  pm(—=;h)[np(—=;h) = —=,
heGn(f) (\/ﬁ ) (\/ﬁ ) \/5

hence with these two lemmas we know that
(C.158)
EfL(CIma(Y))
o

< (VACha+V2Cs0) s ol il (1 fro- i) ) + VED(r. )



SUPPLEMENT 99

When 0 < a < 0.3, letting

2C) 0 205,  2V2
(C.159) Cro = V2 4, ~Jr V2 5o | V2
’ C 1 -2«

m,x

gives the statement with respect to the expected length.

LEMMA C.49 (coverage of the confidence interval for minimum).
PM(f)€Clpa(Y)) >1—a.

Proor or LEMMA C.47.

(C.160) Ini— Lo +1< 249200 <94 9. 9K 7Kg+,
Therefore,
«
(C.161) St—n,+1,e < =07
o 42 +9 28 HRgT”
(C.162)
e o
EfL(CIva‘(Y)) = (thi—flo-l-l,% - ¢ 1(2) + \/g)'YeE(W)

. V30 V3o .
+E ((fl Ry =iy = f10)+ 1{J + Kapa > J} ]

We first bound the first term. Note that —Z— = = <
V2T Ml e (i)

4pm(ﬁ; f). Therefore, we have

(C.163)
E( ¢;ﬁ
1057 +3 < TH(B(— =

J-j-K
92 J

Y<1{j*+2>J}o+

1{j<J— Ka}) + oE(1{j > J—f(z}))

o
4

g 1 j*—=2

<1 +3 < TH———— ~ Y-
2J—j*—K%—3 ‘:J +3 / K%

\/Q,ij*q)(72+6)(J—1—K%—J )+)

T
1 pz(ﬁ’f) g . i
}\/> 2p2(\/ﬁ7f)pm(\/ﬁv

5 f)él,ow

)

i f) "_8pm(i

Ko
<25 Cypm
< 1pm ( Jn

=
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Now we turn to the second term,

. V3o V3o S
E((fl - Zoc/4m - m - fl0)+]1{.] + Ka/4 > J})

<E ((fl — £10)+ 1{ + Koyu > J}>
<E (1~ M()+1{3 + Kajs > J}) +E ((M(f) = £0)+1{3 + Kapa > T})
<E (M = M(F)+ 13 + Kaya > T}) +E (M) = £10)+ 13 + Kapa > T})
where M is defined in Equation (4.9).
Then according to Proposition C.7, we have
E (N = M(£))+1{3 + Kajs > J})

< Coopm( = )+ V2 (min{ f(2:) :0 < < n} = M(F)).
Now we turn to the term E ((M(f) —f1,)+ {7+ f(a/4 > J}) We begin

by defining two sequences of linear functions: {0, : 1 < k < n — 1} and
{0y :0<k<n-—2} For 1 <k<n—1, define linear functions

f(r) — f(@e—1)

.164 ULk -
(C 6) Ul k t— 1/77,

(t —zp) + f(2k).

For 0 < k < n — 2, define linear functions

(C.165) By > f(mk+2)1;nf($k+1)

(t — Tpy1) + f(@ht1)-

Recall that G,(f), as defined in Equation (C.105), is the set of convex
functions that take the same values as f on grid points. Now we define h(k)
for 0 <k <n—1 as follows

minte[wo’xl] 'l~)7~70(t), k=0
(C.166)  h(k) = { mingepy, 4, max{O(t), orp(t)}, 1<k <n-—2.
minte[nifli} f}rr’nfl(t), k‘ =n — 1

It is easy to check that for 0 < k < n—1, the possible values of inf;c [, 2, ] g(t)
for g € G, (f) are as follows.

(C.167)  { inf  g(t): g € Ga(f)} = [A(k), max{f(zx), f(zr+1)}]-

te€[zy,Tpq1]
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Now we know that
(C.168) méx{M(g) 19 €Gu(f)} = rﬁin{f(f:i> :0 < i <nj,
min{M(g) : g € G,(f)} = min{h(i) : 0 <i <n—1}.
Denote A = min{h(i) : 0 <i < n — 1}, and then we have
E ((M(f) = £10)4 243 + Kaja > J})

g9y SMA-M+E ((h = £10)+1{3 + Koy > J})

IN
=
s
N~—
[
Pyl
_|_
=
=
<
N~—
[
>
—~
=
T
=
~
(S
+
>
Q
~
W~
\4
<
—
N~——7

i=I,—1

Recall the definition of ¢; in Equation (C.144): 6; = yei—1 — f(zi—1). For
(I, —1) V1 <i< (I —2)A(n—2), we have

(C.170)
E ((h(5) = h(i)+1{3 + Kaya > J})

T 7xi+1]

<E ( ( te[min max {0y, (t), Uri(t)} —

min max{ﬁm(t) + (5i+1 —0; — 2H)n(t — .%) + di+1 — H,
t€[$¢,$¢+1]

Uri(t) + (Giv2 — dits — 2H)n(Tiy1 — 1) + Sia — H}>+ﬂ{j + Koy > J}>

< PG5+ Ko > J) (B (21041 + |0:] + 2[6i52| + [6i+3]) + 3H)

—
N

= g

2 2 7%
< (6'760\/;+37651hi—110+3,§0> P(G+Kyu>J) < 2,a,0m(\/ﬁ; )-

Step (a) follows from oE(1{J + f(a/4 > J}) < E(—=%=), and Inequal-

Val=it
ity (C.163).
When [}, =1,
(C.171)

E <(ﬁ(0) - h(0)>+ 15 + Koja > J})

<E in 0,.0(t) — i U 0(t 03 — 6O 2H)n(t — 0o — H
< ((ter[gllr}n}v,o() ter[g’llr}n](v,o()ﬂL(s 2+ 2H)n(t — 21) + b2 )>+

SR . = 2 - o
e < O j— —_— .
1{j + Koya > J}> <SPG+ Koy > J)3H + 3%0\/;) < CZ,aPm(\/ﬁyf)
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When Ip; —2=n—1,

(C.172)

E ((h(n 1)~ h(n— 1))+ 1{3 + Kopg > J})

< E(]l{j + Ky > J}

—1 —1
(%1 te[*=01]

( min Uy p,—1(¢) — min (Tp-1(t) + (6p — On—1 — 2H)n(t — Tp—1) + 0p — H)> >
te
+

g
%a f)

Going back to Inequality (C.169), we have
(C.173)
E (M(f) = £10)+ 143 + Kaja > J}) < (ni=110)Co.apm

- ~ 2 _
< P(J + Ka/4 > J)(?)H + 37&0'\/;) < Cg,apm(

g

NS )+(M(f)~h).

Combing all the terms together, we have
(C.174)

EfL(CIm,a(Y)) < V4,apm(

g

Jei D)+ V2 (min{f(@): 0<i<n}—h).

O

PROOF OF LEMMA C.48. The proof of this lemma is very similar to that
of lemma C.47. For simplicity, we will omit the parts that are the same and
only point out the places that are different.

Similar to Inequality (C.162), we have

(C.175)
EfL(CIm,a(Y))

1,
< (thi—flo—f—l,% -9 I(Z) + \/g)’y@E(

+E ((fl \/§0' \/gO'

)

2J =71

TN BT T T
1,
< (Spy-nr1,e — @ 1(1) +V3)yeo+

E (&1 = M)+ 13 + Kaga > T}) +E ((M(f) = £10)41{3 + Kapa > T}) -

— £10)+ 1{J + Koy > J}>

For the second term, according to the definition of ; and Proposition C.8,
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we have

(C.176)

E((f1 = M)+ 1{3 + Kaja > J})
<E (M = M(£)41{3 + Kaja > J})

< (s hesglng) pm(%; h) npz(%; h) + V2 (min{f(z;) : 0 < i <n} — M(f)),

where M is defined in (4.9).
For E ((M(f) —f1,)+ {5+ f(a/4 > J}), according to the arguments in
the proof of Lemma C.47, we have

E ((M(f) = £10)+ 143 + Kaya > J})

(C.177) o Iuz2 3 L
< M) =0+ > E((RG) — h(D)+1{5 + Kapa > J}).

For (Ijp — 1)V 1<i<(Ip; —2) A (n—2), we have

E ((h(i) = h(0))+1{3 + Kajs > J})

(C.178) 5 o
< |6 "Ye\/;'i‘ S’YCS[hi,[loJrg% P(3+ Ka/4 > J)o.
When Ilo = 1,
E ( R(0) — h(0)>+ 1{3 + Koy > J})
(C.179)

- 2
< P(3+ Koys > J)(3H + 3%0\5).

When I; —2=n-—1,

o E ((ﬁ(n 1)~ h(n— 1))+ 1{3 + Koy > J})

PO 2
<P+ K> J)(3H + 3%0\/;).
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Therefore,
E ((M(f) = 1)+ 1{3 + Kayu > J})

9 R -
(C‘181> < (Ihi - Ilo) <6 : ’Ye\/;-l- 3’YeSIM_[lO+37é> P(J + Ka/4 > J)U
+ (M(f) = h).

Hence

(C.182) EfL(CLina(Y)) < Csa0 + V2 (min{f(z;) :i=0,1,--- ,n} —h).
O

ProOOF OF LEMMA C.49. Similar to the proof of lemma C.19, define the
following events:

J—7 _ J=qar1, . _
E={2(f) ¢ LMD 2=l g

n n
By ={j>j"+Ko+1, and j"+ Ko +1 < J}
F={j<j" —2-Ka}

G={fn <M(f)}

H={f,, > M(f)}.

(C.183)

Then we know that
(C.184) E{ C E“.
So we have
(C.185)  {M(f) €CLna(Y)} DESNF NG NH" D ES NFC NG NHE.

Then we have

P(M(f) € CTpa(Y))
> P(Ef NF°NG°NH)
P(G°NH|E{ NF°)(1 — P(E;) — P(F) + P(FNEy))
= (1 — P(G|E{ NF°) — P(H|E{ N F°)
P(GNHE{NF))(1— P(E;) — P(F) + P(FNEy))
>1— P(GE{NF°) — P(HEE{ NF°) — P(E;) — P(F).

(C.186)
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According to Lemma C.37, we have

P(E)=P(3>j"+Ke +1,3"+ Ka +1<J)
(C.187) <P(G>§"+Ke+1,3"+ Ko +1<))
)

Similar to the proof of Lemma C.19, especially the proof of Lemma C.21,
which consists the proof of Lemma C.19, we have

(C.188) P(F)<P(j<j*—2-Ks) < %

For the remaining terms in Inequality (C.186), we claim
LEmmA C.50.

(C.189) P(H[ES NFC) <

=~ R

Proor. With a little abuse of notation, let A denote the event {j+l~(a/4 <
J} in the proof of this lemma. Then

(C.190)
P(H|E{ NF°) =
PHEINF N A)P(A|E] NF°) + P(HE{ NF N A°)(1 — P(A|E] NF9)).

We start with the second term, for which we introduce another lemma.
LEMMA C.51.  On event A€, for h(i) defined in Algorithm 2,

P(h(i) < min _f(t) for all j, —1 <@ < In; —2[Y;,Y) > 1 — a/4.

te [%Z ,CEZ'+1]

PROOF. We take the definition of §; in Equation (C.144): 6; = ye,i—1 —
f(zi—1). Since
P(max{|6;] : (I1o = 1) V1 <i < (In + 1) A(n+1)} > H|Y;,Y,)
(C191) < P(max{d;: (Lo —1)V1<i< (In+1)A(n+1)} > H|Y, Ys)
+ P(— min{éi I, <i < Ihi} > H‘YZ,YS) < a/4,

we have that condition on Y;, Y, on event A€, the following event holds with
probability at least 1 — a/4:

B ={yei—H < f(z;) and ye; + H > f(z;) for all ([}, —2)4+ <1i < I An}.
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On event B, for (I;,—1)V1 < i < (I; —2)A(n—2), consider two linear func-
tions Uy ; : t %(t—xi)+f(xi), Uit %(t—xiﬂ)%—
f(xig1). Thenfort € [z, xip1], f(t) > max{D;;(t), 0, ()} > max{v;(t),vri(t)},

hence h(i) < infie(y, 2, .1 (1)
If I, — 1 = 0, suppose event B holds, then consider the linear function

Tyt t > %(t — 21) + f(21). For t € [0,1/n], we have that f(t) >
Ur0(t) > vro(t), hence h(0) < minyepg 1 /n) (1)

Similarly, if Ip; —2 = n — 1, on event B we have that h(n — 1) <
Minyef—1/n,1] f(t)-

Therefore, on event B, min{h(i) : I;,—1 < i < I;—2} < infrem, 1w 1) f(t).

Therefore,

(C.192) P (h(i) < min  f(t) forall [y — 1 <i< I — 2)Y1,YS>

telzi,zit1]

> P(BJY,,Y,) > 1 — a/4.
O

Recalling that on event E§, we have Z(f) € [zy,,—1,%r,,—1], together with
Lemma C.51, we have

(C.193)
P(H |E{NF°N A%
< P(min{h(i): L, — 1 <i<Ip —2} > M(f)| Ef NF°NA®)

:P<min{h(i) Lo —1<i<Iy—2}> min f(t) |E§ﬂFCﬂAC> < a/4.

telzr, —1,21,,—1

Now we turn to the first term in Inequality (C.190).
First, we show that on event E{NANF¢, we have miny, <;<y,, aves(j;,1) <

M(f)+\/\C—"]usmgthe fact that pm(\f,f) < \F\/:;CU < \/ﬁ\/ﬁﬁ/n
V3o
< C
{, min aver(ji,i) < M(f) + F} NEj
< v Sk c
> {, win, aver(ji,i) M(f)+pm(\/ﬁ,f)}ﬂ{ﬁ > 3T —2}NEINA
DFN{ji>3* =2} NEN{]+ Kya < J}

DE{NANFC.

Denote ipi, = argming, ;<. avey(j;,i). When there is more than one
qualifying for i,,;,, take any one.
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Therefore,

(C194)  P(EIES NFNA) < P00 2~ (P02
Therefore,

(C.195) P(H|ES N F°) < %

Similar to the arguments in proof of Lemma C.22, we have

(C.196) P(GES NFC) <

=~ R

Returning to the main theorem, we have,

(C.197) P(M(f) € Clma(Y)) > 1 - a.

APPENDIX D: PROOFS OF TECHNICAL LEMMAS

We prove all the technical lemmas in this section.

PrOOF OF LEMMA C.1. The inequalities are due to

[ —fm) _ flag)fles) o mm)(fle) Tt iiea))

xro—I1 r3—I2 — (xg—zl)(xg—xg) —

and

f(x3) — f(z1) _f($2)—f(901).$2—$1+f(3?3)—f($2)‘$3—332

r3 — I1 Tro — T1 r3 — I1 Tr3 — T .I'3—.’B1.

PrOOF OF LEMMA C.2. Let t = x%\/2/3 — 2, then we have

2

20®(2 — (22)2/2/3) <y JT2YHEIVE) o (-
0.1 x®(2 —/2/32%/2) — [ exp (%) du
D.1
—2/2t u2 (4v2-2)?
ff:o exp (—% )duexp (——5—-)
<42 7 - < 0.008.
ffoo exp (—45)du
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Proor or LEMMA C.3. Let

Then
(@) = 2(28(-2) ~ < exp (-2
= —x) — xp (——)).
q o P B
Taking further derivative, we know that sign((2®(—x) — o €XD (—%2))’) =

sign(z? — 3). Hence ¢/(x)/x goes down and then goes up, its first root is
the place that ¢(x) takes maximum. Since ¢'(1.19) > 0, ¢’(1.2) < 0, we
have sup,-q(r) < 1.220(-1.19) < 0.168514 < 0.169. Therefore Q <
1.22®(-1.19) < 0.169. Only in this proof, let u(z) = z?®(2 — z). We

have u/(z) = z(2®(2 — z) — x\/%? exp (_(2—2‘%)2)). Since sign((2®(2 — z) —
1 (2—z)2

T exp (—=5))") = sign(z(z — 2) — 3), and min,~ou'(z) < 0 < u/(1),
we know u/(x) has at least 1 root. And its first root (when the root is
unique, its first root is its unique root) is where u(z) takes maximum, since
u/(2.18) > 0,u/(2.19) < 0, we have u(x) < 2.192®(2 — 2.18) < 2.0555. Hence
V < 2.0555. O

Proor or LEMMA C.7. Since we have for ¢ > 0,

(D:2) D(~t) exp (—12/2),

1 t
>_- >
T Vot +1

we set t(a) = y/2log (1/a) — /log (21og (1/a)). So we get, for a < 0.03,

exp(l) })) t(a)

B(~t(a)) > ——aexp (g (2log (1/a)) -

(D.3) el o 1 27 t(a)? +1
> a-(2log (1/a))™ VorHa)? + 1
Further, denote 2z = 2log (1/«), we have
t(a) o Hw)? @ t(a)?
DD 1% HaP 1 1ie) = a2 7 1V7 > 06V > 158,

The inequalities are because of t(a) = /z — /logz, t increases with x
when z > 2, and = > 7 when « < 0.03.
Therefore, for a < 0.03

(D.5) O(—t(a)) > 0.82a.
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Note that for a < 0.02, t(«) > +/log(1/a) x 0.689.
Hence for o < 0.005,

Therefore, for v < 0.005, 234 > (5350, 22.060 = H(ZPa).

3
230 2 H(5'550) 2 0.689 x /10g(0.82/30) > 0.599/log(1/a),

(D.6)
2.06
22060 > H(5 5 0) > 0.689 V/10g(0.82/2.06a) > 0.627+/log(1/a).

We are now left with bounding
inf 22.06c
@€(0.005,0.08] 4 /log 1/
Note that both 29,06 and /log 1/« increases with v decreasing. Therefore,

z k+1
22.06c 2.06 7500 > 0.61

inf ——— > min —————
a€(0.005,0.08] y/log 1/av ~ 5<k<79 | /log 1000/k —

22.06c
Therefore, for a < 0.08, e l/n > 0.61.
O

PrROOF oF LEMMA C.8. In this proof, we extend the meaning of opera-
tor max{-, -} to allow function-value arguments. Suppose f and g are two
functions, then max{f, g} :=t — max{f(¢),g(t)}.

For ;1 that will be specified later, define z; = arg min{t € [0,1] : f(t) <
M(f) + p},z, = argmax{t € [0,1] : f(t) > M(f) + p}. We will construct
several functions. Without loss of generality, we assume z, + z; > 2Z(f).
Otherwise, we construct those functions on the left side. As shown in the
Figure 22, the function in bold is f, and the following points have the following
coordinates:

(D.7)
Fo(Z(F),M(f) At (o, M()+1) D (@, M(F)+) N : (@, M(f)+20)

Define four linear functions Lg, L1, Lo, Ls:

Lo(t) = M(f) + s (AD),
Ly(t) = { ﬁ(f) (= 2Nz w0 # ?f) (AF)
Lo(t) = M(f) +(t = Z(£) - _“Z( 7 (FD),
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Define the following functions:
(D.9)
g1 = max(f, Lo), g2 = max(f, L3), g3 = max(L1, L2, Lo), g4 = max(L1, L2).

Note that the above definition is valid for all i > 0 as it does not require
A and D to be on the graph of f. Therefore, when p goes from 07 to oo,
llgr — f|| and ||g2 — f]| also go from 0T to co. But note that ||go — f||, as a
function of u, may not be monotonic, nor continuous. As u increases, go may
jump between the right and the left side. A jump can incur a sudden increase
or decrease. On each small chunk, ||g2 — f]| is monotonic and continuous.

Fig 22: Illustration figure for proof of lemma C.8
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Therefore, for any given o > 0, there are two possible cases. Either 3 > 0,
s.t. |lg2 — f|| = o, or Ju such that the following three things hold.

Property 1 z;(u) + 2, (1) = 2Z(f).
Property 2 Suppose go; and g2, are constructed essentially in the same way
as go but one on the left side (g2;) and one on the right side (g2.,).

Then (|lg2; = fll = o) - (g2 — fll = ) <O.
Property 3 And further, for the side (h € {l,r}) that ||gor — f|]| — 0 <O,
3p > 75 > 0 such that for any 7 € (0, 73),

el 7) - 2()| 2 0DV = 2D ol =) = 29

And for the other side h € {I,7}/{h}, lgy;, — fll =0 >0,3u>1, >0
such that for any 7 € (0,77),

zilp + 1) = Z(H) + |2 (0 +7) = Z(F)]
2

2 +7) = Z(f)l =

To show the main idea more clearly, we assume for the moment that for
the o that will be chosen later, there exists a p such that on at least one
side, we have ||g2 — f|| = 0 and use o to denote ||g2 — f||. For the o that
does not have a corresponding u, we will discuss it later.

Now we will introduce several inequalities with respect to ||g2— f||, [[g1— f ||
and [|gs — g4

1.
(D.10) g2 — fII* < 5llgr — fI1%.

When Z(f) # x;, we have

1 1 1
ng—fH2§§u3 I - +2><§(wr—:rz)><u2+2><Hgl—ng
1

Z(f)fxl - Tr—X]
1) —w)@ —w) [ 2 5, a2
= T +gu (zr —21) +2[lg1 — £
<y (zr —2) +2 x ||g1 — fII* < 5|lg1 — fII*.

Otherwise, the first term is zero, we still have Inequality (D.10).

w

2.

(D.11) lgr = £11* < 3llgs — gal*.

This follows from

1 1
lgs — g4]|* = §M2($r —x7) > §||91 — fI1%
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3.
(D.12) lg2 = f1I* < 8llgs — gal*.
When x; # Z(f), we have
lg2 — fII?
< S 4 (o =) < gy~ fIP 2 x4 X 5 — )
Z(f)—z — xr—w

- gt 3D ) - 1P

5
< (o —2) + llgr = f1I* < 8lgs — gal*

Otherwise, the first term is zero and Inequality (D.12) still holds.

Define linear function g5 = max{Ls, Ly}, then we know that

(D.13) p=(vig2) < p=(vigs5), Yy >0.
Now we will show that
(D.14) p=(7v: 95) < 2p2(7; 94),

for v < \/3p2(xr —x1) = llgs — gall. When v < |lg3 — ga|, elementary
calculation gives the followings:

2

Ty — Z(f) o (@r —31)° 13 o 1 (zr —1)® 5 1/3
. — > =
pz(7794) T, — 1) 3 FLQ v ) - 2(3 /112 v ) P
2
Ty — X
prige) < LI,

which give Inequality (D.14).
Therefore, Inequality (D.13) and Inequality (D.14) give

(D.15) p=(7:92) < 2p:(7;94), Vv € (0, g3 — gall)-
Further, for all v > 0, we have
(D.16)
(7: _ Y % - 7 \/gfy ° - 7
ption = () -z < (2 ) G- 20)

g

(BN g - 200 = () 2000 - 20
22— 7l
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Therefore, we have

D17 parig2) SADZ() ~ 2y < llgs — aall
Further we have
(D.18) w@g—ﬂnhwww—zwnmmwdwm»zmg%mﬁ

The o we will specify later is no smaller than /8¢, and suppose o > /8¢
from now. This gives two consequences.

L. Z(g2) = Z(H)| = p:(z0: f) = pa(es f).
2. |lgs — gal* = 1 x 85 By Inequality (D.15), this further implies

pa(:92) < 4(2)51Z(g2) — Z(f)]-

As we know, for the problem of estimation Z(h) with h € {go, f}, the
following statistic is sufficient

Jo (g2(t) = F(£)AY (1) = § Jy (g2()* = F(1)*)dt

D. =
(D-19) WS P

)

and we have WS ~ N(0(m) 12271 1), with 6(go) = 1,6(f) = —1.

Define an event O = {|Z — Z(f)| > Lp.(; f)}, then we have P;(O) < 2c.
This is because we have ]Ef]Z Z(f)| < cpz(e; f). Therefore, by arguments
simliar to Neyman—Pearson lemma, we have P, (0) < @(@—fbfl(l—%)).
Since |Z(g2) — Z(f)| > pa(es f) and |2~ Z(g2)| > |Z(g2)— Z())| 12~ Z(f)],
we have the following inequalities

EgulZ — Z(g2)| > By, ((12(92) = 2] =12 = Z(F)])+)

(D.20) > &y, (100} (12002 - 200) - 3o 1) )

lg2 — fII\ 1
192 =10 2(92) — 211
For ¢ < 0.0011, let 0 = ®~!(1—2c)e. Then o > /8¢, thus | Z(g2) — Z(f)| >

p(e; f) and p.(e; g2) < 4(2)3|Z(g2) — Z(f)|-
So we have

> o(d (1 —2¢) -

CM\NJ

(D21 BylZ - Z(g2)] 2 {12(02) ~ Z(H)] 2 1527 (1 = 20)pue300).

Let f1 = g2, we have the result.
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Now we consider the case when o = ®~!(1 — 2¢)e does not have a corre-
sponding u. Then dp > 0 such that Property 1, Property 2 and Property 3
hold.

Without loss of generality, we assume h defined in Property 3 is r. Then
Property 2 and Property 3 give that ||g2; — f|| > 0. By Property 1,

(D.22) 1Z(92,r) = Z(N)| = 1Z(g20) = Z(])].

Besides go; and g2, we can construct g1, g3, 94,4, g5, similarly to g1, g3,
g4, g5 on the left hand side, and also g1, 93, 94,r, g5, on the right hand
side. Then we know that

(D-23) 910 =91 =91, 931 =93r = 93, G401 = G4r = 94.

According to Inequality (D.12), we have ||g3 — g4||*> > %ngl — fl? > &%
Therefore, we have

M@A—Z()@M@m—Zﬁﬂ

(“ . (#d) 1

3 (ngl f\|> pa(er00s) > q) (1= 2¢)3 pa (23 940)
V8e

w1 1

L - 20t 1o - 200t

(D.24)

Step (i) follows from Equation (D.22), step (ii) follows from Inequality (D.16),
step (iii) follows from ||ga; — f|| > 0 = ®71(1 — 2¢)e, step (iv) follows from
Equation (D.23), and step (v) follows from Inequality (D.15).

Again, since o > /5e, we have |Z(g2,) — Z(f)| = |Z(g921) — Z(f)| >
p=(€; ), which comes from (D.18).

Similar to the arguments in the case of go, we define event O = {|Z —

Z(f)| > %p=(g; f)}, then we have P¢(O) < 2c. And we have

Bya, |12 = Z(92.,)] 2 Bys,, ((1Z(92.,) = Z() =12 = Z(£)])+)
> 8., (10} (12002) — 201 3ot )

o2 =70 2\ 200, 2(p)

(D.25)
> ®(d (1 - 2¢) —

1
> 7587 (1= 205 pa(enga),

We take fi = g2, and get the statement.
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PrROOF OF LEMMA C.9. Without loss of generality, we assume f(Z(f) +

p=(&; f)) < M(f) + pm(e; f). Denote z; = min{t : f(t) < M(f) + pm(e; f)}-
For 0 < 6 < $p.(e; f)), denote

gs(t) = max {f(t)

M(f) + pml(e; f) + M(f) = pm(e; f)

T (t— 1)}

)
f)—0,and p.(g;95) < 3pa(&; f).
% 2(e; f)}. Then Pr(O) < 2,

F(Z(f) + po(g; f) = )
p:(& )+ Z(f

Clearly, |lgs— || < &, Z(gs5) = Z(f) +p=(e;

Define event O to be O = {|Z — Z(f)| >
thus Py, (0) < (1 + &71(20)).

Therefore,

ol 2l 2 Bu, (HOHIZ() - 2l - gpo(ei )1

> Py (0°) (pale; f) — 6 — %pz(s; )

(D.26) > (1- @1+ 87(20) (053 /) — 6~ el )
> (1—d(1+ D 1(20))) (; - pz(i f)>+ p=(&; f)
> (1—®(1 + & (2c))) @ - pz(j f)>+ pz(‘z 95).

Therefore,

E,|Z - Z
sup By, 2 = Z(95)|
Loe>es0  P=(95)

(D.27) (1—2(1+271(20))) <1 ) )

> lim sup - —
50+ 3 2 puesf))

= é (1-®(1+® 1(2¢))) > 0.1666 (1 — &(1 + d1(2¢))).

Note that the inequality is strict, so we have the statement.

Proor orF LEMMA C.10. Without loss of generality, we can assume

tr = max{t € [0,1] : f(t) < M(f) + pm(v; )} = Z(f) + p=(7; f),

for a v > 0 that we will specify later. Denote

ty=min{t € [0,1] : f(t) < M(f) + pm(v; )} = Z(f) + p=(7; f)-
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It is apparent that ¢, and ¢; depend on . For ipz(v; f) >8>0, define

f(tr_é)_M(f)_pm('y;f)
tr—0 —t;

(t—t)}

9s(7; f) = max{f, M(f) + pm(v; f) +

Therefore, we know that ||gs(~; f) — f]| <. We will use g to refer to gs(y; f)
when there is no ambiguity. According to the definition, we know that

lim sup pm (v; 9) < pm(7y; f). We will specify v to be a quantity no smaller
§—0+
than e, suppose v > ¢ from now.

Denote O = {|M — M()| > 3pm(e: £)}. Since By N — M(f)| < cpm(e: /),
we have Pf(O) < 2¢, then we have

E9|M—M(9)|

> B, (H{O}(M(f) = M(g)| - ¥ — M(f)])+)
> P(O°)(|M(f) ~ M(9)| ~ 5pmle; )

> 0041 - 20 = 1) (1) = M) = gon(si)

+

= 00120 = 1) (gl ) = goulei )+ - 0) = F(0)
.

For ¢ < 0.103, let v = max{®~!(1 — 2¢)e,e}. Then v > ¢.
Therefore, we have

sup EQ‘M_M(Q)‘ >limsupEg’M_M(g)’
0<6<Lp.(7if) pm(€;9) B Pm(€;9)

+ tmep 22 = max Lz () pin(e:) = Spm(esf) + St =) = F(1).
T 50t pm(€;9)

Bz —max{zze 1) () p(ei ) = dom(ei )

N pm(€; f)

— B (29, — max{zs0, 1}) ((7) _ ;) .

€

For 0.103 > ¢ > 20U we have

> 0.214362.

E,|M — M (290 — 1
(D28) sup g| (g)| 2 (ZQC )
geEF pm(5§g) 2



SUPPLEMENT 117

o(-1)

For ¢ < —5—, we have
. 2
E, M- M 1/2 1 3
(D.29) supM > - <z230 — ) > 2,
geF  Pm(&9) 2 2 4
Note that for both cases, the inequality is strict, so we have the statement.

O]

ProoOF oF LEMMA C.15. Without loss of generality, we assume

(D.30)  sup{t > Z(f): f(t) < pmle; f) + M(f)} = p2(es ) + Z(f).
Splitting the entire probability space into {j < j*+1} and {j > j* +2} gives

Eis((f = M(f)*1{j > j})

j*+1
=Bio( Y (f— M) U{j=j1.j =5 +1})
£y
(D.31) - >
+Es (Y (f= M) =417 > ji+1})
J1=3%+2

2
We have the following bounds that we will prove separately
1
(D.32) m < (7680V + 2)pm(s; f)?, n2 < (78V + Tﬁ)Pm(é‘; 52,
which gives the statement of the lemma.

Proof of bound on 1 in Inequality (D.32). Splitting the entire probability
space by the value of A (i.e., A =2, A =—-2 A =0) gives
J*+1
m =Ky ( Z (f=M(f)*1{j>51+1,5= j1})
=2
J +1
< Z El,s((ﬂjl,%lerQ - M(f))2ﬂ{j >J1+ 175 = J1, A= 2})
Jj1=2
(D.33) gl - .
+ > Bis (1,2 = MOPL{T 2 1+ 1,5 = j1,A = =2})
Jj1=2
J*+1
+ Z El,s((ujh{jl — M(f)*1{j > j1 + 1,5 =j1,A =0}).
J1=2

3
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By convexity of f, we can further bound ¢ in Inequality (D.33) by

§< ZEl,S 2

((%M — MUD®+ (kg 5, 2 = M)
J1=2

1{52j1+1,5=jl,A:0}>.

Plugging this bound of £ back into Inequality (D.33) gives

(D.34)
Jr+1 _ A
m <Y Bus((y, 5, 40— ML 2 1 + 1,7 = j1, A € {0,2}})

1=2

" r1(j1)
J*+1 ~

+ > Bus((1y, 5,2 = MU LG > 1+ 1, = j1, A € {=2,0}}).
" k2(J1)

Now we will bound k1(j1) and k1(j2) for j; < j*. Before we bound for
general j; < j*, we list two special cases for x1(j1). By assumption (D.30),
for j1 = j* and j; = 7% + 1 in the first term, we have

(D.35) k1(j1) < pmle; f)?2% 7201,

For general j; < j*, simplifying the event {A € {0,2}} and taking conditional
expectation with respect to Y; gives

le 7%]'1 +6 le»%jl +5

r1 (1) <Eps (1, 5, 40 = M(H*L{ 2 1 + 1, e <2})
s J1
<E, (mjl,w - M) 2+ 1)
1 My VAL
Es(ﬂ{gjl,ih%\@css §2_'“j1,i]~1+6\/§%5 +“j1,%jl+5ﬁcsg|yl) )
a2 B3 (15, a— MOV 2141, 2 s
—= S j1:2 ]1,21'1*2 — 9 \/ECS mj1€ —

<E, (wﬁ,gh = MU > i+ 1)

A

Es(1{~¢;

1 m; V1
s TR S 2=y g g : +Mj1§'—5l‘yl)>‘
1 \/icss L ﬂcss 1 \/5055
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Now we will bound ;- i, —6 My i 5 by an expression of 11, -2 M(f).
771 Il

As we have [ij, — i, < 1 we have 5 —3 < iy, —2 < i7, — 1. We have
" s _— f(tjl,qﬁj176)_M(f) > f(tjljjlfg,)_M(f)
J1,ij, =6 Jitjy =5 = T tj1£j1—6 -Z(nH — 7 tjlﬁjl—S - Z(f)
- M(f) 1
. ]17%172 - N _
= My, m;, 2 4(/‘]”’].1 )] M(f))

Similarly we have

1
Hjy g +6 ~ P +5 = Z(le,ijﬁz — M(f)).

Now we plug these bounds back to bound k2(j1) and x1(j1). Since similar
analysis goes for both k2(j1) and x1(j1), we only showcase the analysis for
k2(j1) in detail.

(D.36)
k2 (1)
<Ei((n, 3, -2 — M(f)*1{j = j1 + 1}
1 1 -
B (108, 57— <2 10,5, 0 ~ M) Y2 11)
:El((ujl,%j*Q — M(£))*1{j > j1 +1}9(2 - (17,35, -2 — Aﬂf))Qj*i;r4 x/;(lzie))
S]El (24+j1*j* 20352 ]]_{3 Z jl + 1}
Sopos VT 20(2— (1. . . — Fopet VMG
R
<24+]1 —3" 26 V,
mj*

where V = sup,> 2?®(2 — z).
Similarly,

*2
(D.37) k1(j1) < 24+—i 252,
m =

Plugging the bounds of k1(j1) and k2(j1) (Inequality (D.35), (D.37),
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(D.36)) back to Inequality (D.34) gives

(D. 38)
J 41 J*+1

Z (k1(51) + k2(1)) + Y Ra(G1) + Y w1 (in)
Jj=1 Jj=Jj J=J*

sk

§@waV+3fo+3x2mV+me@fV§(M%V+2Mm@ff

Proof of bound on ny in Inequality (D.32). Similar to the proof of bound
on 71, we split the entire probability space by the value of A, simplify the
events, take conditional expectations, and calculate them to arrive at the
bound. Details are as follows.

Ero( D> (F =M1 =51.i > +1})
J1=5*+2
SEs( Y (40— MDPLG 250+ 1) = ji,
J1=7*+2

:( .8 —_— :( .8 ;( .0 —_— ;S .8
04, +6 04, +5 15, —6 i, —D
J15%5, J15%5, S 9 J15%5, J1,%5¢ > 2})

\/5081 /M € ’ \/ﬁcs M&
o
B (Y (i, o — MU 21+ 1,5 =,
J1=5*+2

.o —X o
jl,ljl—ﬁ ]1,2j1—5

X. - - X. -
<2 Ji,i5,+6 Jistj,+3 > 2})

V2¢s /M e T V2 ymye
o0
+Eis( D (g5, — MG 251+ 1) = i,

J1=j*+2

X. 2 —X 2 X : —X 2
1,24, —6 1,85, —H J1,%4, +6 J15t5,+5
J1 J1 <9 J1 J1 < 2})

\/§Cs m;, € -7 \/ics ;€
1 o0
- )2 20 (% .
< 3P E DT TR Y0 (g, o= MU LG 21+ 1,
J1=j*+2
Jisij,—6 - X]1,%j1 5 < 27v]* L1< j < jl, Xj,ij—‘rﬁ — Xj’ij+5 - 2})
\fcs\/”TJ8 \@cs\/ﬂTjg
o0 X . n 6 — X k. 5
+El,s( (U' . _M(f))Qﬂ{52j1+1,j:j1, J1yi5 — Ity — <2
jl;JrQ o V2T e

le,%j1+6 - Xj1,2j1+5 <9 Xj,%j+6 - Xj7%j+5

ﬂcs mj, € -7 \/ics, /€

> 2,V +1<j<ji—1})
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= El( D (i o = MU > 1+ DE(L{V;" +1 < j < ju,

. — X N X. - - X -
Jyij+6 7545 +5 Jisij,—6 1,45, =5 1 )
>2, <2HY)) | + —pmls;

ﬁcsm€ \/ECS mj15 }| l)) 16pm( f)

> X - . —X. -
= . J1,tj; —6 Jiyij —5
HEZ( Y (myyi, — MU)PL{G > 1+ DB (1{— i}éc TP <9,

J1=7%+2 1€

V]* + 1 S ] S jl i 1’ 7,05 +6 7545 +5 > 2’ J1, ]1+6 J1, _71+5 § 2}|Y2)>
\/ics\/’ijE \/ics mj, €

1 - ~ .
< gPmle f)? +El< Y (g, o = MG > 51 +1)
J1=5*+2
('uj’%frﬁ _ ,Lt]-7gj+5)\/m7j m(ﬂjl’%j1_6 ‘LLJMJl )
)] (2 - )
\/icsa \/§Cs
oo - X
- VT (B 56 = Hg iy —5)
s — 2 ] i _ J15%5¢ J1,t5,
fE( D G, - MUDPLG 2 o+ )02 = :
J1=7%+2
W(”jl,%jl+6 - ujl,ijl+5)
V2cse
1 e ~
< 1gom(& 0)° +El( D (e~ MOPAG 25+ 1)
m( f) By i —2—M(f)
\[Cs V2¢se

[Hj'l—J 1 ®(=2+

) [Hh 1

@2+

o2 -

(Nj,2j+6 - /‘j,ﬁj+5)\/77j)]>
V2cse

(L. @2+ 25— =
iy —M()

*El< D (g, = MU 2 i+ 1302 - Wﬂ%;))

pm(&f
[l (-2 + M) )
Jj=7*+1 fCSE

1 2 - 32¢2¢2 o
< 7Pm(5§ f) + E Z ]1{] >hn+ 1}V (_1.75)31 j
16 J1=7*+2 My,

= ~ 8c2e? i1
+E( Y 1 > ji+ 1}V (-1.75)

J1=7%+2 J1
< Lpe )2
= 16Pm\
+El( > Lz 4+ 1}V x32x3x8——— x 21T (-~ 1.75)]1_J>
Ji=j*+2 pz(E,f)

oo 2 . L
pE( D 15z x2S a1z )
nE 42 p=(=: 1)

1
< TGPm(E; )2+ pmle; £)?V x 78,
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O
Proor oF LEMMA C.16. Note that (f—,uj. ;. )+ takes non-zero value only
"

when A # 0 and :“j‘,%j D “j’,%j- We split the entire probability space by
the value of A, and then by the value of j and j. Then, we further take

conditional expectation with respect to Y;. Repetitive usage of convexity and
careful calculation give the statement. The details are as follows.

Eis (((f - M;,;j)+)21{3 < 5}) =Eis ((f =15 )"1{5 < i f> i, })

X =X
~ ~ 7,i5+6 J,i5+5
<E1s((/ﬁ“ — 15 )1 <Gty > s, — I <2
— L, 7,05 +2 yRE — Iy 042 75157 _ = 4
J J fi J \/i\/TTjCSE

s - >21sz >1})
V2, mese
Xo: =X
. o ],1176 ],1]75
+Ez,s((uj,ij._z K, 1{j <7, Hiizm2 > Hijp — 75 - 2,
X —X.
I'i+e “]+5
— = =97 > 2if t: <1
\frcé ]l 0~ })
0o o0 X. - - X. -
<~ A 1y +6 J254j5+5
<> D Ezs(ﬂ-, i e — M VPG =1, = o, — 2 22 <2,
oy J1< s V2 MjceE
- . o Jii;+6 71 +5 Jsij—6 Jstj =5 R .
Vit+2<j<j2-1, VR e T B e 2t 542 > uijijz})

X. - - X -
J2,ij,—6 J2,ijo =5
J2 J2 < 2

= 4y

B ((/‘jz,zjfz 1y, 1 = 1 = o,

iz V2 /mjcee
Vit+2<j<jp—1, Xg\/;’/ﬁij ’?” > 2, Xjﬂiﬁmij > 2 sy 2 7 Py })>
< 3‘1222 <El ((”j2,5j2+2 - sz,ij2)2]l{5 =71, Hiyjij,+2 > ‘ujzﬁjg}q)(2 N sz’i’2+227 e \/\/;ZZ)
J22j1
Hn Zirto max{®(—2), (-2 + (176 + G(WTJf) Yom(e; f) \%ZTE)})
o <(uj2,z_7rz iy U = by > iy, )0l — Dt D ﬁ )

12 max{B(-2), &~ 2+<176+p6( L Jon(e: ) 5 )}))

<Z Z2><El(]l{

J1= 2]2 J1

V(- 1.85)(j2—j*—2)+)

= Z Z 2x El(l{j =1} x 8¢ x 2277 Hp, (g f)2V<I>(—1,85)(j27j*72)+>

J1=2j2=h
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= i i (1{3 —J1}> X 210 5 3 X p(e: )2V 2R 2 (1.85) 023" =2+
Z: <]l{]—]1}>><210><3><pm( V(2 x 1{j; < j* +2}+m¢)(1_'8125))

N )2V
<M m 2y x P(j < j* +2) + 211 P(—1. eV
X 3pm(e; )V X PG <j"+2)+2" x3xP( 85)1—2(1)(—1.85)

< 6355.2V pp(e; f)?
O

Proor or LEmMA C.17. We introduce the shorthand Op(jz) as the set
of all possible ij, values when jo = j. More precisely, ng(jg) = {i}, — 4,1}, —
3,2]2 2, JQ + 2,2]2 + 3,2]2 +4}. By the deﬁmtlonA of j, it is easy to verify
that - ; € Op(j). We introduce another shorthand i € Op(j). Without loss
of generality, we assume

sup{t > Z(f) : f(t) < pm(e; f) + M(f)} = p(&; f) + Z(f).

We split the entire probability space by the value of 7, 7, %57 and take
conditional expectation on Y;. Simplifying the events, repetitive usage of
convexity, and careful calculation give the statement. Details are as follows.

AN
[~
(]2
&=
C\
=
o]
|
=
=
~—
<
|
<
g
MS
[ V]
|
e
=
—
=
~—
<
|
<
=
-
~
S—
S~

B (s~ MO = o = 1) (B (1 = 3 4) 160 <57 + 21+

L{j1 > j* + 3}/ L, max{®(-2), ®(—2+ (% + pzﬁ(:”f))pm( )ﬁﬂ))
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o0
<Y i (g — M(£))P1{J = ja.ij, = i} (1{j2 < j* + 21+

J2=2i€0p(j2)
(I)<_2 + T12)J'2*j*73 >
1
1-®(-2+ 35)

1{j2 > j* + 3}P(—1.85)

o0
<Y D B (i = MU Ui < Xy ip .} (12 <57+ 21+
J2=21€0p(j2)

O(—2 + L)j2—5*-3
L+ 3ja(-1sm) T 1 )

1—d(—2+ 11—2)
c- <I>(_2 + L)jz—j*—?)
E : (H{JZ <jF 42} 4+ 1{j2 > j* + 3}P(—1.85) = 122 -
Jo=2 — (_ + ﬁ)

Ko i* +Ind(ja,i) — Mijz,i
D (i = M)y e(—=—5 V)

1€Op(j2)

a o0
< Z 1{j2 < j* +2} + 1{j2 > j* + 3}(—1.85)

B(—2 4 Lyi -3

1-®(-2+ %)
i =ik, =1 /m
Z (MjQ,i_M(f»Q(I)(_(sz,i_M(f))|Z_Z 1 \[”)
i€Op(j2) 2cie
- (I)(_Q + 7)]2*] -3
< {jo < j*+2}+ 1{j2 > j* + 3}®(—1.85 12
_Z({32_1+}+ (2 "+ 3185 = — T2
Jj2=2 12
222 i — i |+ 3
> (e
i€0p(ja) 72 L
= P(—2 + L)jrj*f:a
< 1{jo < j*+2} 4+ 1{jo > j* +3}®(-1.85 12
D (1 <742} + i 2 ' + 3}0(-1.89) el
J2=2 12
3 x 242707 (e f)2(23é)Q x 2
P(—1.85) 1
<3x(2°42° e 1)2(232)0,
where

Q = sup 2°®(—xz).
x>0

Step (a) follows from the following reasoning. Without loss of generality, we
can assume ¢ > 2 + 2. This assumption and conveixty give that p;,; >

f(t]27 - ) > MJQ,Z]-Q-H > M(f) that f( J2,t ) > f( J2,t + ) for x € [0 1]7
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P O S
TW2i=2) g ¥)  fltyy.=5)=M(f)

and that th’i_%_(th’% i pl N T Consequently,
Hiai — ujQ’i;2+1 f(th’i B %) B 'ujQ’i;2+1 > / th’i B % - tj27i;2 B xd!l:
i — M) = fltji—3) = M) ~ Jou  tji—s—Z(f)
I el N Sk S N e
tai= 320 - i+ 3
O

ProoOF oF LEMMA C.18. First, with a bit of abuse of notation, define
the events A, By, Cy, D, to be the following (they only mean events but not
constants in this proof):

_ . A'~ o ~ ~ — 1~ A — ~
Ar =AWt <Gt = Gy, ~ M)

- G- i - . =t - ~
w5, > 105, Giritis,, 0 = Gris,, T My}

Br ={w: 13, < Z.;:+T’t5+7‘+17’25+r+1 - t3+r,i3+r My}
(D.39) U b ZJ:T ] Z?M? t5+’“+1’23+r+1 - t3+T’%3+r}
Cr={w:i3,, < Z}+r’t3+r+1,§;+r+1 = t3+r7’23+'r}
Udw: %5+r > i§+r’t5+r+1,’z3+,‘+1 = b, ~ M5 i1}
Dr={w: b5 <80t i, = Gy, T )
Y {w : €j+r > Z?—H" t5+r+1,i3+T+1 = t5+r,25+T B m3+r}

Basically, these events indicate which interval the localization procedure
picks at the step j +7+ 1, and from the highest average to the lowest average
is A to D. These sets of notation for events are only used in this proof, and in
the proof of other theorems, the same notation can denote different things.

Still, without loss of generality, we assume

sup{t > Z(f) : f(t) < pm(e; ) + M(f)} = p(&; f) + Z(f).

Note that (Mﬁj‘ — ,uﬁ;)Jr is non-zero only when i > us: . We split

the entire probability space by events A, B, C,, D, and the values of j
and j. We remove the ones that Py < M55 and only keep the ones that
o 4

Hii > Mg is possible. We further write (,uﬁ} — uﬁi)Jr as a summation of

(,uijl e M ;j)+ for j < j < j and bound this sum. Details are as follows.
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]71‘7
20 5 ~ ~
= Ers( (155, —55.)+) Wi <5 =1, AU (BoN DY) U (BoNDiN{j=j+ 1})}>
P A
20 5
B (35, = 15.)+) 17 <= 3.(Con By U (Bon Dy)})
00 00 Jj1—1 )
< Z Z Elvs(( Z(“ﬁl,iﬁl - '“j,%j)Jr)
J2=2 j1=ja+1 J=72

]l{j = jl,j = jo, Ag U (BO ﬂDf) U (B(] NDyN {]1 =J2+ 1})})

00 % Ji—1
2 ~ .o .
+ E E El,s(( § (/L]’JFLEJ»H - :ujjj)Jr) {j=j1,5 = j2,Co N Al})
J2=2 j1=j2+2 J=Jj2

+ i (55, = 155.)+) 145 2 j +3.(Con By U (Bo N D1)})

Jj1i—1

o0 o
. 2
< Z Z E; s (2 Z 2 p((“jﬂ,%jﬂ - /“Ljﬂj)Jr)
J2=2 j1=ja+1 J=j2

1{j = j1,5 = ja, Ao U (Bo N Df) U (Bo N D1 N {1 = jo + 1})})

P
00 00 J1—1 o )
F3 S Bz X 0 (g )1 = o )
J2=2 j1=J2+2 Jj=ja+1
K2
2 ~ ~

+ Eis <((M§-,g}, - /ujj;)-‘r) 1{j=j+3,(ConBi)U(BoN D1)}> ~

K3

We will bound k; + k2 and k3 in Inequality (D.40) separately. We start
with k1 + k2 and introduce the shorthand dg = 1{j; = jo+ 1}, = 1{j = j2}
that we will only use in bounding 1 + k2. Changing the order of summation,
taking conditional expectation with respect to Y}, and elementary calculation
give the following.
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K1+ K2

oo o0 oo
_ +1—j 2 R
- Z Z 2’ 2 Z EZ’S <(Mj+1,3j+1 o Mjﬁj) ]l{uj+1,3j+1 > /”Ljﬁj}l{] B jl}
J2=2 j=j2 n=j+1
(1{3 = ja, Ao U (BoN D)} + 1{j = jo, 1 = jo + 1,4 = j2, By N D1})>

o

o0 o0
. )
+ Z Z P Z B <(“j+1ﬁj+1 - “jﬁj) ]l{“jJrLijﬂ > ”Jﬁj}

J2=2j=j2+1 J1=j+1

14 = jo, Con AJ1{) —jl})

j+1—j 2
< Z Z 2 ]ZEZ((MJ'+1£]'+1 o Mﬁj) ]1{“]‘+1,€j+1 > Mjﬁj}
J2=23j=j2
(o]
Z P(—1.85)27"—00)+ §(—2)(1—72=2)+
J1=j+1

(1{5 = jo, AgU (Bo N D)} + 1{j = jo, BoN D1, 51 = jo + 1,5 _jz})>

oo o0
P 2 ~ .
+ Z Z 2R <(Mj+1,%j+1 - Mj,%j) ]1{/1]'4_1’;“1 > Mjﬁj}]l{‘] = J2,Co ﬂA1}
J2=2j=j2+1
o

Z @(_1'85)(j2]'*)+¢.(_2)(j1j22)+>

jl*j-i-l

— +1 2 ~ o
< Z Z —1.85)UaT 0o ”Ez<(uj+1,;j+1 = 1, MM, > s YT = g2
J2=27j=j2

(L) = o A0 U Bo}(1+ ) + 145 > o+ L Ag U (B DY A0 2
.7 _]27 0 0 1_@(_2) ‘] _'72 » 430 0 1 1—@(—2)
T Z ®(—1.85)027" Z 2 “Ez((u]H 3 'U'Jm])Q
jo=2 J=ja+1
~ o 1
) ) . _oV—ge-l
Wpjyri,,, > Hys, YT =2, Co N A1}> (@(=2)7 1— @(—2))'

We will further split the probability space by the sequence given in lo-
calization procedure. Define the set C(j,k,k + 1) to be the set of pairs
(i1,12) such that P(igy1 = t2,i, = i1]7 = j) > 0. Clearly, |C(j,k, k + 1)| <
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min{10 x 277 x 4,6 x 4¥*177}. Continuing with the bound, we have

K1+ ko < Z Z —1.85) (J2—=3"=0)+ . 9i+1—j2 Z

J2=2j=j2 (i1,42)€C (§2,5,+1)

Ei( (41,00 — Hgi0) M ttjariy > i JI{J = ja, Ao U Bo, i = i1, 4541 = i2}>

1 L ( 2)] —j2—1
L n2=e) T
(Ld =32} (4 ggrgy) + Wi 2 a2+ =)
+ Z ®(—1.85) (G2—3")+ Z 95 —J2 Z
Jo=2 Jj=j2+1 (i1,i2)€C (52,5, +1)

I ((Mj+1,z‘2 — 1 )P L4100 > Wi JU{G = Jasij41 = d2,45 = 41, Co N A1}>

. 1
P(—2)i—J2—1
=
2 & . s 2c2e?
< Z_ _Z @(—1.85)(32_3 —0)+ . 9it+1-j2 N Z B m;+1Qﬂ{pj+M2 > 15}
J2=2j=ja (i1,82)€C(j2,5,5+1)
1 1 ) ( Q)J J2—1
1{j=jo}(14+ —— = e
e L > . 2c
Y et Y 2 Y 2 g s )
ja=2 =z t1 (i1,i2)€C(,gg+1) 7T
. 1
P(—2)i—J2—1
(2(=2) a2
X . . . . . 26262
<D @(—1.85)02 0w L 270 min{10 x 27772 x 2,6 x 47777 x 2} =]
N mj41
J2=2j=j2
1 L 1 ( 2)] —Jj2—1
1{j = jo}(1 + ————— > —~
(1{7 = ja}( e 2))+ {j>j2+1} —3(9)
262
+ ) B(—1.85)0277)+ 29702 10 x 27792 % 2,6 x 47772 x 2
>~ o-1895 00 3 2 min o
Jo=2 Jj=je+1
o 1
P(—2)i—J2—1
==
1 3, >k
qQe" Z 272H370" 5 (12 x (1 + —————) x B(—1.85)W277" "D+
m = 1—®(-2)
Ja=2
®(—1.85)277)+ x 160 x ! X ! )
1—®(—2)  1—8d(—2)
2 2
cj Qe (o™ o7+ da i 1 1
22N @(—1.85)02 )+ 9T H2 )
o 2 P(-185) DX (2) C T 80(—2)
T ja=2
2Q 2

“L22790.303 x (

1
L9 1)<Qx2 (& )2
M T 20(—iss) |27 Y S QX 2TT0T5m(sf)
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Now we will turn to k3 in Inequality (D.40). Analysis similar to bounding
K1 + K gives

K3 = El,s(((/@-,gﬁ_ - M;yg;)+)21{5 >j+3,(ConBi)U(Byn Dl)})

00 00 Ji—1
2
< Z Z El’s<( Z (Mj+1,:ij+1 B ij'zj)+)
J2=2 j1=j2+3 Jj=j2+2

1{j = j1,j = j2, (CoN B1) U (By N Dl)}>

00 00 Ji—1 o )
<3 Y E(2 X Yy, — i)+
J2=2j1=j2+3 Jj=j2+2

1{j = j1,j = j2, (CoN B1) U (By N Dl)})

00 S
< Z El (2 Z 2j_j2_2((uj+1,%j+1 _ij%j)—i_)Q

Jo=2 Jj=j2+2
~ . L ®(=2) 022
1{j = jo, (Co N B1) U (By N Dy)} x ®(—1.85)02+1— >+1(;)(2) )
() & & o o 2c2e? 4 oy, B(—2)I 272
< 9i—j2=1(9 . 3. 9i—j2=2 927l H(—1.85)U2+1=0")+
<> X (2-3 o Q2(-185) e 2)
J2=2j=j2+2
2.2 S
e 192 T g 1
— 9d2+1-j B(—1.85)02+1-7")+
- Q]; 1—a(-2) " X (~1.85) 1-80(—2)
2.2
ce 192 1 1
21—
<oy Uoaeciss) T2 Visse(y)
192 1 1
<48 1 f)?
S BQX 759 Taeiss) T Vitsey &)

< 23850.1p, (5 £)2Q.

Step (a) follows from the fact that the number of possible pairs of (i;,7;41)
such that (C() N Bl) U (B() N Dl), /"Lj+17%j+1 > Mj,ij’ J =17J2,7 > jo+ 2, and
A is at most 2 x 3 x 297(1212) » 9. Plugging the bounds of k1 + k2

" "
and k3 back to Inequalit (D.40) gives

2 ~ ~
E s A — 1 <
< Q X 277075 X pm(e; f)* + Q x 23850.1 X p(e; £)2

(D.41)
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Proor or LEMMA C.21.
(D.42) )
P(j<j*—2-K)

SPG<J —2-K,|i; -6 <4+ PG <5 —2- K, |i; - 5| 2 5)
< P(lij —ij| < 4,X; 16— X; 45 < 2csV/2e)+

P(lij —ij| 4,X; 6= X; 5 < 2¢V/2¢) + P(lij—1 — 5] 2 2)

-K

<y

=1

ok

.

2p(2 — (— )%pm(g;f) pz(s?f))+2@(_( mj-1 )gpm(f;f) pz(é?;f))

pz(&; f) \/5036 pz(g; f) \/§C85
mj1 8 pm(E; f)V/ p2(€; f) o Mi1 8 pm(E F)Vpz(E5 )
+2(1)(2(52/2(2;1“")) V2¢4e )+ 2% 3(pz(;;f)) V2ce )

3

2—-K
<2 Z (@(2 — 2%(1'*—1'—4)—%) + ®(—2 950" —i— 3)—*) + @(_Q%U*—j—?))—i-%)
j=1

+®(—3 x 2%(3’*—1—3)—%))
> 3(k—2)—1 3(k—1)=1 3kL—
25 (oD oo s

B(—3 x 2%0“*1)*%))

1 —exp (—44)

o2 —2: (K23

<2(9(2
2
~ 1 —exp(—40)

The last three equations use the fact that ®(—2v/2z) < 2v/2exp (—%Q)CI)(—:B),
for z > 0.
O

PrROOF OoF LEMMA C.22. For the ease of expression, we define g’j’i =
#mj(Yg(tjz) Ya(tji-1) ft” z)dzx). Then &;,; '~ N0,e22),i=1,2,-- 2.
Recall that

={Z(H) e [t(j_K%_1)+7z(j—K%—1)+_5’t(j_K%_1)+7%(}_K%_1)++4]}7
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we have
(D.43)
. €
P(G‘EC) _ P(fl S, s e < M(f)‘Ec)
M1 Ka
1 ) Ce€ c
< P(M(f)+ T iy SR T Sini < =)

E <E<ﬂ{miniL<i§iR gj‘-&-f(a,z’ + CesSiniL,% < 0}
1

Y, Y) n{EC})

<
E(ﬂ{Ec})
E($1{EY)
<——F=—.
E(]l{EC}> 4
O
Proor oF LEMMA C.23.
(D.44)
P(H|E°N F°)
A « Ce€ 3e
gP(f1+<I>_1(Z) mf - w\f > M(f)|E°N F°)
j+K% j+K%
Likg . o 1 1 .
<p(/ P ) et =} g,
t]+Ka7i§+I~<% ]+K% ]+K% 4 J+K%
(6% CeE
o () —= M(f)|E N F°)
4 \/m]+Ka \/mj+Ka
~ 1
SPEigy i . — 1P ( )e + pm(e; f) Ra —V3e > 0|E°N F°)
4’J+K% Ce 1

= 1 @ 1
S PEigye,, T2 (et pm(e )y 5pz(es f) = V3e > 01BN F)
% €
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Proor oF LEMMA C.24. Let ¢ = min{i : g op(x:) > f(xi)}, ip =
max{i : gn.on(i) > f(x:)}

We will first prove the lemma for the case pz(\/%; h) > 1/2n.

When {i : gnon(zi) > f(xi)} =0, the lemma holds naturally.

When 4; = i,, let ) = inf{x : gy on(x) > h(z)}, z, = sup{z : gnon(z) >
h(z)}, then we have

o 1 Pm(%;hﬁ
> [|h = gnonlls > = (2 — l'l)pm(\/j'h)Q > 6$

—_

o*
6n -3 6n’

1 2 1 2
gln(hagn,a,h) = 7ln(fa gn,a,h) .

Vv
o

When 4; < i,

2
~11
> lh = gnonll3 > D 55 -(h(wk) = gnon(wr)? >
k=i,

2
n ln h n,o 2
6n ( » On, ,h)

D~ O

ln(f7 gn,a,h>2-

Now we turn to the second case pz(\/%; h) <1/2n.

Since pz(\/%;h) < 1/2n, then |{i : gnon(zi) > f(zi)}] < 1. When [{i :
Gn,on(xi) > f(x;)}] = 0, the lemma holds naturally. When [{i : g5, 54 (z:) >
f(zi)} =1, we have

g

1 o
ln(f, 9n,0 2:ln h, gno 2<— mi;h2'2nz7;h <02‘
(f: o) (9,,h)_np(\/6—n) p(\/G—n ) <

O
Proor or LEMMA C.25.
(D.45)
E(1{j < j}1.5mJ~.)
<E(1{j < j}1.5m31{3 < j* - 3}) + E(1{3 < j}1.5m31{] > j* — 2}
- ~ - . g
< LSE(I{F < Jhms {3 < 3" = 3D + 15 % po( =i f)
(G*=3)N(J-1) 1 -
< . 3 =9 3 y - — < ¥ . L (—=:
<15 Y. E@{i=5ij>itmy+ 1{J<j" -3} L5 % po( i )

J=0

Also we have
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(D.46)
(G*=3)A(J-1)

> E(I{i=43>j}m3)

=0

(3*=3)A(J-1)

< ¥ mj(Em{j>j,19,;j+6,s—19,;j+5,5sVszsz—jUD

=0
+E(1{j > j, Yj,ij—fi,s - Yj,ij—5,s < 7:2v2v 2J_j‘7})>
(3*=3)A(J-1) NGy

< ) ij<ﬂ{5 > j,
S

m(avef(j, i, +6) —aver(s,1; + 5)) <
=0

((’3]‘,1]-+5,s - ij,ij+6,s)

+ 2}) + ijE(]l{j' >,

V2V27=in0
V27/-i (€1,-55— C1,-6,)
aver(j,i; —6) —aver(4,1;, —5)) < —— DI 42
T e, = 6) —avey (4, = 9) < IR 1 2))
G*=3)n(J-1) o_.
. pm( 5 f) 5 m
< m;E(T1{] > j}1P(2 — m? X 2
< X mEQUmaee - B )

(3" =3)A(J-1)

< Czopz(%; f)

Therefore,
- ot o 3 1 sk
(D.47) E(1{3 < j}1.5m3) < czlpz(%;f) + iﬁﬂ{J <j*-3}L
O
Proor oF LEMMA C.26.
E(1{3 > 3}|Z — Z(f)]) < B(1{3 > j}6m;)
(F*=3)AJ o .
<6 ps(—=; £)23" 712 _fmz*zgo VT
(D.48) 2 VAL ( o) woﬂ>
g g
1 >j5 =2 2\ 7= < cpz(—;
+61{J > j }p(\/ﬁf)_cw(\/ﬁf)
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Proor or LEMMA C.27.

E(1{j < 0o}1{j < jHZ — Z(h)])
< E(1{j < oo}1{j < j}1.5m;)
2‘]7] P (anﬁ) J=j
<3 15 2p(2 — v 2 g S
j=3 n pz(ﬁ’h) n ’}/50'\/5\/2‘]7_]
S 9J—j Lo (J—3)
- ZS2 52— i 23 \/51
— n () Jp (k) ™ oYs
J .
- 2J-J 9J—j
=Y (a2 (— ) L)
j=3 vn np=(75:h) np=(75:h) 2%s
J
g = g ~ _i=J ~
< 3p:(—=;h (—=;h)2 275
_;p%)np(ﬁ)z e,
o - o -
< p(—=;h 2\ 7= 21,
where C' = sup, o z®(2 — z).
ProOF OF LEMMA C.28.
(D.50)
E(1{j > j}|Z — Z(h)|) <E(1{] > j}6m;)
ijpnl(%;ﬁ)ﬁ 9J—j )
J . — J -
277 p=(F=5h) ™ 27-J np:(=;h)
<Y 6 6D (— )y <N 6 6D (— 0
JZ_; n ( V2ys0V20 0 ) JZ_; n ( 27s
o - o -

NG
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PrRoOOF OF LEMMA C.32.
(D.51)
i*-1
Y EQVI{j=4]>4}) < 2771{I<i -1+
j=1
min{j*—1,J}

> E(Tj(]l{yjiﬁﬁ,s ~ Y455 < 2V27,0V27 7}

j=1
+1{¥, — Vig, 5 < 2V200V2TT})1{3 > j})
min{3* 1.} mlmid) 9750

i pz(Ln;f) n ~ .
> MR- — e B > D)

IN

j=1
+271{J < j* -1}
min{j*—1,J}
< Z 973" . 9T (2 —
j=1

<3279 427 1{T <5 -1}

1
27s

230" =-3)) 4 oI 1{J < j* — 1}

ProoF oF LEMMA C.33.

1 ~ I CA VI
Y EQVI{3=4j<j}) < E(271{j =j})
j=1

(5*=3)A(J—1) el 5 97709

< > 27-60(—
< —
(D.52) P V2yov2!
(3" =3)A(J-1) .y |
277 6P (———2200"7973
2 -3 )

IN

j=1

o0
sk - 1 3/, sk
<2797 "6 270(-—2:U79) <27y,
j=1 ( 27 ) ’
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Proor or LEMMA C.34.

(D.53)
B(L{) < 50} L(CL. oY) < 12 252 B( 1] < so})
J 2] j
=12 252 T1Y " E(1{j = =
7j=3

=12 2Kap2tly

J=j

4 . . 271 J . . 2
> E{7=331{3 <jh=——+ > E1{i =}1{j > j})
j=3

Jj=3

We bound the two terms separately and we start with the first term.
(D 54)

- J 73
Z]E 14 = j}1{3 <> Z (1{5 = j}{3 SJ'}2n>

J 2]]
SZ (1{j =) — <

J .
~ = 2J—=j 9J—j 1
< X pe( i sl iRz (W 6 D(—(———)i—)
= vn npz(75:h) np=(7mih) 2
1 o

AN
o

- g
<6—7==C -2y sup pu

—;h)y[np.(—=;h),
1-4/1/2 hedn(s) VN Wre

where C' = sup,. o t®(—t).
For the second term, we have

(D 55)
ZE 1{j = j}1{3 >J})
7=3
_ ZJ: 2“2@(2 - pm(ﬁﬁ) 2/=i 7=
j=3 n Pz ﬁ,il) nov 2‘]7]'\/5730'

where ) = sup,.q t®(2 — t).
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- — ; ~ . 9 1 . . Ka/2+l 3
Let ¢1 o (61_ 1/22710%—4% Ql—\/ﬁ) 12-2 gives the statement
of Lemma C.34.

O

PrOOF OF LEMMA C.35. When 2 < i,, < n — 2, tp; — t1p > % implies
that i; < 14,, — 1 or iy > 4p,. When 1,,, <1, tp; — t1o > % implies that 7, > i,,.
When i, >n—1, tp; — t1p > % implies that i; < 4,, — 1. Therefore, we have

(D.56)
E(1{] = oo}l {tni — to > %}L(CIZ,Q(Y)))

12 . 2Ka/2+]. .
B2 2 (i < i — 1)1 = o0} L 2 2)

{0y > i) 1] = 00} 1{ip < n — 2})

12 - 2Ka/2tl .
— 71@(1{@ Cim— 1M1 = 00} 1{U < im — 1,im > 2}+
n

1{i; < iy — 1}1{j = 00} 1{U > iy, im > 2}
+ iy > i }1{j = 00} I{L > dpy + 1,0 <n — 2}

{0y > i 1] = 00} 1{L < i, i < 10— 2}).

Since {U < iy, — 1,4y > 2} U{L > iy, + 1,4, < n— 2} implies that j < J,
and {U < iy, — 1} N{L > iy, + 1} = 0, we have
(D.57)
IE(]l{z‘l i — 1 = 00} 1{U < iy — 1} + 1{iy > i} 1{J = 00} 1{L > in + 1})

J—1 J—1 o .1 . X
pm(Jmih) 27=i 27
SEM{j<J}) =) PG=j)<) P(-——70— ,
j; j=1 PZ(ﬁ’h) n V27 2y0
J—1 B
277 |
<) o(- = )
g ~ g ~ ~
<np.(—=;h (—=:h 2,0,

where C' = sup,- o t®(—t).
And for B(1{i; < iy — 1}1{j = 00} 1{U > i, i > 2} + 1{i, > iy }1{j =
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o0} {L < iy, i < n—2}), we have
IE(]l{il i — DYL{ = 00} 1{U > i, im > 2}
F1{iy > i} 14 = 00} L{L < iy i < 10— 2})
- ]E(IE(IL{z'l < i — VY0, Y)1{) = 00} L{U > i, im > 2}

FE(L{iy > i} Y1, Ys)1{] = 00} L{L < i, im < 1 — 2})

+ Zay)

< npz(\/ﬁ' npz(%;

where Q2 = sSup;~ot®(2a, — ).

>

W24 -2 Qg x 24 x 2Kar2,

Therefore,
~ 3
E(1{j = co}1{tn; — tio > E}L(CIZ,Q(Y)))
(L ) fpe
(D.59) = C2,a/’z(ﬁ, h) npz(\/ﬁ, h)
o o
< éa sup p(—=;h),[npz(—=;h)

O

PROOF OF LEMMA C.36. Note that when 0 < &j; — t;, < 2, one of
the following holds: 44 = n =U =4+ 1,4 = -1 =L -1 =4 —1,
L+1<iy=4+1<U-1,4y=L =1, 1. =U — 1 =14;. We denote event

H ={ii=n=U=i,+1}U{i, =-1=L-1=i— 1} U{L+1<ij=i,+1<U—1},
Hy={iy=L=i,}U{i,=U—1=4]}.

Therefore,
(D.60)
E(1{] = 0o}t — fiy < }L(CL.a(Y))
= B (14 = 00} L(CT (V) 1{H1}) + E (1{j = 00} L(CT. o(Y ) 1{HD}) .
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We start with the second term
(D.61)
E(1{j = 0o} L(CI. o (Y))1{H2})
< ]E(]l{j = 00} (thi — tio) (1{im < L — 1} + 1{iny > L}1{i; = L = i}

+ Uim > U+ 1} + Ui < UN{i, =U = 1=1r}))

pm(=ih) 9i=i =i pm(-%=:1h) 1
v _Pmm 1
Za@ % 0 n TJ—J‘W\/E)”@( RERNY \”Hal))
- - 3 1 . .

where C' = sup;.q t®(—t), Q2 = sup;q t®(2a, — t).
Now we turn to the first term and split based on {i; = i,,} and {i; # iy}
as follows

(D.62)
E(1{j = 00} L(CI. 4(Y))1{H1})
gE(]l{j’ = 00} (thi — tio) (i =n = U = i, + 1}
—Hl{z'r:—l:L—l:il—l}Jr]l{L—i—lgil:ir—i—lgU—l}))
E(]l{j’ = oo} (tni — tio) iy = im} (1{iy =n = U = i, + 1}

—Hl{ir:—l:L—l:iz—l}—I-]l{L—l-lSil:ir—FlSU—l}))

+ E(]l{j’ = 00} (thi — tio)1{is # im}(1{is =n = U =i, + 1}

+]l{iT:—1:L—1:iz—1}+]l{L+1Siz:ir—i-lSU—l})).

K2

We will bound k3 and k9 in Inequality (D.62) separately, we start with
k2. Note that the event Hy N {i; # i} is a subset of {i,, ¢ [L, U]} U {is, €
[L,U],i; # im, i =i, + 1}. This fact gives

(D.63)
ko =E(1{j = 0o} (tn; — tio) 1{H1 }1{i; # im})
<E(1{j = 0o} (thi — tio)1{im ¢ [L,U]})
+E(L{j = 00} (thi — tio) Wim € [L, U} 1{iz # im}L{is = ir + 1}).
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To bound the two expectations, note two facts. One is that i,, ¢ [L, U] implies
j < J. Another is that {j = 00, iy € [L, U], # im,4 = i, + 1} is a subset
of {j = 00,im € [L,U],i; > ipm + 1} U{j = 00,im € [L, U], i + 1 < i, — 1}
This two facts give that

(D.64)
Ky <2 (ZG(I) npz(jﬁ;ﬁ))g;w)Jr
m@(—‘; Z(;::i;)) — )1 = i € L, U]}))
< §6¢(‘(npzi%;h>>3$>*2‘”‘(%(1} v
<po(—=ih) npz<},ﬁ>-3-<12w+2f>

Now we turn to 1 in Inequality (D.62). We discuss the four settings:
im =0, 0 =n,2 <y <n—2, (in, — 1)y —n+1) =0.

Note that under the case (i, — 1)(iy —n 4+ 1) = 0, we have D.(n, f) > L.
Therefore, in this case
(D.65)
K1 = IE(]l{j’ = 00} (thi — tio) 1{is = im} (1{is =n = U =i, + 1}

—i—]l{z'T:—l:L—l:iz—l}—i—]l{L—i—lSiz=iT+1§U—1})>
2
n

Now we turn to the cases (iy, — 1)(i;, —n + 1) # 0. Note that under the
event Hy ={ijj=n=U=4+1}U{i,=—1=L—-1=4—-1}U{L+1<
it =14, +1 < U — 1}, we have t, < i;/n < tp;. Therefore, under the case
(i — 1) (i, —m + 1) # 0, we can split t; — £, into two non-negative parts:
thi —i;/n and i;/n — t,. This gives an alternative form of x1:

- IE(]l{j’ — o0} (tns — i1/n)1{i; = im}]l{Hl})
®1
+ IE(]l{j‘ = oo} (ir/n — tio) L{i; = z’m}IL{Hl}> .

@2

(D.66)
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Due to the symmetric nature of the procedure, the case (im—1)(im—n+1) #
0, and the event {i; = ip}N{ii=n=U=4+1}U{i,=-1=L—-1=
iw—1}U{L+1<4=1i+1<U-—1}, we only need to bound the first
term (1), and the second term (p2) shares the similar (symmetric) bound.

(D.67)
o1 = IE(]l{j’ = 0o} (ths — it/n)1{i) = im}(1{iy = n = U = i, + 1}
+]l{irz—1:L—1:il—1}+]l{L+1gil:iT—l—lgU—l}))
- ]E(]l{j’ = oo}t — ir/n)1{i; = i}

(n{ir:—1:L—1=z’l—1}+n{L+1gil:¢r+1gU—1})).

We further simplify ¢; by analyzing the event H3 = {j = 00,9 = iy, } N
{ir=—-1=L—-1=4—-1}U{L+1<4,=1i,+1<U—1}). Note that Hs,
under the case (i, — 1)(i,, —n + 1) # 0 can be alternatively written as

(D.68) Hzy={j=ootN{iy="ri+ 1,5 U —1,i; = i }N
{(im — V(i —n+1)#£0}N{iy=L =0, or iy > L+ 1}.

This event is non-empty only when i, < n — 2. This means when %,, = n,
1 = 0. Therefore, we only need to bound (1 under the case {i,, < n—2,4,, #
1}. Now we will simplify ¢5; — i;/n under event Hs under this case. From now
on, this case is taken as default. Note that when {L+1 <i; =i, +1 < U —1},
we have that ip; =4, + 1, i;, = 7; — 1. When {ir =—-1=L—-1=14— 1}, Thi
is not defined in the algorithm. We define i;; = 4; + 1 for the event Hg under
the case {im < n —2,i,, # 1}. Clearly, this definition is consistent with the
ones already defined in the algorithm. Now we introduce two quantities:

Yeim1 — Yei — V30 (231 — 234) + 26020,

M(Ye,it1 — Yei — V30(2341 — 234) + 2V6024,)
(D.70) q(i) = n(Ye,it1 — Yei — V30(23i11 — 234) + 2V6024,).

(D.69)  trawli) =

Under event Hs under the case {i,, < n—2,i,, # 1}, tp; can be expressed as

i/n = t,, q(ini) <0
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Note that under the event Hs3 under the case {i,, < n—2,i,, # 1}, we can
further simplify ¢5; — 9;/n using i,, = iy < n — 2 and ip; = i; + 1 as follows

(D.72) thi — il/n _ (traw(im + 1) + %)_;,_ A %, q(im +1)>0 |
l 0, q(im +1) <0

Note that (tyqw(im + 1), ¢(im + 1)) is independent with (Y, Ys, Ye 1). Plug-
ging in the simplified (¢5; — i;/n) in Equation (D.72) (under event H3 under
case {iy, < n—2,i, # 1}) to ¢; in Equation (D.67) and taking conditional
expectation with respect to (Y, Ys, Ye 1) give that

(D 73)
E((thi — i/n)1{H3})

(trmali 1)+ 1), A )L} {alin + 1) > 0})

E
(
E < ( traw(im + 1) + %)+ A %) L{H;} 1 {q(im + 1) > 0}‘YZ,YS,Y671>>

_E <((tmw(im +1)+ %)+ A %) 1{q(im + 1) > 0}) P(H;).

Now we introduce the shorthand for the error terms ¢; = ye; — f(x;) —
V3023;. Clearly, i N(0,1), and

— f(mﬁm) Qf(x1m+1)+f(mlm+2)+c7,m 2sz+1+sz+2+4fUZa2
n(f (@ip+2)— F (@im+1)+Cim+2—Cim+1+2V602ay)

3=

traw (Zm + 1) +

Therefore, when we, with a bit abuse of the notation, denote the event Ag
only in this proof to be the following event:

Ao = {Cz'm+2 > S @ir) g [@int1) V60 2a,,

(D.74) Gpr < T2 T Tiat) |

G > S (@i42) g S(@i+1) \/éazag}

, we have, on event A,

traw(im + 1) +

S|

n

F(@in42) = f(@int1) + Gtz — Cimt1 + 2V6020, > 2<f(xim+2)3_ [ins1))

\Y
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With a bit abuse of notation, denote event B only in this proof to be
(D.75)

B = {G,, = 2Gi 1+ Cima+ (i) = 2f (@i 11) + f (@i 12) +4V60 20, > 0.

Then on B® N Ag, traw(im + 1) + £ < 0; on BN Ag, traw(im + 1) + = > 0.
Further, we have

(D.76)

P(A(c)) < P(Cim+2 < _f($im+2) g f(xim—H) - \/60'2@2)
f (@i, +2) = f(@in41)
6
+ P(Gi,, < _S@in2) g f@in1) V6024,)
f(@i,+2) — f(@ip+1)
6160

o = o - .
< —h —; h)18V12Q)3,
—npz( n’ ) npz(\/ﬁ, ) QB
where Q3 = sup, - 2®(— — 24,).
Therefore, going back to Inequality (D.73) and spliting the entire proba-
bility space by Ag and B give

(D.77)

o1 < IE< <(tmw(im +1) + i) A i) 1{q(im +1) >0, —% < traw(im + 1)}>

+ P(Gipg1 > +V6024,)

= 3%(—

3
1 S|
P - Za2)
np,(-%=; h) 64/12

n?

— Zay) < 3P(— (

— IE( <(tmw(z'm +1)+ i) A 711) H{q(im + 1) > 0, _% < traw(im + 1)}
(H{Ao N B} + ]l{AO N BC} + 1{148}))

< E( <tmw(z‘m +1) + :l) 1{4o N B}) + %P(AS)

< E( (tmw(im +1)+ i) 1{Ao N B}> + m(%; h) nm(%; h)18v12Qs.
Further, convexity gives that
sup{Z(h) : h(zi) = f(z),0<i<n}—m = I @in) =S @ins1) 1

no n(f(@i,+2) = f(@i,+1)  n
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Therefore, we have

(D.78)
E <<tmw(im +1)+ ;) 1{4o N B}) =sup{Z(h) : h(x;) = f(x;),0 <71 <n}

(o R e )

Further, on event Ag, we have

(7 (i) = f i)
B i, Lip+1
trewlm ) = is) — Flaen)
Cin (f (@i 12) = f(Tip 1)) + Gipr1 (f (w4,,) — f(@i42))
n(f (@ipt2) = f(@it1) + Cimt2 = Cimt1 + 260 20,) (f (#i,,42) — f(Tip41))
Cimt2(f(@ip11) = f(@i,,)) + 2V6020, (f (@i,12) — f(i,,))
n(f(@ipt2) = F(@imt1) + Gimt2 — Gt + 2V60205) (f (Tin12) — F(@i41))

< (160 (@i 42) = F(@i20)) + Gt | (F@1,) = Fl,42))
i 2 (F @i 11) = F (1)) + 260205 (F(i052) = f(2,)) )

1
20 (F(tis2) — F(2i11))
3 Clm C’Lm+1 <Zm+2 1
< Véa%( ‘+2 ‘Jr ‘+4za2)f($im+2) = f(@in41)
Therefore,
(D.80)

E (<tmw(im 1) - f@in) = f(@in11) )) 1{40 N B})

n(f(@ip+2) = f(@ip+1)
<E <\/603( j%”g CZ’”H CZT”H ) + 42,12)
el

Cim
< \/607(4624 +4zqa,)

1

f(@ip,v2) — f(2ip,11)
1

f(@ipt2) — f(xim+1)>

+2

\ + 1{4y N B})

sz+1

49 sz+2 ) n 4Za2)

‘JF oo

1
(@i 12) — f(@ip,11)

M)V12(6Q4 + 624,),

V6o

—/02(\/> ) npz(\/»

where Q4 = [ \a:|\/% exp (—22/2)dx
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Going back to Equation (D.67), we have

(D.81) 1= pz(%; h) ”Pz(f h)V12(6Q4 + 624, + 18Q3)

+sup{Z(h) : h(z;) = f(z;),0 <i<n}— ?

Therefore, under the case (ipy, —n + 1)(im) # 0, ¢1 is bounded.
Similarly, for the 92 in Equation (D.66), we have

(D.82)
02 = E(]l{j’ = 00} (it/n — tio)1{is = i} (1{iy =n = U = i, + 1}

—i—]l{irz—l:L—l:il—l}—i—]l{L—i—lgil:ir—klgU—l}))

h) npz( h)V12(6Q4 + 624, + 18Q3)

sz(% NS
+%—inf{Z() h(z;) = f(x:),0 <i < n}.

Therefore, under the case (i, — 1+ 1) (i) # 0,

(D.83)

R1 = E<]l{j = oo}(thi - tlo)ﬂ{il = im}(]l{il =Nn= =1+ 1}
+]l{iT:—1:L—1:il—1}+]l{L+1gil:z’T—FlgU—l}))
(% h) npz(f 1)2v12(6Q4 + 620, + 18Q3)+

sup{Z(h) : h(z;) = f(a?i) 0<i<n}—inf{Z(h): h(x:)) = f(x:),0 <i < n}
= p: <% R, [nps(—= T 2VTB(6Qs + 620, +18G5) + D (n. f).

All the cases analyzed, and all the terms added up (Inequatliy (D.83),
Inequality (D.65), Inequality (D.64), Inequality (D.62), Inequality (D.61))
give the statement

E(Lj = 00} 1{tsi — tio < S} L(CToa(Y))
(D.84)

o o
<€3q SUD P2 h),/np, h)+29.(n, f).
s, S pe( i) g i) + 2950 )
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ProOOF oF LEMMA C.37.
(D.85)
P(Gzi"+K+1)=E(1{j > j"+ K+ 1}1{j" < oo})
<EQ{Vi*+1<j < +K,
min{Yj,ijfﬁ,s —Ys 56 Y546s Yj,ij+5,s} > 27,V/20\ 27-7114{j" < o0})
< O(—2)KE(1{j" < 00}) < ®(—2)K.
The second inequality is by taking conditional expectation on the localiza-
tion copy of the observation (i.e. Y;), and the fact that for the iteration steps

j such that j¥* + 1 < j < j¥ 4+ K the target interval is more than 6 blocks
away from the estimated one. O

Proor orF LEMMA C.38. Given the symmetric nature of our procedure,
we only need to prove

(D.56) E(1{E}1{j = oo} 1{Ff}) < au.

2713

Note that, when j = oo, E = {Z(f) € [(I3 — (6- 282" —2) —1)
1 (3 Koo+l 2/-3 1 1j—(62" /2" —2)—2
oy (354 (6- 2%zt —2)) 22 LIn[0, 1]} C {= <Z(f) <

n
o }

Let Lo = 15 — (6 2%e/2F1 —2) — 2, Uy = 15 + 6 - 2"e/2+! — 2. Hence we
know that when Lo > 1, L = Ly —1; when Uy <n—1, U = Uy + 1.

Let 4y, = min{k : f(x) = min{ f(z;) : 0 < i < n}}. Then we know that, on
E, Lo < iy < Uy. And also i,,, = n implies F, hence we only needs to consider
the case iy, < n —1 to compute Ff. And {i,,, <n—1}N{Ly < iy < Up}
implies that ¢, < U.

We also know that {ye;+v3023;:0 <i <n}, {yei—V3023,;:0<i < n},
{ysi :0<i <n}, {y;: 0 <i < n} are independent random variables.

Therefore,

i546-2%a/2t! 9

(D.87)

E(L{E}1{j = oo} 1{Ff}) < E(E(H{E}ﬂ{j = 60} L{im < U}

YS,Y1)> < ar.

O]

W Ye i, + V30234, — WYesims1 + V30234,,41) > 2V3024, }
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PRrOOF OF LEMMA C.39. The event EN{j = co}NFyNFyN{(i;—U) (i, —
L+ 1) =0} is the union of the following four events.

Gi=En{j=occ}NFBNFN{i{=UU#n},
Go=FEn{j=colnFiNnkHn{iy=UU=n},
Gi=En{j=occ}NHBiNFKN{i,=L—1,L =0},
Gi=En{j=occ}NEHNFKN{i,=L—1,L#0}.

(D.88)

Since {U # n}N{j = oo} means Uy <U —~1<n—2;and on EN{j =
oo} NF1NFy we have 4y < min{k : f(zr) = min{f(x;)}} and min{k : f(z) =
min{ f(z;)}} < Uy, we know that G1 = (. Similarly, we have G4 = (). Also, on
EN{j = o00}NFNF, we know that i; < i, + 1, hence we have Go N G3 = 0.

Also, on G, we know that f(z,) = min{f(x;)} and f(xg) > min{f(x;) :

0 <i<n} forall k <n—1, which implies that Z(f) > flm=tl=ftral

n—1
i

Suppose Ye1 = {Yei + V3023, : (L—1)V0<i< (U+1)An}, Yoo =
{Yei — V3023, : (L—1)VO0 < i < (U+ 1) An}. Then we know that
Y;,Ys,Ye 1,Ye 2 are independent.

If we denote ;1 = ye,i+\/§0237i — f(i), Kig = Ye,i— \/302371- — f(z;), then
we know that on G'2 when we further have ,, o > —\/gazQQ, Fn—12 < \/602a2,
Kp—22 > —V6024,, then t;, < Z(f). Further, t,; > Z(f) trivially holds on
Gs.

We have similar analysis for G3. Hence we know that

E(HZ(f) ¢ CLoa(Y)}H{EI{ = oo} L{FL N F}1{(it — U)(iy — L +1) = 0})
= E(H{Z(f) # CL.a(Y)}{Ga}) + E(H{Z(f) # CTa(Y)}1{G5})
= E(E(1{ti > Z(H}¥,, Y, Ye)1{C2} )

+ ]E(]E(]l{thi < Z(f)}lYl,Ys,Y;,1)11{Gl})

< 3aaP(G2) + 3a2 P(G3)
< 3o P(1{E}1{j = oo} L{Fy N 2} 1{(i; — U)(i, — L+ 1) = 0}).
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Proor oF LEMMA C.40.
E(1{Z(f) & CL..a(Y)}{E}{] = 0o} 1{F N F2}1{(is = U)(ir — L+1) # 0}
Lini — it < 2,0 < i1oyini < n})
<E(UZ(f) >t} L{EN{] = 0o} {F 0 Fa}1{(i - U)(iy — L+ 1) # 0}
Lini — o < 2,0 < i1, ini < n})
+E(H{Z(f) < to}L{ENL{j = oo} L{F N Fa}1{(i — U)(iy — L+ 1) # 0}
Lini — 1o < 2,0 < d1o,in; < n}).

The symmetric nature of the procedure means the bound for the first term
also applied to the second. We show that for the first term.

Suppose Ye1 = {yei + \/50'23,1‘ (L-1)Vv0<i<(U+1)An}, Yoo =
{Yei — V3023, : (L—1)VO0 < i < (U+ 1) An}. Then we know that
Y;,Ys,Ye 1,Ye 2 are independent.

On the event EN{j = cc}NFANFN{(i; —U)G, — L+ 1) # 0} N
{ini — 110 < 2,0 < dgo,ip; < n}, we know that |[{k : f(zr) = min{f(x;) :
0 <i <n}} =1, we denote this unique element to be i,,. Also, when this
event is not empty, we know that 2 < i, < n — 2. Hence we know that
Z(f) < T (@i =S @iy 1) 7T —|—im7j1. If we denote ki1 = Yei+V 3023 — f (),

Tipy+2)—f (Tip+1))
Ki2 = Yei — \/502371- — f(=x;), then we know that on event E N {j = co} N
FinF0{(ip = U)(ir — L+ 1) # 0} N {ing — it < 2,0 < i, ini < n}, if we
further have k;,, 122 > —\/602&2, Kip+1,2 < /602@2, Kip,2 = —\/602:&2, then
Z(f) < thi-

]E(]l{Z(f) >ty }I{E}{J = 0o} 1{Fy N B} 1{(i; — U)(iy — L+ 1) # 0}
Lini — it < 2,0 < i1, ini < n})
- ]E(]E(]l{Z(f) > i b ¥0, Yo, Yot ) I{EYL{j = 0o} I{F\ N Fy}1{(i; — U)(i, — L + 1) # 0}
T{ing — 1o < 2,0 < ity ins < n}1{ip + 1 = ip; — 1 = im})
< E(E(ﬂ{ni7n+272 < V6024, OF ki, 112 > V6024, OF Ky 2 < —Véazaz}\Yl,Ys,}@J)
H{EM{j = o} 1{F N F}1{(i; — U)(ir — L+ 1) # 0}
Lins — ito < 2,0 < 1oy ins < n}1{i + 1= ip — 1 = im})

< BagR(1{E}{j = oo} 1{F1 N P} 1{(i; — U) (i, — L+ 1) # 0}
Wini — 1o < 2,0 < ity in; < n}l{ifo + 1 =ip; — 1 =im}).
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Therefore,
(D.89)

E(1{Z(f) & CL.a(V) B} = 00} 1{F N F2}1{(is — U)(iy — L+ 1) # 0}
Wini — 1o < 2,0 <iigo,ip; < n})
< 6a2E(11{E}]l{j' = oo} 1{F, N B} 1{(i; — U)(iy — L+ 1) # 0}

i — 1o < 2,0 < ity ing < n}1{igp +1=ip — 1= im}>.

O
Proor orF LEMMA C.41.
(D.90)
1y - 1
E((ej,i_;,eﬁ) 1{j <oo}) = (ZTU 721{j < oo})
iT+2
_O.,Y2J—JZE2J+J]I{.7_]} ZEQJ-HI{]_]}))
j=1 Jj=3j*+3
13 o — =
oo L 1o om (G5 f)v2I =32
< 02q290" - (4+ 3 o Hg(op VR )
7=3"+3 71 V2
13 T £)/2J—-3* =3
B(—2+ 32pYrL(\/ﬁaf) )(jfj*73)+)
o7sV2
> . 13[ 13[ -
< o222 7 (4 + 27 HP(—2 + d(—2+ (=37 =3)+
e ( j:;_% ( 7516\f ) ( 7532\f )
. 8B(—2 + 133 25"
< o222 I (4 + ”i;(f —)
1—20(-2+ 532f2 ?)
(I)( 2+ 13\[ 273 2 )
o o 8 ~7:161/2
< 2npp(—=; 1)’ p(—= e ——— (4 + 8 )
NG vn p=(: f) 1—29(-2+ 12893

= lepm(%§ f)2
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ProOOF OF LEMMA C.42.
(D.91)
E((£ — M(£))*1{j < o0})
=E((F - M(£)*(1F > j} + 15 < JH1{j < oo}

it )

=Y E@E-MOPHI>i=hh+ Y E(E-M())HI>j=i})
j1=2 J1=3"+2
+E(((2 — aves(G,3)+ + (aves(G.3;) = M(M)*1{3 <J = 111{j < oc})
iT+1 oo

<D E@E-MNOPHI>i=ah+ Y E(E- M) >=5))
j1=2 J1=3*+2

+2B(((2 — aves(7,33)) )13 < }1{J < o0} )+
28 ((ave (7, 35) - M(1))*143 < J}1{j < oo}).

We have following four lemmas to bound each term respectively.

LEMMA D.1.
i*+1 -
(D.92) D E(E = MNP > ] = ji}) < cmspml = )P
Jj1=2
LEMMA D.2.
(D.93) S OE(E-M() > =5 < cmwm(%; )2.
J1=3*+2
LEMMA D.3.
(D.94)  E(((£ — aves(7,15))4)?1{j < j}1{j < 00}) < cms)pm%; 2.
LEMMA D.A4.
(D.95)  E((aves(j, 1;) — M(£)*L{j < j}1{j < 00}) s%ﬁpm%; 2.

With these four lemmas, we know that
(D.96)

E(( — M(£))*1{] < 00}) < (cm3 + cma + 2¢m5 + 2¢m6)pm( G5 )? = Cmzom (G f)?.

Now we prove these four lemmas. We assume j < oo consistently in the
remaining of the proof of Lemma C.42 to avoid repeatedly writing 1{j < oco}.
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Proof of Lemma D.1. Similarly to the white noise model, we have

Jr+1

ZE 1{3 > j=j1})

J1=2
jr+1

<ZE( aves (i1, 35, +2) ~ M) L{Y, 5, 500~ Vi, 50 < 2V0V2T 1)

J1=2

+ (a‘vef(.jlv ijl - 2) - ]\/j(f))z]l{y}l,ijl +6,5 Y}l,i_jl +5,s < 2\/5750 v 2J_j1}) ]1{5 > ]1}>
"+l

: aves(j1,i +2) — M 2%(‘77]'1)
- J; ((aves (1 55 +2) = M()*®(2 - e & ;50)’73\/§(f))
1,1, —2) — 3(J=3) R
(a0, 35 ~2) = M) o - LA e ),

Calculation shows that this is further bounded by

*+1

9
22 2177 (3.5v207,)2V < 4 x 27152 252y
Jj1=2

g g
< 32 x 49 x 2732me(ﬁ; 2= cmgpm(%;f)?

V in the inequalities are the same as the V in the white noise model:

V = max2?®(2 — x).
>0

PrRoOOF OorF LEMMA D.2.

30 B(E- MG > =0

< >0 B (veslin B +2) = MU, 1, 00— Vi 150 < 220V BT}

J1=3*+2

]l{VJ +1<j<in—-1 Inll’l{ J,ij4+6,8 T ij,ier,va},ijfﬁ s ji -5, 9} > 2\[750— \ 2J7j1}

+ (avef(]h ij, — 2) ( )) 1{ J1,14, 46,8 T le,lJ +5,5 = 2\f’)/90 V27 ]l}

WVi*+1<j<ji—1min{Yjs 65— Yjz,459 ¥ji,—6s — Yji,—5.sf > 2V2y,0V27 i1}
)16 > i)
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o0
< ) E
+2

+ (aves(j1,1j, —2) — M(f))QCI’(Q - (aves G, i 3.507sv2

Calculation shows that it can be further bounded by

T. T. CAI, R. CHEN, AND Y. ZHU
- 20500 (aves(i1, 1 +2) = M(f))2:0~)
1,1, +2) - M P2 — ’
((aves (0.3, +2) = (1) a( X )
93(J-3"~2)

pm(-Z: f 93(J=3"=1) pm( -2 f o
(-2 + aif) )B(—2 + W) )r=3" =2+
O’\/§’ys 0'2\/578
—2) = M)

1 L% 1 s
pm( s )220 pm(Ge; 22D
B(—2 4 —Vn )B(—2 4 —— V" Yr=3 =)+

U\@’ys 02\/578

JEQ( > j1}>>.

> 2-2077(35v207,)°V - (-2 + f)cb(—z i)w‘l—j*—?)+
(D.97)  Sr=3+2 s 82,
1 1 o
S Cm4pm(7; f)2
) vn

149
SR I R LV YO BT B —
= 57 V2 DT e

Proor orF LEMMA D.3.
E(((f — aves(j,15))4)?1{j < j < o0})

J J
(( = aves (. 55,)) 12143 = 211 = ja}) <

DI

J2=1j1=j2
J J
>3 E(15 = 2} ((aves(Gr, B, +2) = aves (1, 35,))4)
J2=1j1=j2
leﬁjl +5,5 < 2v2y,0v 27791}

]]‘{Y}1,ij1+673 -
H{Vi*+2<j<ji—LY5, oo~ Yiz, 55 > 2V2y,0V2 7,

Yit,i6s — Yji, 45,5 > V2,0V 273 if exists})

(D.98)

K1

J J

>3 E(1{5 = o} ((aves (G, B — 2) = aves (G, 35,))+)

J2=1j1=jJ2
]l{yjuijl—e,s - leﬁjl —5,s < 2\/5750 v 2J_j1} .
Y5,-5.s > 2V27,0V2777,

HVi*+2<j<ji—

+
1, ij,:T.J_(;,s -

Vi 15s > W 2y,0V27 -3 if exists})

Y}a1j+675 -

K2
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k1 and kg in Inequality (D.98) are symmetric, we only need to bound x4
and ko shares the same bound. k1 is upper bounded by

1< Z Z ( avey(j1,1j, +2) — avey(ji, ij,))?1{aves(j1, 1, + 2) — aves(ji1, 1;,) > 0}
J2=1j1=j2

(avey (51,35, +2)— avef(h,i;,'l))m me(i;f)‘ fol-57=2
(2 — 2 )B(—2 + 16 NG )(]1—3»«_2)+1{j = j2}>
\[’Ys ‘7"}/3\/§

< Z Z E(l{avef(h,lal +2) > aves(j1,1;) 12 20 VI{G = o}

Je=171=7J2

NIV, ST

64v/2,
J
. . 1
< DB = phniet Vet (1 TR
= 1—2®(—2+ 64\/5%)
Therefore,

T .2
\/ﬁ,f)-

(D.99) E((( — aves (7, 17))+)°1{F < j < 00}) < cmspm(
O

PROOF OF LEMMA D.4. Although we take j < oo by default, it is not
a key condition in this proof. We only need it to establish that j < .J and

i<
E((aves(j,1;) — M(f))*1{j < j})
(D.100) = 2E<<(avef(5v ij) —aves(3, ij))+>2ﬂ{5 < 5}>

+ 2E<<(avef(5, i5) - M(f))+>2ﬂ{j < 5})

Now we introduce two lemmas that we will prove later.

LEMMA D.5.
(D.101) E(((avef(j, ij) — cwef(j7 15))+>21{j < j}) < Cm7pm(%§ f)2.
LEMMA D.6.
-~ . 2 o
(D.102) E((((wef(J is) — M(f))+) 1{j < ]}> < CmSpm(%;f)Q.
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With these two lemmas, we have

E((avey(3,1;) = M(£)*1{3 < j}) < 2(emr + cms)pm( 3 ) = cmopm (3 )%

O]

PrOOF OF LEMMA D.5 . Similar to the white noise model, we will first
define the following events to describe the relative location of one iteration
further compared to the current one at stage j + r:

Ay —{w 1 r < 1J+7~7 J+'I‘+1 - 213+r+1 2}
U{w is >13+r’ S = 215441 + 1}

B, ={w: 13, < 13+r’ j+r+1 =21;,,4 -1}

U{w 1 , > it =21

J+r’ J+T+1 J+7‘+1}

(D.103) o
Cr ={w: 1 . < 13+r’ J+T+1 = 213+T+1}}
U {W 1 r > 1J+rv jHr+l = = 2i; j+r+1 -1}
—{w 1 < 1_]+T’ JHr+1 — 215+T+1 + 1}}
U {w i34, > 15 =21

J+r7 J+T+1 J+7‘+1 2}'

Basically, from A, to D, the average of the signal of the chosen interval
are from the highest to the lowest.
Then we have

E<((cwef(j, ij) — aves(3, ij))+>2]l{j < j})

:E(((avef(j',i ) — aves( 3,1 ) 1{j+1 Sj})

(D.104) SE(((avef(j,i ) — avey( j, 1 J ) 1{j+1 Sj}(]l{éomlel}

+ 1{AyU(BoN DY) U (BonDyn{j=3+1}}

FA{(Bon D) U(Gon BYIG > 5+ 3})).

We will bound the three terms separately. To simply the presentation for
deriving bounds of these three terms, denote 6 = 1{j; = jo + 1}, oo = 1{j =
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j2}. For the second term, we have
(D.105)

E(((avef(i ) — aves(3.15)), ) 1G+1 <3 (0{AgU(Bon D) U (Bon Dy =3 + 1})}))

00 00 a-to 2
< Z Z ]E(2 Z 9i—j2 ((avef(j +1,341) — aves (g, iJ))+)
Jj2=1j1=j2+1 J=j2
1= 1.3 = 2H1 (AU (Bon D) + 1Bon Dii(i =2+ 1))
) oo Ji—1

;. — g ~ . ~ . . > . 2
<Y S S IR0 = i1 = dadaves (4 1. Ep) - aves (1)
J2=1j1=j2+1 j=j2
avep(j +1,3j41) > aver(j, 1)} (1{Ag U (Bo N D)} + 1{Bo N Di}1{j = jo, j1 = j + 1}))

< Z Z 2j+1*j2]E<(avef(j +1,141) — aver(y, i]-))211{avef(j +1,141) > aver(4,15)}
J2=17j=j2

0o 13 o . \/oJ—ij*—2
~ . . *pm( 7f) 2 J
1i=jo} Y @20 Dre(-24+ Lt

)(j2—j*—5)+
J1=j+1 "/50\6

(1{AgU (BoN D)} + 1{Bo N D1 }1{j = jo, j1 = j + 1}))

[e o] o0
< Z Z 2j+17j2E((avef(j +1,341) — avey(y, ij))2]l{avef(j +1,141) > aver(5,1;)}
J2=1j=j2

ot .5 7 . . 1 . . @(_Q)j—jz—l
1{3 = j2, Ao U Bo} (1{j = ja}(1 + m) +1{j = j2 + ﬁm
13 o . J—j*—2
_ lﬁpm(ﬁvf)W (j2—3*—60)+
D(—2+ )
750\/5
0o oo o ‘ ‘ 1 X 3 d(—2 Jj—j2—1
< 3SR (1 = o} (1 + = <I>(—2)) +1{j =24+ 1}%(_2)
J2=1j=j2
Lo 13VB g
B(—2+ )
64+/27,

E((avef(j +1,341) — avey(y, ij))2]l{avef(j +1,1j41) > avey(§,1;)}1{j = jo2, Ag U Bo}>

Denote C(j, k) as the set of pairs (i1,42) such that P(1pyq = i2, 1 = i1|] =
4) > 0 and aves(j + 1,i2) > avey(j, i1). Clearly, |C(j, k)| < min{10 -2~ .
2,3 4k+1=0y,
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Then we have

E((avef( +1,141) — avey(y, 1J))2]L{avef(j +1,1j41) > avep(§,1)}1{j = jo2, Ag U Bo})
S Z E((aﬂef(j-f-Liz)—a’l}(if(j,il))Q]L{j :jQ,AOUBO}]L{in :7:2,3:]' :Zl}>
(i1,i2)€C(j2,5)

< ¥ ]E((auef(j+17i2)—avef(j,il))ﬁ{ijﬂ:iz,ij:il})
(i1,i2)€C(j2,5)

i 1.40) — - 9J—j—1

SN (vl L) ey UL e VI

(i1,i2) €C(j2.7) nov2
< Y PH20%7Q

(i1,i2) €C(j2.7)
< min{lO L9i=2 . 2,3- 4]'+17]‘2}2j+17‘1 . 202%2@.
Still, Q = sup,~o 2?®(—2).

Continue with Inequality (D.105), we have
(D.106)
E((avef(j', i) - avey(3, ij))JrIL{j +1<5}1{AqU BO}>

9J+1=72 ]1 1 1 ( 2)j et

< = j > il S

J2=137=j2

(-2 + 13V3 )(.7'2*j**50)+ min{10-2/772 .2, 3. 4/+1=52}941=7 . 952,20

64\/5'75
> 1 4 80
= J; (240+ = 52 T T ey 1o 8(1)(—2))

13 . .
(-2 + V3 )Jz hj _1)+2J2+2_J02’712Q

64v/27,
< 2" 75242Q Z (24(1+ ! )+ Wity )
= K = 1-o(—2) " 1-80(-2)

B(—2 + 13v3 )]2 " =D+ 9s2—3"+2

64[’73
80277Q o 2 2~ g 2
S — % i Cme < pm(—=:f)" - 167 QCmg = cmgpm(—=; f
npz(ﬁ,f) 9 (\/’FL ) l 9 9 (\/’Tl )
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Now let us turn to the third term.

E<(avef(j', i) - ave(3, ij))JrIl{j +3<j}1{(BonDy)U(CoN Bl)})

Jji—1

< Z Z Z <2j—j2—2((avef(j +1,1j41) — aveys(g, ij))+>2

Je=1j1=j2+3 j=jo+2
1{j = j1.j = j2}1{(Bo N D1) U (Co Bn})
e’} e’} o 00 2
R R (GO
jo=1 j=jo+2 J1=7+1 (i1,i2)€C(j2,5)
1{j = j1}1{3 = jo} 1{i; 11 = io, 3 = i1, }1{(Bo N D1) U (Co N Bl)}>
< Z Z 9J—j2—1 Z Z <(avef Jj+1,d2) —ave’f(],il))
Jo=1 j=ja+2 (i1,12)€C(j2,5) 1=7+1
1{j = j2} 1{Ij41 = iz, 1 = i1} 1{(Bo N D1) U (Co N Bl)}>
B (VT2
’Yso'\/é

o o
<Y Y 27 min{20- 2772, 3. 47T 6220
Jo=1j=j2+2

@(_Q)jl—j2—3<1>(_2 )(j2—j*)+

o
w@(_g_,_ 13v3 )(jrj*)+
1—-o(-2) 64+v/27,
" Sl 13V3 . o
=232 N " 927 (-2 + 27304 G,10 < emiopm(——; f)%.
> ( 64[78) 10 < Cm1op (\/ﬁ f)

Jo=1
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Finally, let us look at the first term.

E<(avef(j', 1) —aves(3,13)) [ L{T+1 < JY{Con fll}>

< Z Z 9J—J2 Z Z E((avef(j+1,i2)—avef(j,i1)>2

jo=1j=ja2+1 J1=7+1 (i1,i2)€C(j2,5)

15 =316 = 2 =iy = )1 A

(o) o0
< Z Z 9J—J2 min{QO . 2]'-]'2’ 3. 4j+1_j2}2j+2_°702’)/12@

Jo=1j=ja2+1
_9\j—Jj2—2
&@(_2_’_ 13v3 )(d2=3"
1-9(-2) 64/2,

e 1ol o
< 2] J020m11 < lelpm<ﬁ§ f)2

Therefore,

E<<(avef(j', i) - ave(3, 15))+>21{5 < j})

(D.107) . U
< (Cm9 + Cmio + lel)pm(%; f)2 - Cm7pm(%; f)2

PrRoOOF OF LEMMA D.6. First, we introduce the following set:

[H(j) = {if —4,if — 3,

T —4,1] 17— 2,15 +2,1i7 +3,1] + 4},

which denotes the possible values of i; if j = j.
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Mk

J -
S Z Z E((Cwef Jo, i M(f)) 1{j = jo,1j, =i}

1€lH (j2) J1=J

(E(ﬂ{J =juY)1{ii <3+ 2} + 1{j1 > j +3}[

-l max 7 6 27
I B(-2) 82 (g + o <vﬁJ)st>ﬂ)>

< Z > ((avef(j2,i)—M(f)> 1{j = jo,1j, = i}

Jje=lie€lH(j2)

(24 8y
(11{j2§j*+2}+1{j22j*+3} 2 7 )
1_®( 2—'—164\/5'75)
d ‘ T e
<> (H{ngj*+2}+1{J22J*+3} —a(-2+10) )
Je=14ielH(j2)
o 2 (aves(ja, i) — avey(ja, 17, +sign(i — i%))) V272
(e ) — M) (- o VI,
J
1 , O(—2 + )(]2 iT=2)+
< 23-)2~2 52272~ < 2" 2526
_Z( 8)%0 Q 1_ ®(2+6) 07 Cmg8

Jo=1

< CmBPm(%; f)2

Proor orF LEmMMA C.43.
E((fi — M(£))*1{j = oo})
= (min{f(z;) : 0 < i < n} — M(f))?
(D.108) +E((fi — M(f))*1{j = oo} 1{|i; — 1}| > 2})
< (min{f(z;) : 0 < <n} — M(f))?
+E((f1, — M(f))*1{j = oo} 1{|1; — i}| > 2})
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In the proof of Lemma D.4, all the argument using properties of j only
uses that T; > 20, for j < 7, so for the second term, all the argument can
also go through here in the case j = co. So we have
=)+ (min{f () :0 < i < n} = M(f))*

E((fi — M(f))?*1{j = 00}) < Cmepml NG

O]

Proor or LEMMA C.44.
o*E(1{j = oc})
<o®H{J < 35+ 1} + 0’ E(1{j = o)) 1{J > " + 2}
16
2

<0 ———
npz(%; f)

1 5k
1{J < 3"+ 1} + o2®(—2 + 6)J‘J -t

1
1 1 _ix
%; PUI < 5"+ 1+ 0% 5 (29(-2+ ) 7 T{T 257+ 2)

9J—j*—1
g

\/ﬁ?
< 32pm<%;f>2

< 32pm(

1
< 82pm( = [P LT < 37+ 1) 4 82pn( = /)7 - 20(=24 1T 237 +2}

9

O

PRrROOF OF LEMMA C.45. Similar to the proof of Lemma C.42, we bound
the expectation by the sum of three terms and further bound those terms
separately.

J
(D.109) E((F — M(f))*1{j < oo}) < Y E((F — M(f))*1{3 > j = i1})
J1=2

2 ~ e 2 ~ ~ ~
+ 2B ( (& - aves (7,37))+)"1{3 < j}1{j < oo}
M 2 ~ ~ -
+ 28 (ave (7, 1) - M(£))*1{5 < j}1{j < oo}).
Similar to the arguments in the proof of Lemma D.1, we have

J J
STE(E-MF)* U >i=mnp) <D 2277 (3.5V207,)°V

J1=2 Jj1=2

49
<4. ?’YSZVUZ = ém4a2,

where V = max,~o 2?®(2 — z).
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Similar to the arguments in the proof of Lemma D.3, we have

- PR O L 13V3 (1 _j)
2]E(((f—avef(],1j))+) 1} gj}u{j@o}) g2j§j§2¢(—z+m) -3 -2)

" (l{avef(.jlv ih + 2) > av€f(j1, ijl)}23+j17J7302V]l{5 = .]2}

+ avey (j1, 15, — 2) > aves (i1, 1;,) 2% 720V 1{] = j2}>

J
<43 E(L{] = 2})12V2%0% < 492V 2%0% = s,
j2=1

where V = max,~o 22®(2 — z).
For the third term, we have

28 ((ave (7, 1) = M(£)*1{5 < j}1{j < oo})

< 4E<<(avef(j', i) - ave(3, ij))Jr)QIl{j <j< oo})

+4E(((cwef<57 I5) - M(0),) 1< < oo}).

Now we have the following lemmas which we will prove later:

LEMMA D.7.

(D.110) E(((avef(j',ij) — aveg(3, ii))+)2ﬂ{j’ <j< oo}) < 0.
LEmMMA D.8.

(D.111) E(((avef(j, i) - M(f))+>2]1{j‘ <j< oo}> < ¢ o,
Now we can conclude that

(D.112) E((£ — M(£))?1{] < 00}) < (Gma + Cms + 4Cme + 4¢mr7)0? = 2507

O]

PROOF OF LEMMA D.7. j < j < oo implies j < J. Most of the argu-
ments of Lemma D.5 are applicable here. Note that the difference between
this lemma and Lemma D.5 is that we have additional assumption j*—3 > J
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in this lemma. Also note that the place j appears in Lemma D.5 are for
invoking the followings: T; > 20; for j < j and j < 7 < oo. These also hold

in this lemma. Therefore, using the arguments in the proof of Lemma D.5
and taking the notation there, we have

E(((avef(j',ij)—avef(j,ij))Jr)Q]l{ﬁ < j}) < E(((avef(j,ij)—avef(iaij))+)2
1{5+1 < 7}1{A U (Bon DU (BonDin{j=3+1})}

+1{(BonD)U(ConB)}{j>F+3}+1{CoN Al})>,

E(((avef(jv 1;) — ave (3, ig))+)21{5‘ +1<3{AgU(BonD)U(BonDin{j =3+ 1})})

J J Ji—1 2
<> ¥ ]E<2 > 21*-72((av6f(j +1,1j41) — avey (4, ij))+) )

Je=1j1=j2+1 j=J2
J
1 4 80 13v3 . . ,
< (24 1+ + )<I> -2+ (23" =D+ 952 +2=7 52,2
S (141 q>(—2)) 1—3(—2)1— 80(—-2) ( 64\/5%) e

1 4 80

3. 2.2 _ 5 2
1—<I>(—2)) + 1—‘1’(—2)1—8<I>(—2))2 0% Q = Cmso”,

(
“ - . 2 . . - - - ~
B (((averG.3;) - oves3,35)).) 13 +3 < DLUEN DY U G B}

J-3 Ji—1

< Z > E<2j 2= 2<(a”ef(9+1 1j41) — aves (5, 1)) )2

Je=1j1=j2+3 j=j2+2

1{j = j1.3 = j2} 1{(Bo N D1) U (Co N Bl)}>

13v/3 ) .
< 27742 Z 2]2@ 64\[%) (Jo—3j )+Cm10 < Emoa?,

Jj2=1
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and

<< avey(j, 1 5 ) — aves(3, 1= ))+)2ﬂ{5+1 Sj}ﬂ{é(ﬁh‘il})

Z Jz:l 9J—J2 Z Z E((avef(j+1,i2)—avef(j,i1))2

2=t 3=zt G1=5+1 (in,i2) €C(j2.5)
]l{j :]1}]].{5 :j2}ﬂ{ij+1 = j2,ij — 7/1}]]-{(6’0 N A~1)}>
J-2 J-1 o
< Z Z 9J—J2 min{20 - 2]'*]’27 3. 4j+1sz}2j+2fJ02%2Q
Jj2=1j=j2+1
P(—2)/ 92 13vV3 . .
A p(—2+ (2= < & 0ol
1—®(-2) ( 64\/5%) = om0
Therefore,
2
E (cwe 7,1:) —aves(3, iz )]17§*>
(D.113) ( (aves (. 33) 1G15)) ;) 15 <4}

< (Ems + Emg + Em10)0
]

PrROOF OF LEMMA D.8. The arguments in the proof of Lemma D.6 hold,
and we only need to change the last two inequalities to get the statement of
this lemma.

Specifically,

E((avef@ £ - M) 15 <7 < ) )

(D.114) d(—-2+ %)(jQ*J'**Q)-s-

< Emno.
1—d(—2+3) -

J
Z 27 2529727 ()
0

PROOF OF LEMMA C.46. Similar to the arguments in Lemma C.43, we
have

E((fi — M(f))*1{j = oo})
= (min{f(z;) : 0 < i <n} — M(f))
(D.115) +E((fi = M(£))?1{j = oo} 1{|i, — i}| > 2})
< (min{f(x;) : 0 < <n} — M(f))*
+E((f;, — M(f)*1{j = oo} 1{|1s — i}| = 2}).
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In addition, note that in the proof of Lemma D.4, and Lemma D.7, Lemma
D.8, all the argument using properties of j only uses that T; > 20 for j < 7
and j < j < co. All these holds with j replaced by J for the second term.
Hence all the arguments go through here and we have

E((f;, — M(f)*1{j = co}1{|1s — i} > 2})
< 2B (((aves (1)) — aves(3,3))4)"1(3 < 7 < j}) + 2B ((aves (3, 35) - M(1)*145 < J})

S Q(ém(i + érrL7)02~

Therefore,
(D.116)
E((fi = M(£))*1{j = oo}) < (min{f(z;) : 0 < i < n} — M(f))* +2(éme + émr)o™.

Let ¢n3 = \/2(¢me + Cm7) gives the statement of the lemma.
O
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