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This is the supplement to the paper “Estimation and Inference for
Minimizer and Minimum of Convex Functions: Optimality, Adaptivity,
and Uncertainty Principles”. It is organized into four sections. Section
A presents the simulation results. Section B offers a comparison be-
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nections with the classical minimax framework. Section C provides
the proofs of the main results, and Section D contains the proofs of
supporting technical lemmas.
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APPENDIX A: SIMULATION RESULTS

Our proposed algorithms for non-parametric regression are easy to im-
plement and computationally fast. We implement the algorithms in R and
the code is available at https://github.com/chenrancece/MMCF. This sec-
tion presents the numerical results for our algorithms. The data splitting
procedure in our proposed algorithm was introduced in the main paper to
create independence, which is purely for technical reasons. In simulation,
we also include a variant of our method without the data splitting step.
That is, the original data set is used in the localization, stopping, and esti-
mation/inference steps. Simulation studies are carried out to examine the
numerical performance of the proposed algorithms, including the non-split
variant. Comparisons are made with CLSCIα in (B.2) proposed by Deng
et al. (2020) and the CLS estimator for the minimizer.

The simulation studies use 7 test functions with different levels of smooth-
ness around the minimizer, 6 sample sizes ranging from 100 to 50,000, 5
confidence levels for the confidence intervals, and 100 replications. We com-
pared the proposed methods, their non-split variant, and the CLS methods
in terms of computational time, average absolute error (for the estimators),
and coverage probability and length (for the confidence intervals). We also
investigated the relationship with the benchmarks when the benchmarks can
be calculated explicitly. The results can be summarized as follows.

• Computational cost: Our methods are significantly faster than CLS

https://github.com/chenrancece/MMCF
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methods.1 For small sample sizes, all methods are relatively fast. For
n ≥ 5000, our procedures are at least 10 times faster than the CLS
methods for all functions. In many cases, they are more than 100 times
faster. This gap is further increased as the sample size grows.

• Confidence interval for the minimizer: Our methods achieve the
nominal coverage consistently and the empirical lengths are propor-
tional to the benchmark. In comparison, the coverage probability of
CLSCIα can be far below the nominal level for a variety of functions,
including functions that are not differentiable at the minimizer or
have vanishing second order derivative around the minimizer. For a
piecewise linear function such as 100 · |2x− 1|, CLSCIα is long and its
length remains roughly constant as the sample size increases, while the
benchmark goes to zero. 2

• Estimation of the minimizer: The numerical performances of our
methods and the CLS estimator are comparable. Interestingly, in the
cases where the benchmarks can be calculated explicitly, the perfor-
mance of the CLS estimator relative to the benchmarks (and our meth-
ods) deteriorates with increasing smoothness of the function around
the minimizer, while the performance of our estimator remains steady
relative to the benchmarks.

• Estimation and CI for the minimum: For estimation and inference
for the minimum, we are unaware of CLS based procedures that have
theoretical guarantees, so we only examined the performance of our
methods. The empirical absolute error for estimator and the lengths
of the confidence intervals for the minimum exhibit linear relationship
with the corresponding benchmarks (when calculable). The nominal
coverages of the confidence intervals are achieved in all the settings.

A.1. Experiment Design. To generate the data, we set noise level
σ = 1. We use test functions with different smoothness, minimizer location,
and symmetry. We tested on sample sizes 100, 500, 1000, 5000, 10000, and
50000. For inference, we take 5 confidence levels, namely 0.8, 0.9, 0.95, 0.98,
and 0.99, which correspond to α = 0.2, 0.1, 0.05, 0.02, 0.01. For each test
function and each sample size, we performed 100 replicates and calculated
averages accordingly

In experiments evaluating our methods’ behavior compared with theoretical

1This is also supported by complexity analysis. Time complexity of our algorithms is
O(n). Time complexity for CLS itself scales as O(n3) for generic quadratic programming
solvers or O(n2) per iteration for first-order methods, according to Simonetto (2021).

2The behavior of the CLS based confidence interval is not surprising due to its asymptotic
nature of coverage and high dependency on the second-order derivative.
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results, we include functions with calculable benchmarks, along with sample
sizes facilitating the examination of the relationship, which we will discuss in
detail in Section A.3. Now we focus on the general functions and comparison.

We implement and compare three methods, as summarized in Table 1.

Method
Estimation Inference

Minimizer Minimum Minimizer Minimum

Proposed (split) ! ! ! !

Variant (non-split & stop) ! ! ! !

CLS based ! !

Table 1
List of the methods to be compared and their applicable scenario.

We investigate the following metrics.

• Running time of the methods.
• Empirical risks for estimating the minimizer and minimum.
• Coverage and length of confidence intervals for the minimizer and
the minimum. In particular, we construct confidence interval with 5
different confidence levels with α ranging from 0.2 to 0.01.

We have 7 test functions, as shown in Equation (A.1). We scale the
functions by 100 so that reasonable sample sizes can cover from sample-
scarce region to sample-rich region. Figure 1 shows the plots of those functions
(in the order 1, 2, 3, 4, 5, 6, 7 from left top to right bottom), grouped based on
smoothness. Note that we include functions of different smoothness around the
minimizer (e.g., of the types x, x2, x4, exp(−1/x), represented by f1, f3, f5, f6
), with both symmetric (i.e., f1, f3, f5, f6) and asymmetric configurations
(i.e., f2, f4, f7). We also include functions with the minimizer at boundary
(i.e., f2, f4). Using similar arguments as in the proof of Proposition B.1, we
can convolve the true function with a smooth kernel concentrated enough to
the center to have a function that is both smooth (i.e., differentiable to any
order) and arbitrarily close to the original true function, regardless of the
smoothness of the true function. Therefore, the phenomenon shown here also
carries to the non-asymptotic region (i.e., small to medium sample sizes) of
functions differentiable to any order.
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f1(x) =100|2x− 1|
non-differentiable, symmetric, linear

f2(x) =100x

asymmetric, linear, with minimizer at the boundary

f3(x) =100(|2x− 1|)2

twice differentiable with positive second order derivative

f4(x) =100x2

twice differentiable, asymmetric, with minimizer at the boundary

f5(x) =100(|2x− 1|)4

fourth-order differentiable with vanishing second order derivative

f6(x) =100 exp (2− 1

|x− 0.5|
)

arbitrarily differentiable with vanishing derivatives of any order

f7(x) =100|2x− 1|1{x < 0.5}+ 100|2x− 1|21{x ≥ 0.5}
non-differentiable, non-symmetric.

(A.1)

A.2. Numerical Results and Comparison with CLS Methods.
Now we present the simulation results using the 7 test functions. In particular,
we compare our methods with the CLS methods for estimation and confidence
intervals for the minimizer.

A.2.1. Results Presentation and Results for Four Tasks.

Plots and Tables. Before we discuss the results, we explain how we present
the results for each function. For each true function, we provide the following
plots: the true function, the time vs log sample size plot (for all three
methods), the log empirical risk vs log sample size plot for estimation of
the minimizer, the log empirical expected length vs log sample size plot for
inference of the minimizer, the log empirical risk vs log sample size plot
for estimation of the minimum, and the log empirical expected length vs
log sample size plot for inference of the minimum. For empirical expected
lengths, we plot for α = 0.01, other confidence levels are similar. We also
provide tables for CLS empirical coverage for the minimizer, log risk for
the minimizer, log length for the minimizer for α = 0.01, and our non-split
version CI’s empirical coverage for the minimum. The plots and tables are
shown in Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13. In Section A.2.2, we
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give detailed explanations for each function separately in addition to the
task-wise discussion in Section A.2.1.

Estimation of Minimizer. In general, our methods tie with the CLS method
for the estimation of the minimizer.

Our methods behave better than CLS for functions with higher smoothness
(e.g., the third row in Figure 1: x4, exp(−1/x) type). For less smooth func-
tions (e.g., linear, half-side-quadratic), CLS behaves better. For quadratic
function with minimizer away from boundary, our methods tie with CLS.
This sensitivity to smoothness is due to CLS rather than our methods. We
show in Section A.3 that our methods are stable compared to the benchmarks
and hence are insensitive to the smoothness of the true functions.

Inference for Minimizer. For the inference of minimizer, both our methods
achieve the nominal coverage (empirical coverages are at 0.99 or 1). CLS
confidence interval does not achieve nominal coverage consistently. For all
the functions except the linear functions and the quadratic function with
minimizer at the middle, the CLS confidence interval misses the nominal
coverage by far. For linear functions, the expected length of CLSCI converges
extremely slowly with the increase of the sample size (if converges at all).

In Section A.3, we provide a more detailed discussion of the comparison
with the theoretical results for our methods.

Estimation for Minimum. The plots show nice decreasing patterns. For
the polynomial type functions, we can see a nice linear relationship between
log empirical risk and log sample size, which is a good indicator of a linear
relationship between the empirical risk and the benchmark, as the benchmark
of a polynomial function is a power function (with negative exponent) of
sample size. A detailed comparison with theoretical results is in Section A.3.

Inference for Minimum. Both our methods achieve nominal coverages in
all settings (shown in Table (d) in the corresponding figure). The plots on
empirical expected length show a nice decreasing pattern. Comparison with
theoretical results is discussed in Section A.3.

Computing Time. Our methods are significantly faster than CLS based
methods. For our methods, we measure the total time used for producing all
four results, while for CLS based methods, we only measure the time taken
to fit a CLS. The time for each function is the sum of times used for 100
replicates. Although this measurement of the computing time favors CLS
based methods, our methods still take much less time.

A.2.2. Figures, Tables, and Detailed Discussion.
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Discussion for results of f1(x) = 100|2x − 1| and f2(x) = 100x. Both
functions are piecewise linear functions, and their smoothness is the lowest
among all test functions.

In terms of coverage of confidence interval, our methods achieve nominal
coverage consistently, CLSCIα achieves the nominal coverage in most cases,
but not consistently — it fails in some cases for f2. Therefore, we turn to
the expected lengths of the confidence intervals.

Piecewise linear functions are prototypes for supporting examples for sub-
optimality of CLSCIα, in both rigorous proof and intuitive reasoning that
we present in Section B.1. The simulation results on the length, as shown
below, go along with the theoretical analysis.

The fourth plot in Figure 2 shows the log empirical expected length for the
minimizer vs log sample size for f1, which clearly shows that the empirical
expected length of CLSCIα shrinks much slower than our methods, support-
ing our intuitive reasoning in Section B.1. Further, extended experiments
on even larger sample sizes show that the log empirical expected length
eventually fluctuated around -2.3 rather than converging to −∞.

For f2, the fourth plot in Figure 4 show the expected length of CLSCIα
hardly converges, while those of our methods clearly converge.

For estimating the minimizer, the piecewise linear function f1 is in favor of
the CLS estimator for the minimizer, as discussed in section B.1. The results
indeed shows that the empirical risk for CLS is around 0.6 times that of our
method, although all the methods show the same rate. Similar phenomena
also holds for f2.

For tasks involving the minimum, we primarily focus on the relationship
with theoretical benchmarks and the empirical coverage for the minimum.
The nominal coverages are consistently achieved. A detailed comparison with
theoretical results is deferred to Section A.3.

Discussion for results of f3(x) = 100(|2x − 1|)2 and f4(x) = 100x2. The
quadratic function f3 belongs to the prototype function class that CLSCIα
is designed for. It has higher smoothness than f1 but lower smoothness than
f5 and f6.

From Table (a) in Figure 7, we can see that CLSCIα does not consistently
achieve nominal coverages for f3. However, its coverage behavior for f3
is much better than that for other test functions except piece-wise linear
functions. Nevertheless, it is worth mentioning that for another quadratic
function f : x 7→ (x− 1/2)2, most of the empirical coverages of CLSCIα are
far below the nominal coverages. An explanation is that the difference in the
scale between f and f3 leads to different signal-to-noise balances — f is too
weak a signal so that reasonable sample sizes do not reach the asymptotic
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region of CLSCIα for f . This instability in coverage is an issue for CLSCIα,
as the true underlying function is always unknown. In contrast, our methods
achieve the nominal coverage consistently.

The fourth plot in Figure 6 shows that the convergence rates of length for
f3 are almost the same for all methods, but the empirical expected length
for CLSCIα is shorter than that of our methods by a constant multiplier.
This is not surprising as our goal in this paper is to propose methods that
can achieve the benchmarks up to a constant multiplier. The details of the
building blocks in our procedures have flexibilities for further improvement
of the constant, which we leave to future investigation.

For estimating the minimizer of f3, the performance of the CLS estimator
is between our two versions.

For the half-quadratic function f4, the performances of estimation of
minimizer are similar to that of linear function, while the performance of
inference of the minimizer is different from both quadratic and linear functions.
Our methods achieve the nominal coverage consistently, but CLSCIα misses
the nominal coverage by far.

Discussion for results of f5(x) = 100(|2x − 1|)4. f5 has relatively higher
smoothness. For the inference of the minimizer, Table (a) in Figure 11
shows that CLSCIα has empirical coverages that fall significantly below the
nominal coverages. In contrast, our procedures attain nominal coverages.

For the estimation of the minimizer, all methods have similar rates yet
both our methods have smaller empirical risks.

Discussion for results of f6(x) = 100 exp (2− 1
|x−0.5|). f6 has the highest

smoothness. Its arbitrary-order derivative at the minimizer x = 0.5 is 0.
For the inference of the minimizer, Table (a) in Figure 13 shows that the

empirical coverages of CLSCIα fall significantly below the nominal coverages.
In contrast, our procedures achieve nominal coverages.

For estimating the minimizer, the CLS estimator has larger empirical risks
than ours and does not show a clear trend of convergence. Ours have already
shown a clear pattern of converging to 0 (a.k.a to −∞ on the log scale).

Discussion for results of f7 = 100|2x−1|1{x < 0.5}+100|2x−1|21{x ≥ 0.5}.
f7 is asymmetric, non-differentiable, and differing in smoothness on two sides.
For estimation of the minimizer, all methods have similar behavior with CLS
being slightly better. For inference of the minimizer, CLSCIα has empirical
coverages that fall significantly below the nominal coverages. All of our
confidence intervals achieve the nominal coverage and has empirical expected
lengths showing nice decreasing patterns.
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Fig 2: Plots for f1(x) = 100|2x− 1|
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Fig 4: Plots for f2(x) = 100x
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Fig 10: Plots for f5(x) = 100(|2x− 1|)4
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Fig 11: Tables for f5(x) = 100(|2x− 1|)4
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A.3. Comparison with Benchmarks. In this subsection, we consider
the functions for which benchmarks can be explicitly calculated. The primary
task is to investigate the relationship between empirical risks/lengths and
the benchmarks.

We consider a different set of functions whose benchmarks can be easily
calculated:

h1(t) = 100
∣∣t− 0.5

∣∣,
h2(t) = 200

∣∣2(t− 0.5)
∣∣ 32 ,

h3(t) = 200
∣∣2(t− 0.5)

∣∣2,
h4(t) = 200

∣∣2(t− 0.5)
∣∣3,

h5(t) = 200
∣∣2(t− 0.5)

∣∣4.
(A.2)

All other settings remain the same as before, except that we take roughly
exponentially equally spaced sample sizes.

We calculated the corresponding benchmarks (the discretization errors in
these examples are negligible): ρz(

√
1/n; f) and ρm(

√
1/n; f).

The log risk/length vs. log sample size plots for the minimizer and minimum
with the reference line of the benchmark are shown in Figures 16, 17, 18, and
19. For the estimation of the minimizer, in addition to the almost identical
slope with the reference line (i.e., linear relationship between empirical risk
and benchmark), the intercept difference of the reference line and the log risk
of non-split version ranges between 0.6472699 and 1.036388, meaning that

ρz(
√

1/n;f)

empirical risk for minimizer for non-split version ranges in [1.910318, 2.819016],
implying that the performance of non-split version is quite robust when
smoothness varies.

For the other three tasks, excluding the outlier points that are clearly
influenced by the truncation for confidence interval, the slopes of the methods
and the reference line are almost identical.

The empirical performances, therefore, agree with the theoretical results.
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Fig 16: Empirical risks for minimizer
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Fig 17: Empirical risks for minimum
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Fig 18: Empirical lengths for minimizer
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Fig 19: Empirical lengths for minimum
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APPENDIX B: COMPARISON WITH CLS METHODS AND
CONNECTIONS WITH THE CLASSICAL MINIMAX

FRAMEWORK

In this section, we compare our procedures with the convexity-constrained
least squares (CLS) methods for the minimizer (see Section B.1 for inference,
Section B.4 for estimation, and the corresponding numerical results are in
Section A), discuss the connections between local minimax framework and
the classical minimax framework for problems considered in this paper, and
elaborate on the generality of the Uncertainty Principle.

In particular, we prove that the CLS confidence interval for the minimizer
proposed in Deng et al. (2020) is sub-optimal under the local minimax frame-
work. We also provide a larger class of functions that potentially also lead to
sub-optimality and provide the intuitive reasoning behind, which is validated
through numerical results. Through investigating the connection with the
classical minimax framework, we established that optimal procedures under
the local minimax framework (e.g., our algorithms) are also optimal under
the classical minimax framework (see Section B.2 for details). Implications
of these results include that our algorithms are optimal under the setting
that CLS is theoretically investigated. In addition, we provide more settings
where the Uncertainty Principle holds in Section B.3.

B.1. Comparison with CLS Confidence Interval (CLSCI): Sub-
optimality of CLSCI Under Non-asymptotic Local Minimax Framework

and Optimality of Our Algorithms Under Several Frameworks. The
convexity-constrained least squares (CLS) estimator is widely used for es-
timating a convex regression function globally. While CLS estimation and
inference methods for the minimizer have been proposed and studied in the
literature (e.g., Shoung and Zhang (2001); Ghosal and Sen (2017); Deng et al.
(2020)), the theoretical analyses usually assume the existence of second or
higher order derivatives with an even order derivative being positive and all
lower order derivatives being zero at the minimizer. However, it is unclear
how the CLS estimator behaves under our non-asymptotic framework or even
asymptotically in general when the underlying convex function is nonsmooth
at the minimizer. As for the minimum, to the best of our knowledge, no
CLS-based method for estimation or inference with theoretical guarantees
exists.

It is interesting to compare with the CLS confidence interval for the
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minimizer proposed in Deng et al. (2020). Let

f̂n = min
f∈F

n∑
i=1

(yi − f(xi))
2(B.1)

be the CLS estimator. Let m̂n be the anti-mode of f̂n, v̂m (resp. ûm) be the
first kink of f̂n to the right (resp. left) of m̂n. Under the assumption that the
second order derivative exists and is positive around the minimizer, Deng
et al. (2020) introduce the following (1− α)-level confidence interval,

(B.2) CLSCIα = [m̂n ± cmα (v̂m − ûm)] ∩ [0, 1],

where cmα is a constant depending on α only.
For positive integer k and positive number A, denote k-smooth A-bounded

convex function class by

Fk,A =

{{
f ∈ F : f is k-differentiable, |f (k)(Z(f))| < A

}
, k is odd{

f ∈ F : f is k-differentiable, 0 < |f (k)(Z(f))| < A
}
, k is even

.

(B.3)

The parameter space described, with the exception of convexity, was also
considered in the estimation of the mode for unimodal smooth functions (not
necessarily convex) in Shoung and Zhang (2001).

Clearly the collection of convex functions with continuous positive second
order derivative around the minimizer, denoted by F2, can be expressed
as F2 = ∪A>0F2,A. Deng et al. (2020) shows that the confidence interval
CLSCIα has desired coverage probability asymptotically over F2. The fol-
lowing result shows that CLSCIα defined in (B.2) is sub-optimal over Fk,A

for any k and A under the local minimax framework.

Proposition B.1. For positive integer k and positive number A, for any
sample size n ≥ 5,

(B.4) sup
f∈Fk,A

EfL(CLSCIα)

L̃z,α,n(σ; f)
= ∞.

where L̃z,α,n(σ; f) is the benchmark defined in Equation (4.2).

Proposition B.1 shows that for any n ≥ 5, there exists f ∈ Fk,A such that
the length of CLSCIα at f is much larger than the local minimax benchmark.
In contrast, our proposed confidence interval CIz,α achieves the benchmark
up to an absolute constant for all f ∈ F . This phenomenon can be attributed
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to the nonasymptotic nature of our framework compared to the asymptotic
nature of CLSCIα. In summary, the CLS construction, which only takes
into account the kinks, fails to make full use of the convexity property.

Now we continue with proving Proposition B.1, providing additional
scenarios that CLSCI potentially remains sub-optimal with intuitive reasoning
whose associated numerical validation is in Section A, and showing that our
algorithms are optimal under the setting CLSCI is theoretically investigated.

Proposition B.2. For positive integer k and positive number A, for any
function r(n) ≥ 1, for any integer n ≥ 5, ∃fn ∈ Fk,A such that

(B.5)
EfnL(CLSCIα)

L̃z,α,n(σ; f)
≥ r(n),

where L̃z,α,n(σ; f) is defined in Equation (4.2), Fk,A is defined in Equa-
tion (B.3).

Proof. Suppose k and A are fixed. Recall that in the proof of Theorem
4.2, we have

EfL(CIz,α) ≤ C2,α

(
suph∈Gn(f) ρz(

σ√
n
;h)

(
1 ∧

√
nρz(

σ√
n
;h)

)
+ (1−2α)

2 Dz(n, f)

)
,

where the definition of Gn(f) is given in Equation (C.105).
Combining this inequality with the lower bound of the local minimax

length of the confidence interval that we established in Proposition C.4,
namely

L̃z,α,n(σ; f) ≥ C̃z,α

(
supg∈Gn(f) ρz(

σ√
n
; g)

(
1 ∧

√
nρz(

σ√
n
; g)

)
+ (1−2α)

2 Dz(n, f)

)
,

we see that it suffices to show that for any r(n) > 0, there exists f ∈ Fk,A

such that

EfL(CLSCIα)(
supg∈Gn(f) ρz(

σ√
n
; g)

(
1 ∧

√
nρz(

σ√
n
; g)

)
+ (1−2α)

2 Dz(n, f)

) ≥ r(n).

Note that L(CLSCIα) ≥ 1
n , we only need to find f ∈ Fk,A such that

(B.6) Dz(n, f) ≤
1

2nr(n)
and sup

g∈Gn(f)
ρz(

σ√
n
; g) ≤ 1

2n(r(n) + 1)
.
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Consider function f0 : x 7→ 4n(r(n) + 1)
3
2 (σ + 1)|x− ⌊n/2⌋

n |, for which we
have

Dz(n, f0) = 0, sup
g∈Gn(f0)

ρz(
σ√
n
; g) ≤

(34)
1
3

2

1

n(r(n) + 1)
.

The conditions mentioned in Inequality (B.6) are met, but f0 is not in Fk,A.
Now we will proceed to construct f1 ∈ Fk,A such that the conditions in
Inequality (B.6) are still met for f = f1.

For function f defined on [0, 1], define the following transformation.

(B.7) f̃(x) =



f(x), x ∈ [0, 1]

f(1) + sup
t→1−

f(1)− f(t)

1− t
(x− 1), x > 1

f(0) + sup
t→0+

f(t)− f(0)

t
x, x < 0

.

Then consider the following class of transformations of function f :

(B.8) T (f ; δ)(x) =

∫
f̃(t)

1√
2πδ

exp (−(x− t)2

2δ2
)dt.

It is easy to check that this transformation preserves convexity: if f is a
convex function on [0, 1], then T (f ; δ) is a convex function on R. In addition,
this transformation is a smoothing transformation: if f is continuous on [0, 1],
then T (f ; δ) is infinitely differentiable on R. Further, for any given f , the
sequence of transformed functions {T (f ; δ)}δ>0 converges uniformly to f̃
as δ → 0+. When we focus on the interval [0, 1], we have that for fixed f ,
limδ→0+ supx∈[0,1]

∣∣T (f ; δ)(x)− f(x)
∣∣ = 0.

Now we list some basic properties of the transformed function T (f0; δ).
Clearly, T (f0; δ) is convex and infinitely differentiable. Clearly, we have

uniform convergence: limδ→0+ supx∈[0,1]
∣∣T (f0; δ)(x)− f0(x)

∣∣ = 0.

Now we consider T (f0; δ)
(k)(

⌊n
2
⌋

n ). Let a
(m)
i denote coefficient corresponding

to the term xi exp (−x2/2) in the m order derivative of function u(x) =

exp (−x2/2). For i < 0, a
(m)
i = 0.

Calculations show that
(B.9)

T (f0; δ)
(k)(

⌊n2 ⌋
n

) =


0 k is odd

v(n)
a
(k−2)
0

δk−1 = v(n) (−1)(k−2)/2(k−3)!!
δk−1 k is even and k ≥ 4

v(n)δ k = 0

v(n)/δ k = 2

,
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where v(n) = 2 · 4n(r(n) + 1)
3
2 (σ + 1)/

√
2π.

The calculations are primarily based on the following facts.∫ ∞

−∞
|t|tk exp(−t2/2)dt =

{
0 for odd k

2× k!! for even k
,

a
(m+1)
i = (i+ 1)a

(m)
i+1 − a

(m)
i−1 = (i+ 1)(i+ 2)a

(m−1)
i+2 − (2i+ 1)a

(m−1)
i + a

(m−1)
i−1 .

Taylor expansion of u(x) gives a
(m)
0 .

Now we proceed with construction of the target f1.
Let a class of transformations of f be

(B.10) T2(f ; η)(x) = max{0, f(x) + η(|2x− 1| − 0.5)}

for η > 0. This transformation clearly preserves convexity. Consider T (T2(f0; η); δ).
We start with showing that it converges uniformly to at f0 on [0, 1] as
δ, η → 0+. Let g(x) =

∣∣|2x− 1| − 0.5
∣∣. Clearly,

sup
x∈[0,1]

|T (T2(f0; η); δ)(x)− f0(x)|

≤ sup
x∈[0,1]

|T (f0; δ)− f0(x)|+ η sup
x∈[0,1]

∣∣∣T (g; δ) (x)
∣∣∣.

Therefore, for any ν > 0, there exist η(ν, f0), δ(ν, f0) > 0 such that for any
positive δ < δ(ν, f0), η < η(ν, f0),

sup
x∈[0,1]

|T (T2(f0; η); δ)(x)− f0(x)| < ν.(B.11)

This uniform convergence gives that

lim
δ,η→0+

sup
g∈Gn(T (T2(f0;η);δ))

ρz(
σ√
n
; g) = sup

g∈Gn(f0)
ρz(

σ√
n
; g) <

1

2n(r(n) + 1)
,

(B.12a)

lim
δ,η→0+

Dz(n, T (T2(f0; η); δ)) = Dz(n, f0) = 0,
(B.12b)

lim
δ,η→0+

Z(T (T2(f0; η); δ)) = Z(f0) ∈ (0, 1)
(B.12c)

For k-th order derivative of T (T2(f0; η); δ), elementary calculation shows
that

lim
δ→0+

∂kT (T2(f0; η); δ)

∂xk

∣∣∣∣∣
x=Z(T (T2(f0;η);δ))

= 0, for all η > 0.
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and that

lim
η→0+

∂kT (T2(f0; η); δ)

∂xk

∣∣∣∣∣
x=Z(T (T2(f0;η);δ))

= T (f0; δ)
(k)(

⌊n2 ⌋
n

), for all δ > 0.

Recall the expression of T (f0; δ)
(k)(

⌊n
2
⌋

n ) in Equation (B.9). Therefore, there
exist η > 0 and δ > 0 depending on f0 , such that the function f1 =

T (T2(f0; η); δ)
∣∣∣
[0,1]

both satisfies conditions in Inequality (B.6) and is in

Fk,A.
Details of choosing such η and δ are as follows. For an even k, choose a small

enough δ = δ0 such that the limits in Equations (B.12) can be approximately
achieved by all δ ≤ δ0 and η ≤ η0, such that Inequality (B.6) hold. Then

choose a small enough η ≤ η0 such that ∂kT (T2(f0;η);δ)
∂xk

∣∣
x=Z(T (T2(f0;η);δ))

> 0

and Inequality (B.6) holds. Then fix this η and select δ < δ0 that is

small enough such that A > ∂kT (T2(f0;η);δ)
∂xk

∣∣
x=Z(T (T2(f0;η);δ))

> 0. For an

odd k, choose a small enough η (for Inequality (B.6) to hold for some
small δ) and then a small enough δ such that Inequality (B.6) holds and
∂kT (T2(f0;η);δ)

∂xk

∣∣
x=Z(T (T2(f0;η);δ))

< A.

In the proof, we can observe the strength of non-asymptotic and non-
localized results. A significant distinction between ρz(

σ√
n
; f), as featured

in our theorem, and the second-order derivative, heavily relied upon by
CLSCIα in both method and theoretical guarantees, is that ρz(

σ√
n
; f) does

not require any form of limit, whereas the second-order derivative does.
In this regard, unlike ρz(

σ√
n
; f), the second-order derivative exclusively

characterizes the local behavior of a function within an infinitely small
interval around a point. It is a localized quantity and demands twice dif-
ferentiability. Consequently, an asymptotic procedure based on a localized
quantity encounters the issue that, for some functions, regardless of how
large n becomes, it remains outside the scope of locality.

To demonstrate the sub-optimality of CLSCIα, let us turn our attention
to convex piecewise linear functions. Simulation results provide compelling
evidence supporting the sub-optimality of CLSCI for this class of functions. In
our simulations, we included two representative functions: f1(x) = 100|2x−1|,
and f2(x) = 100x. These functions serve as prototypes for all piecewise linear
functions. f1 is a 1-kink piecewise linear function, and Figure 2 clearly
illustrates that the length of CLSCI converges much more slowly than our
confidence interval. This slow convergence indicates sub-optimality, as our
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method is theoretically and empirically shown to align with the minimax
rate, as detailed in Section 4.3 of the main paper and Section A.3 of the
supplement. On the other hand, f2(x) = 100x is a linear function, and Figure
4 demonstrates that the lengths of CLSCI hardly converge at all. A rigorous
analysis of CLSCI’s behavior for convex piecewise linear functions, or non-
smooth functions in general, in a non-asymptotic context is a formidable
challenge and necessitates the development of new analytical tools. This
topic is of independent interest and falls beyond the scope of this paper.
However, we provide intuitive reasoning to explain the slow convergence of
CLSCI, if it converges at all.

If a convex piecewise linear function f has all its kinks at rational points,
there are infinitely many sample sizes n for which f belongs to the function
class that convex least squares can precisely estimate. That is, the expectation
version of the CLS estimator for those n,

f̂oracle,n = argmin
f is piecewise linear convex function

Ef (
∑
i

(f(xi)− yi)
2),(B.13)

gives f̂oracle,n = f . Recall the construction of CLSCIα in Deng et al. (2020),
which we summarized in Equation (B.2). Consider a 1-kink convex piecewise
linear function f = f1 and assume n is even. In this case, f̂oracle,n as defined
in Equation (B.13) equals f . This implies that the left and right nearest
kinks to the minimizer are located at 0 and 1, respectively. Consequently, if
CLSCIα were based on f̂oracle,n, it would have a constant length for all even

n. Although the actual CLS estimator (i.e., f̂n defined in Equation (B.1))
produces kinks that are slightly closer to the minimizer compared to the
oracle version of CLS (i.e., f̂oracle,n), resulting in a shorter expected length of
the confidence interval CLSCIα, this improvement is unlikely to completely
resolve the issue. As a result, we anticipate that CLSCI remains sub-optimal.
The numerical results mentioned earlier provide support for this assertion.
Similar arguments apply to linear functions as well.

For a general piecewise linear convex function with the minimizer taking
a rational value p

q , these arguments hold when n is a multiple of q and
sufficiently large. For piecewise linear convex functions f with irrational
minimizers, consider linear interpolation on rational grids for f . The same
arguments apply in these cases. It is worth noting that these arguments also
highlight a conflict between the estimation and inference of the minimizer in
CLS-based methods for convex piecewise linear functions. Better estimation
from CLS implies a longer length of CLSCIα, so the construction of CLSCIα
after CLS estimation also contributes to sub-optimality.

These examples, in addition to the one we provide in the proof of sub-
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optimality, demonstrate that the convex least squares component of confi-
dence interval construction is not the sole reason for sub-optimality. However,
it does make it challenging to fully exploit the convexity of the true function
when constructing a CLS-based confidence interval. In contrast, Algorithm 1
offers a means to fully leverage the convexity of the true function.

On the other hand, when considering our methods under asymptotic
conditions or within the classical minimax framework for the class of smooth
convex functions (defined in Section B.2), both of which have coarser criteria

than the local minimax framework, we achieve the optimal rates of n− 1
2k+1 for

the minimizer. The connection between the local minimax framework and the
classical minimax framework is discussed in Section B.2. Further discussion
involving CLS (for the estimation of the minimizer) and our estimator for
the minimizer is provided in the latter part of Section B.2 and Section B.4.

B.2. Connections With the Classical Minimax Framework: Lower
Bounds, Optimality, and Characteristics. In this part, we relate local
minimax rates to classical minimax rates, which captures the worst case for
a certain function class.

Before going into details, we elaborate on a general comparison. The lower
bound provided by our non-asymptotic local minimax framework over a
certain function class is no larger than the classical minimax lower bound
over the same function class. Because in the classical minimax framework,
the Le Cam two-point reduction, in a way, can be considered as a two-point
case of Assouad’s or Fano’s Lemma, which are typical tools for establish-
ing lower bounds for the classical minimax framework. This makes the
local minimax rate a stricter criterion, which preserves more information
before taking supremum over the function class (i.e., individual functions
are treated individually). This strictness/information-preserving property
increases the difficulty for constructing adaptive optimal procedures (i.e.,
attaining the potentially smaller lower bound) but enables characterizing the
difficulty of estimating of individual functions and makes establishing the
non-superefficiency type of results conceptually possible.

As an illustration, we consider the convex function class with additional
smoothness conditions, as in literature the classical minimax rates for both
smooth functions and smooth convex functions are extensively investigated.
We walk through the procedures translating local minimax rates to classical
minimax lower bounds and highlights the following additional implications.

• For the same class of functions, all optimal procedures under non-
asymptotic local minimax benchmarks are optimal in the classical
sense.
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• The local minimax rates established for one class of functions (e.g.,
convex functions) can be useful for establishing classical minimax lower
bounds for another function class (e.g., smooth functions).

Further, we demonstrate that the classical minimax rates for the convex func-
tion class are meaningless, which shows the advantage of the non-asymptotic
local minimax framework.

The smoothness condition we consider is local smoothness defined around
the minimizer. For k > 1 and B ≥ B1 > 0, the locally smooth convex
function class Γ1(k;B1, B) is defined as
(B.14)

Γ1(k;B1, B) =

{
f ∈ F : B1 ≤ lim

t→Z(f)

|f(t)−f(Z(f))|
|t−Z(f)|k ≤ lim

t→Z(f)

|f(t)−f(Z(f))|
|t−Z(f)|k ≤ B

}
.

A similar smoothness class has been studied by Shoung and Zhang (2001),
with the difference being that their smoothness requires the limit to exist
and be exactly B (i.e., B1 = B). Later in this section, We will also briefly
discuss a global version of smoothness.

The moduli of continuity for the locally smooth convex function class are
given by,

ω̂z(ε; f) = sup{|Z(f)− Z(g)| : ∥f − g∥2 ≤ ε, g ∈ Γ1(k;B1, B)},
ω̂m(ε; f) = sup{|M(f)−M(g)| : ∥f − g∥2 ≤ ε, g ∈ Γ1(k;B1, B)},

for any locally smooth convex function f ∈ Γ1(k;B1, B).
Further, similar to the proof of Proposition 2.2, we can show that

(B.15) ω̂z(ε; f) ≥ ρz(ε; f), ω̂m(ε; f) ≥ ρm(ε; f).

We defer the proof of this inequality to the last part of this section.

Consider function f1 : t 7→ B
∣∣t− 1

2

∣∣k, which is in Γ1(k;B1, B). Then we
can lower bound the classical minimax rate of estimating the minimum for
the function class Γ1(k;B1, B) by:

inf
M̂

sup
f∈Γ1(k;B1,B)

Ef |M̂ −M(f)|

≥ sup
f∈Γ1(k;B1,B)

sup
g∈Γ1(k;B1,B)

inf
M̂

max
h∈{f,g}

Eh|M̂ −M(h)|

≥ sup
g∈Γ1(k;B1,B)

inf
M̂

max
h∈{f1,g}

Eh|M̂ −M(h)|

≥ a1ρm(ε; f1)

= a1cB,kε
2k

2k+1 ,

(B.16)
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where cB,k = ( (2k+1)(k+1)
4k2

)
k

2k+1B
1

2k+1 .

Similarly, for estimating the minimizer, take f1 : t 7→ B1

∣∣t− 1
2

∣∣k, we can
lower bound the classical minimax rate by
(B.17)

inf
Ẑ

sup
f∈Γ1(k;B1,B)

Ef |Ẑ − Z(f)| ≥ a1B
− 2

2k+1

1

(
(2k + 1)(k + 1)

4k2

) 1
2k+1

ε
2

2k+1 .

Note that the class of locally smooth convex functions Γ1(k;B1, B) is a
subset of the class of locally smooth functions. Therefore, the lower bounds for
Γ1(k;B1, B) also hold for the class of locally smooth functions. This implies
that our local minimax rates, while are primarily based on the properties of
convex functions, can also be used to establish lower bounds for the class of
locally smooth functions.

Moreover, this technique of establishing lower bounds for one functions
class under the classical minimax framework using the local minimax lower
bound for another function class has wider applicability. To illustrate this
point, we use this approach to establish lower bounds for estimating the
minimum for globally smooth function, which is also extensively studied in
the literature.

The globally smooth convex function class Γ2(B, k) is defined as

(B.18) Γ2(B, k) = {f ∈ F : |f(t)− f(Z(f))| ≤ B|t− Z(f)|k,∀t ∈ [0, 1]}.

Note that the global smoothness imposes conditions on the behavior of
a function not just around its minimizer, which makes the globally smooth
convex function class smaller than the locally smooth convex function class
(if we can let B1 = 0 to allow the same form).

The continuity modulus for the globally smooth convex function class can
be similarly defined as

(B.19) ω̃m(ε; f) = sup {|M(f)−M(g)| : ∥f − g∥2 ≤ ε, g ∈ Γ2(B, k)} ,

for f ∈ Γ2(B, k).
Similarly, we can show that

(B.20) ω̃m(ε; f) ≥ ρm(ε; f),

the proof of which is deferred to the last part.
Inequality (B.20) and similar arguments as in Inequality (B.16) give that

the minimax rate for estimation of the minimum for function class Γ2(B, k) is

lower bounded by a1cB,kε
2k

2k+1 (where cB,k = ( (2k+1)(k+1)
4k2

)
k

2k+1B
1

2k+1 ), which
automatically serves as a lower bound for the globally smooth function class.
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Our discussion on establishing lower bounds under the classical minimax
framework and transferring rates from local minimax framework to the
classical minimax framework for the white noise model can be extended
to the non-parametric regression. Despite the large volume of literature on
non-parametric regression, the lower bounds for various smooth classes are
not well known. For instance, the lower bound for isotropic Hölder class is
not known until lately (Belitser et al., 2021). To get the analogous discussion
for the non-parametric regression, we only need to replace ε in the white
noise model with σ2

n , as the discretization error is always dominated by
the noise-induced error for commonly seen smooth function classes in the
classical minimax framework.

Now we proceed to see the advantage of local minimax benchmarks
compared with classical minimax rates. Consider a collection of functions
fδ : t 7→ δ|t− 1

2 |, for δ > 0. This collection of functions is convex. We have
lower bounds (up to some absolute constants) for classical minimax rates for
convex functions, given by

lim
δ→0+

ρz(ε; fδ) =
1

2
,

lim
δ→+∞

ρm(ε; fδ) = ∞.

Any procedure will be optimal under the classical minimax framework, which
makes the classical minimax framework meaningless in this setting.

Finally, we are ready to show that our methods are adaptively optimal for
function classes for which the CLS estimator and CLSCI are investigated.
The function class for which the CLS estimator and CLSCI are investigated in
(Ghosal and Sen, 2017; Deng et al., 2020) can be written as ∪B>0Γ1(k;B,B)
for even integer k ≥ 2. Previous discussion established that our procedures
not only achieve the optimal minimax rate in the classical sense (in terms of n)
for Γ1(k;B,B) but also have a risk/length smaller than a universal constant
multiple of the lower bound for each and every B and k. Our procedures do
not depend on B or k, meaning that our procedures are adaptively optimal
under the classical setting.

Proof of Inequality (B.15) and Inequality (B.20). The proofs are
similar to the proof of Proposition 2.2. Using the same notation as in
Proposition 2.2, tl and tr are the left and right endpoints of the interval
{t : f(t) ≤ M(f) + ρm(ε; f)}.

To prove Inequality (B.20) (i.e., ω̃m(ε; f) ≥ ρm(ε; f)), we only need to
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replace gδ(t) in the proof of Proposition 2.2 by ḡδ defined as

ḡδ(x) =


f(x) x /∈ [tl, tr]

µε + δ(
∣∣∣ x−Z(f)
tl−Z(f)

∣∣∣k − 1) tl ≤ x ≤ Z(f)

µε + δ(
∣∣∣ x−Z(f)
tr−Z(f)

∣∣∣k − 1) Z(f) ≤ x ≤ tr

,(B.21)

for k ≥ 1 and 0 < δ ≤ min{B|tl−Z(f)|k, B|tr−Z(f)|k, ρm(ε;f)
k }. It is easy to

see that this new ḡδ ∈ Γ2(B, k), ∥ḡδ − f∥ ≤ ε and limδ→0 |M(ḡδ)−M(f)| =
ρm(ε; f). When k < 1, we just replace the k in the newly constructed ḡδ with
1.

To prove Inequality (B.15) (i.e., ω̂z(ε; f) ≥ ρz(ε; f) and ω̂m(ε; f) ≥
ρm(ε; f)), without loss of generality, we assume tr−Z(f) = ρz(ε; f). Note that
k > 1. We only need to replace gδ(t) in the proof of Proposition 2.2 to be g̃δ(t),
which is defined in the following way: let hs(t) = B|t− tr + δ|k + s, as when δ

is small enough, ∀t > tr−δ, f(t)−f(tr−δ)
t−tr+δ is lower bounded by

lim
t→t−r

f(tr)−f(t)

2 ,
so ∃s such that hs(t) and gδ(t) has an intersection t1 ∈ (tl, tr − δ) and an
intersection t2 ∈ (tr − δ, tr), which satisfy hs(t) > gδ(t),∀t ∈ (t1, t2) and
hs(t) < gδ(t) for a small neighborhood outside (t1, t2) on both sides.

Define g̃δ by

g̃δ(t) =

{
gδ(t) t ∈ [0, 1]\(t1, t2)
hs(t) t ∈ (t1, t2)

.(B.22)

Then g̃δ ∈ Γ1(k;B1, B), ∥g̃ − f∥ ≤ ε, limδ→0 |Z(g̃δ)− Z(f)| = ρz(ε; f), and
limδ→0 |M(g̃δ)−M(f)| ≥ limδ→0 |M(gδ)−M(f)| = ρm(ε; f).

B.3. More on the Uncertainty Principle. In this subsection, we
elaborate on the generality of the Uncertainty Principle. We start with the
convex smoothness class we discussed in Section B.2. Uncertainty principle
still holds for the function class Γ1(k;B1, B) defined in (B.14), which contains
all the functions f ∈ F satisfying

B1 ≤ lim
t→Z(f)

|f(t)− f(Z(f))|
|t− Z(f)|k

≤ lim
t→Z(f)

|f(t)− f(Z(f))|
|t− Z(f)|k

≤ B.

It follows from Inequality (B.15) that the moduli of continuity for the min-
imizer and minimum over the function class Γ1(k;B1, B) have the following
relationship.

(B.23) ω̂z(ε; f)ω̂m(ε; f)2 ≥ ρz(ε; f)ρm(ε; f)2 ≥ ε2

2
.
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So the Uncertainty Principle also holds for Γ1(k;B1, B).
Further, applying the smoothing technique in Equation (B.8) in the proof

of Proposition B.2 to g̃δ defined by Equation (B.22), we know that the
Uncertainty Principle also holds for the k-th order differentiable convex
function class for any k.

Therefore, there are many choices of subclasses of F where the Uncertainty
Principle holds. Interested readers can further explore other possible choices.
Further, given the prevalent occurrence of tension between different quantities
(e.g., minimizer and minimum in our case), we believe that similar Uncertainty
Principles can be developed in diverse scenarios.

B.4. Comparison with the CLS Estimator for Minimizer. We
now turn to a comparison of the CLS estimator and our proposed estimator
for the minimizer.

Analyzing the behavior of the CLS estimator within our framework poses
significant challenges. On the other hand, the theoretical analysis for our
method easily gives a corollary that our estimator achieves the same optimal
rate as the CLS estimator under a coarser criterion — in asymptotic sense
with functions that have positive second order derivatives — the same
context in which the CLS estimator is typically studied. Numerical results
demonstrate that the behavior of the CLS estimator aligns with our methods,
albeit with sensitivity to the smoothness of the functions. Now we proceed
with details.

Existing theoretical results for the CLS estimator of the minimizer are both
asymptotic and for a fixed function with strong regularity assumptions such
as twice differentiability. The tools used in establishing the performance of
the CLS estimator in the literature are insufficient for studying its behavior
under our non-asymptotic local minimax framework for general convex
functions without smoothness conditions. Therefore, the properties of the
CLS estimator under our framework for convex function class are unclear
and difficult to analyze.

More precisely, existing analyses of the CLS estimator are based on the
limiting distribution, which is usually obtained by performing a second-order
Taylor expansion of the function around the minimizer and analyzing the
resulting empirical process. However, the limiting distribution only holds with
the sample size going to infinity for a fixed function, so similar arguments can
not lead to results that hold uniformly for all functions within a function class,
regardless of whether the sample size is fixed or growing. Additionally, the
Taylor expansion approach is not applicable when the second-order derivative
does not exist at the minimizer. As a result, analyzing the behavior of the
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CLS estimator under our local minimax framework requires new tools and is
of separate interest.

On the other hand, theoretical results for our estimator can be easily
transferred into one that uses the same criterion used in theoretical results
for the CLS estimator — asymptotic results for convex functions with positive
second order derivatives at the minimizer. Under this criterion, our estimator
and the CLS estimator have the same optimal rate.

For functions that are twice differentiable around the minimizer with a
positive second-order derivative at the minimizer, the boundedness of the
CLS estimator for the minimizer Ẑcvx (i.e., Ẑcvx ∈ [0, 1] ) and its limiting
distribution (Theorem 2.9 in Deng et al. (2020)) give that

lim sup
n→∞

E(|Ẑcvx − Z(f)|)(n/σ2)1/5 ≤
(

1

f ′′(Z(f))

)2/5

const1,

where const1 is an absolute (positive) constant, and that

lim inf
n→∞

E(|Ẑcvx − Z(f)|)(n/σ2)1/5 ≥
(

1

f ′′(Z(f))

)2/5

const2,

where const2 is another absolute (positive) constant. Note that for functions
twice differentiable at the minimizer with a positive second-order derivative,
the key part of the benchmark for the minimizer in our framework ρz(

σ√
n
; f)

is of the order (σ2/n)1/5
(

1
f ′′(Z(f))

)2/5
when n goes to infinity. Although the

benchmark has a discretization part as shown in Section C.11, it can be easily

verified that the order of the benchmark remains (σ2/n)1/5
(

1
f ′′(Z(f))

)2/5
when f is fixed and n goes to infinity. In this asymptotic sense, the CLS
estimator matches our rate, which is also the optimal rate, for functions
twice differentiable at the minimizer with a positive second-order derivative
(the lower bound provided in Section B.2). However, this match in rate is
under a coarser criterion and does not imply optimality for Ẑcvx under our
non-asymptotic framework.

Now we look at the numerical experiments we have shown in Section A.
Figure 6 shows that the CLS estimator and our methods have almost the
same behavior for f(x) = 100(|2x−1|)2, a function with positive second order
derivative. However, the performance of the CLS estimator, when compared
with that of our estimator, deteriorates as the smoothness of the underlying
function grows, as shown in Figure 10 and Figure 12, and improves as the
smoothness of functions decreases, as shown in Figure 2 and Figure 4. In
contrast, our method is stable in terms of the smoothness of the functions,
as shown in the comparison with the theoretical benchmarks in Section A.3.
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APPENDIX C: PROOFS OF THE RESULTS IN THE MAIN PAPER

This section provides the proofs of all the main results presented in the
paper “Estimation and Inference for Minimizer and Minimum of Convex
Functions: Optimality, Adaptivity, and Uncertainty Principles”.

C.1. Notation, Lemmas and Basic Properties. We begin by intro-
ducing and recollecting notation that will be frequently used in the proofs.

Note that Yl, Ys, and Ye are defined on the same probability space. We
use Es to denote the expectation with respect to the distribution of Ys and
so on. We denote by i∗j the index for the subinterval at level j that contains

the minimizer Z(f); we denote by j̃ the index for the level where the chosen
interval is at least two blocks away from the subinterval containing the
minimizer, i.e.,

(C.1) i∗j = max{i : Z(f) ∈ [tj,i−1, tj,i]}, j̃ = min{j : |̂ij − i∗j | ≥ 2}.

It is easy to see that j̃ ≥ 2, and j̃ only depends on Yl. In addition, we let

(C.2) j∗ = min{j : mj ≤
ρz(ε; f)

4
}.

Then by this definition, ρz(ε;f)
8 < mj∗ ≤ ρz(ε;f)

4 . Furthermore, µj,i denotes
the average of f on interval [tj,i−1, tj,i], i.e.,

(C.3) µj,i =
1

mj

∫ tj,i

tj,i−1

f(t)dt.

We now list the notation that is used throughout the proofs of theorems
in Section 3, in case readers get lost in the middle of reading a proof.

i∗j =max{i : Z(f) ∈ [tj,i−1, tj,i]}, j̃ = min{j : |̂ij − i∗j | ≥ 2},

µj,i =
1

mj

∫ tj,i

tj,i−1

f(t)dt, j∗ = min{j : mj ≤
ρz(ε; f)

4
},

Ej,i =
1

√
mj

(W2(tj,i)− 2W2(tj,i−1) +W2(tj,i−2)) ,

jw =min{j : |̂ij − i∗j | ≥ 5}, f̂ =
1

mĵ

∫ t̂i
ĵ
+∆

t̂i
ĵ
+∆−1

f(t)dt,

∆ =2
(
1{X̃ĵ ,̂iĵ+6 − X̃j,̂iĵ+5 ≤ 2σj} − 1{X̃ĵ ,̂iĵ−6 − X̃j,̂iĵ−5 ≤ 2σj}

)
.

(C.4)



44 T. T. CAI, R. CHEN, AND Y. ZHU

In the data splitting step of the white noise model, we obtain three
independent copies of the observations: Yl, Ys, and Ye. While we let them
have equal variance (3ε2), it is not necessary. We denote the variances of
Yl, Ys, and Ye as c2l ε

2, c2sε
2, and c2eε

2, respectively, in the supplement. This
helps demonstrate how the results depend on variance and allows for easy
derivation of analogous results for modified splitting procedures.

Similar for regression model, the splitting procedure for the regression
model can be modified to allow different variances of the three copies {yl,·},
{ys,·}, and {ye,·}. We denote the scaling factors for the three copies as γl,
γs, and γe, respectively, i.e., for all i, Var(yl,i) = γ2l σ

2, Var(ys,i) = γ2sσ
2, and

Var(ye,i) = γ2eσ
2.

For the regression model, we use similar notion for the length of subinterval,
the index of the interval in which the minimizer lies, etc. The following
notation is used in the proofs of the results for regression model.

mj =
2J−j

n
, tj,i = i ·mj −

1

n
,

i∗j = max{i : Z(f) ∈ [tj,i−1 +
1

2n
, tj,i +

1

2n
]},

j̃ = min{min{j : |îj − i∗j | ≥ 2},∞},

j∗ = min{j : mj ≤
ρz(

σ√
n
; f)

4
}, jw = min{j :

∣∣îj − i∗j
∣∣ ≥ 5},

Yx = {yx,0, yx,1, · · · , yx,n}, for x = l, s, e,

avef (j, i) =
1

2J−j

2J−j ·i−1∑
k=2J−j(i−1)

f(xk),

Ej,i,x = Yj,i,x − avef (j, i) · 2J−j , f̂ = avef (ĵ, ĩĵ).

(C.5)

To keep the logic flow neat, additional notation for non-parametric regres-
sion are introduced in Section C.11.

We finish this part by recalling some of the basic properties that are
frequently used in the proofs. The proofs for these properties are deferred to
later sections. Firstly, we revisit a basic property for convex functions.

Lemma C.1. For a convex function f , and any 0 ≤ x1 < x2 < x3 ≤ 1,
we have

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x1)

x3 − x1
≤ f(x3)− f(x2)

x3 − x2
.

Next we introduce the following lemma that helps with detailed calculation.
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Lemma C.2. For x > 61/3, we have

2xΦ(2− (2x)
3
2

√
2/3)

xΦ(2−
√
2/3x3/2)

< 0.008,

where Φ is the Cumulative Density Function (CDF) of a standard normal
distribution.

We further introduce two quantities that will be often used in the proofs
of the theorems in Section 3 of the main paper. Let

(C.6) Q = sup
x≥0

x2Φ(−x) and V = sup
x≥0

x2Φ(2− x),

for which we have the following results.

Lemma C.3.

(C.7) Q = sup
x≥0

x2Φ(−x) ≤ 0.169, V = sup
x≥0

x2Φ(2− x)V < 2.0555.

C.2. Proof of Proposition 2.1. We begin by proving the statement
with respect to the minimum. That is, for ε > 0, f ∈ F , and c ∈ (0, 1),

(C.8) c ≤ ρm(cε; f)

ρm(ε; f)
≤ c

2
3 .

Proof. Without loss of generality, we assume M(f) = 0. We first prove
the left hand side. Define the β-indexed function on [0, 1], gβ, as

gβ := t 7→ max{f(t), ρm(βε; f)},

and it is not difficult to see that

(C.9) ∥g1 − f∥2 = ε2, ∥gc − f∥2 = c2ε2.

Define function g̃ on [0, 1] as g̃ := t 7→ max{f(t), cρm(ε; f)}. Let tl,m and
tr,m be the left and right end point of the interval {t ∈ [0, 1] : f(t) ≤ g̃(t)} =
{t ∈ [0, 1] : f(t) ≤ cρm(ε; f)}. Clearly, [tl,m, tr,m] ⊂ {t : f(t) ≤ ρm(ε; f)},
which gives

∥g̃ − f∥2 =

∫ tr,m

tl,m

(cρm(ε; f)− f(t))2dt(C.10)

≤
∫ tr,m

tl,m

c2(ρm(ε; f)− f(t))2dt(C.11)

≤ c2∥g1 − f∥2 = c2ε2 = ∥gc − f∥2.(C.12)
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Therefore, g̃ ≤ gc at all the points. This gives cρm(ε; f) ≤ ρm(cε; f).
Now we turn to the right hand side, which can be reduced to finding the

value of

inf
f∈F

ρm(ε; f)

ρm(cε; f)
.

Let the left side and right side of the “water area” with “water level” ρm(cε; f)
be

(C.13) xl,m = min{x : gc(x) ≥ f(x)}, xr,m = max{x : gc(x) ≥ f(x)}.

The rest of the proofs can be divided into four steps.

1) The first step shows that taking the infimum of ρm(ε;f)
ρm(cε;f) over F is the

same as over the function class

(C.14)
Fl =

{
f ∈ F : f

∣∣
[0,xl,m]

, f
∣∣
[xr,m,1]

are linear functions with slopes

f ′(xl,m+), andf ′(xr,l−)
}
.

2) The second step shows that it is further no smaller than taking the
infimum over the function class

Fll =
{
f ∈ F : f

∣∣
[0,Z(f)]

, f
∣∣
[Z(f),1]

are piece-wise linear functions with

at most two pieces, f
∣∣
[0,xl,m]

, f
∣∣
[xr,m,1]

are linear functions
}
.

3) In the third step, we define two extended function spaces

F̃c =
{
f is convex function with unique minimizer on (−∞,∞) :

f
∣∣
(−∞,0]

, f
∣∣
[1,∞)]

are linear functions, f
∣∣
[0,1]

∈ F
}
,

F̃ll =
{
f ∈ F̃c : f

∣∣
(−∞,Z(f)]

and f
∣∣
[Z(f),∞)

are piece-wise linear functions

with at most three pieces
}
.

as well as two extended geometric quantities ρ̃z(ε; f), ρ̃m(ε; f) for
f ∈ F̃c:

ρ̃z(ε; f) = max{|t−Z(f)| : f(t) ≤ µ(ε; f)}, ρ̃m(ε; f) = µ(ε; f)−M(f),

where µ(ε; f) satisfies that for function fµ defined on R as fµ : t 7→
max{µ(ε; f), f(t)}, the following holds: ∥fµ − f∥2 = ε2. In this step,
we show that

inf
f∈Fll

ρm(ε; f)

ρm(cε; f)
≥ inf

f∈F̃ll

ρ̃m(ε; f)

ρ̃m(cε; f)
.
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4) Finally, in the fourth step, we show that

inf
f∈F̃ll

ρ̃m(ε; f)

ρ̃m(cε; f)
≥ inf

f∈F̃L

ρ̃m(ε; f)

ρ̃m(cε; f)
= c−

2
3 ,

where F̃L = {f ∈ F̃ll : f
∣∣
(−∞,Z(f)]

and f
∣∣
[Z(f),∞)

are linear functions}.

Step 1. We start with defining a mapping L1 : F −→ Fl, i.e., L1 maps a
function in F to a function in Fl. Then we will show that

ρm(ε; f)

ρm(cε; f)
≥ ρm(ε;L1(f))

ρm(cε;L1(f))
,(C.15)

by showing

ρm(cε; f) = ρm(cε;L1(f)), and(C.16a)

ρm(ε; f) ≥ ρm(ε;L1(f)).(C.16b)

Then Inequality (C.15) gives

inf
f∈F

ρm(ε; f)

ρm(cε; f)
≥ inf

f∈F

ρm(ε;L1(f))

ρm(cε;L1(f))
≥ inf

f∈Fl

ρm(ε; f)

ρm(cε; f)
.(C.17)

Granting Inequality (C.17) holds, to prove the statement of the first step,
we only need to show that

inf
f∈F

ρm(ε; f)

ρm(cε; f)
≤ inf

f∈Fl

ρm(ε; f)

ρm(cε; f)
.(C.18)

Inequality (C.18) indeed holds as Fl ⊂ F .
Now we give the precise definition of L1 by giving the value of L1(f)(t)

for [0, 1], and show that Inequalities (C.16) hold. Convexity of f ensures the
existence of one-sided derivatives. Let

(L1(f)) (t) =


f(xl,m) + f ′(xl,m+) · (t− xl,m) 0 ≤ t < xl,m

f(t) t ∈ [xl,m, xr,m]

f(xr,m) + f ′(xr,m−) · (t− xr,m) 1 ≥ t > xr,m

.

Clearly, Inequality (C.16a) holds. Now we will show that Inequality (C.16b)
holds. Without loss of generality, we can assume M(f) = 0. It is clear that
M(L1(f)) = 0, L1(f)(t) ≤ f(t)∀t ∈ [0, 1]. Define a function L̃1(f) on [0, 1]
as L̃1(f) : t 7→ max{L1(f)(t), ρm(ε; f)(t)}. Then we have

∥L̃1(f)− L1(f)∥2 =
∫ 1

0
((ρm(ε; f)− L1(f)(t))+)

2 dt

≥
∫ 1

0
((ρm(ε; f)− f(t))+)

2 dt = ε2.

(C.19)

This inequality gives Inequality (C.16b).
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Step 2. Similarly to Step 1, we will define a mapping L2 : Fl −→ Fll that
maps a function in Fl to a function in Fll, such that the following inequalities
hold.

ρm(cε; f) = ρm(cε;L2(f)), and(C.20a)

ρm(ε; f) ≥ ρm(ε;L2(f)).(C.20b)

Then, similar arguments as in Step 1 will give the statement of Step 2. To
define L2(f), we define a sequence of functions {h(δ; f)}δ>0 and then pick
one in this sequence. We first introduce two quantities:

l(δ; f) :=min{t ∈ [0, 1] : f(t) ≤ δ +M(f)},
r(δ; f) :=max{t ∈ [0, 1] : f(t) ≤ δ +M(f)}.

When there is no ambiguity, we will omit f , resulting in l(δ), and r(δ).
Now we define four functions l1, l2,δ, l3,δ, and l4 on R. Recall the definition
of xl,m and xr,m in (C.13).

l1(t) =


f(xl,m)−f(0)

xl,m
t+ f(0), if xl,m > 0,

(t− xl,m) lims→0+
f(xl,m+s)−f(xl,m)

s + f(xl,m), if Z(f) > xl,m = 0,

M(f), if Z(f) = xl,m = 0,

l2,δ(t) =

{
δ

l(δ)−Z(f)(t− Z(f)) +M(f), if Z(f) > 0,

M(f), if Z(f) = 0,

l3,δ(t) =

{
δ

r(δ)−Z(f)(t− Z(f)) +M(f), if Z(f) < 1,

M(f), if Z(f) = 1,

l4(t) =


f(1)−f(xr,m)

1−xr,m
(t− xr,m) + f(xr,m), if xr,m < 1,

(xr,m − t) lims→0+
f(xr,m−s)−f(xr,m)

s + f(xr,m), if Z(f) < xr,m = 1,

M(f), if Z(f) = xr,m = 1.

Based on these four functions, we define a new function h(δ; f) on [0, 1]:

h(δ; f) : t 7→ max{l1(t), l2,δ(t), l3,δ(t), l4(t)}.

When there is no ambiguity on f , we will denote h(δ; f) as h(δ). Clearly,

h(δ1)(t) ≥ h(δ2)(t), for all t ∈ [0, 1], when δ1 ≥ δ2.

This, along with the continuity of f implies that ρm(cε;h(δ)) increases
continuously as δ increases. Further, for δ = ρm(cε; f) and δ → 0+, we have

ρm(cε;h(ρm(cε; f))) ≥ ρm(cε; f), lim
δ→0+

ρm(cε;h(δ)) ≤ ρm(cε; f).
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Further, inequality limδ→0+ ρm(cε;h(δ)) ≤ ρm(cε; f) takes equality only
when both f |[0,Z(f)] and f |[Z(f),1] are linear functions. Therefore, ∃δ0 ∈
(0, ρm(cε; f)] such that ρm(cε;h(δ0)) = ρm(cε; f). We define L2(f) to be h(δ0).
Consequently, Inequality (C.20a) holds. It is also easy to check L2(f) ∈ Fll.
We use the following shorthand h := h(δ0) when there is no need to emphasize
δ0. Now we will prove ρm(ε;h(δ0)) ≤ ρm(ε; f) (Inequality (C.20b)) by proving
∥h− g1∥ ≥ ∥f − g1∥ = ε. By ρm(cε;h(δ0)) = ρm(cε; f), δ0 ≤ ρm(cε; f), and
the construction of h(δ), we have

{t : h(δ0)(t) ≤ ρm(cε; f)} = [xl,m, xr,m],

[0, 1]/[xl,m, xr,m] ⊂ {t : h(δ0)(t) = f(t)}.

Further, by the construction of h(δ), we have

f(t) ≤ (h(δ)) (t), for t ∈ [l(δ), r(δ)], f(t) ≥ (h(δ)) (t), for t /∈ [l(δ), r(δ)],

Therefore, we have

0 =∥f − gc∥2 − ∥h(δ0)− gc∥2

=

∫ xr,m

xl,m

(
(f(t)− gc(t))

2 − ((h(δ0) (t)− gc(t))
2
)
dt

=

∫ xr,m

xl,m

(h− f)(2gc − f − h)dt

≥
∫
(xl,m,l(δ0))∪(r(δ0),xr,m)

2(h− f)(ρm(cε; f)− δ0)dt

+

∫
[l(δ0),r(δ0)]

2(h− f)(ρm(cε; f)− δ0)dt

≥2(ρm(cε; f)− δ0)

∫ 1

0
(h− f)dt.

(C.21)

It then follows that

∥h− g1∥2 − ∥f − g1∥2

=

∫ xr,m

xl,m

(
(h− g1)

2 − (f − g1)
2
)
dt

=

∫ xr,m

xl,m

(h− f)(f + h− 2g1)dt

=

∫ xr,m

xl,m

(h− f)(f + h− 2gc)dt+

∫ xr,m

xl,m

2(h− f)(gc − g1)dt

=∥h− gc∥2 − ∥f − gc∥2 + 2(ρm(cε; f)− ρm(ε; f))

∫ 1

0
(h− f)dt ≥ 0.

(C.22)
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As a result, ρm(ε;h) ≤ ρm(ε; f), which is ρm(ε;L2(f)) ≤ ρm(ε; f). This is
Inequality (C.20b).

Step 3. First, we show that ρ̃z(ε; f) and ρ̃m(ε; f) are well defined for func-
tions in F̃ll. As F̃ll ⊂ F̃c, it is sufficient to show that ρ̃z(ε; f) and ρ̃m(ε; f) are
well defined for functions in F̃c. This holds true as for any function f ∈ F̃c,
f has a unique minimizer.

Now for each f ∈ Fll, we will define a class of functions L3(f) = {f̃δ1,δ2 ∈
F̃ll : δ1 > 0, δ2 > 0} such that

ρ̃m(ε; f̃δ1,δ2) ≤ ρm(ε; f), lim inf
max{δ1,δ2}→0+

ρ̃m(cε; f̃δ1,δ2) ≥ ρm(cε; f).(C.23)

We define function f̃δ1,δ2 by defining its values on three intervals, (−∞, 0),
[0, 1], and (1,∞). Specifically, for t ∈ [0, 1],

f̃δ1,δ2(t) = f(t),

for t ∈ (−∞, 0),

f̃δ1,δ2(t) =

{
f(0) +

f(xl,m)−f(0)
xl,m

t, xl,m > 0

f(0) + min{−δ−1
1 , lims→0+

f(s)−f(0)
s }t, xl,m = 0

,

and for t ∈ (1,∞),

f̃δ1,δ2(t) =

{
f(1) +

f(xr,m)−f(1)
xr,m−1 (t− 1), xr,m < 1

f(1) + max{δ−1
r , lims→0+

f(1)−f(1−s)
s }(t− 1), xl,m = 1

.

Clearly, f̃δ1,δ2 ∈ F̃ll. For ease of presentation, we extend the meaning of
max{·, ·} to allow function-value arguments in the remaining of this proof.
Suppose g is a function defined on X and C is a constant, then max{g, C}
or max{C, g} gives a function on X : x 7→ max{g(x), C}.

We proceed with showing Inequality (C.23) using the definition of L3(f).
Note that for any ξ ∈ (0, ρm(cε; f)),

lim
max{δ1,δ2}→0+

∥max{f̃δ1,δ2 ,M(f) + ρm(cε; f)− ξ} − f̃δ1,δ2∥

= ∥max{f,M(f) + ρm(cε; f)− ξ} − f∥ < cε.

Therefore,
lim inf

max{δ1,δ2}→0+
ρ̃m(cε; f̃δ1,δ2) ≥ ρm(cε; f)− ξ.
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Since it holds for any ξ ∈ (0, ρm(cε; f)), let ξ → 0+, we have

(C.24) lim inf
max{δ1,δ2}→0+

ρ̃m(cε; f̃δ1,δ2) ≥ ρm(cε; f).

For any δ1, δ2 > 0,

∥max{f̃δ1,δ2 ,M(f)+ρm(ε; f)}−f̃δ1,δ2∥ ≥ ∥max{f,M(f)+ρm(ε; f)}−f∥ ≥ ε,

which yields that
ρ̃m(ε; f̃δ1,δ2) ≤ ρm(ε; f).

Now we have Inequality (C.23). Since L3(f) ⊂ F̃ll, we get

inf
f∈Fll

ρm(ε; f)

ρm(cε; f)
≥ inf

f∈F̃ll

ρ̃m(ε; f)

ρ̃m(cε; f)
.

Step 4. We begin by defining several sets of functions such that F̃ll is the
disjoint union of them. Let

G̃(k1, k2) = {f ∈ F̃ll :f
∣∣
(−∞,Z(f))

is k1-piece linear function,

f
∣∣
(Z(f),∞)

is k2-piece linear function}.
(C.25)

Then
F̃ll =

⋃
1≤k1,k2≤3

G̃(k1, k2).

Clearly, F̃L = G̃(1, 1), and

ρ̃m(ε; f)

ρ̃m(cε; f)
= c−

2
3 , ∀f ∈ F̃L.

It remains to prove that

(C.26) inf
f∈F̃ll

ρ̃m(ε; f)

ρ̃m(cε; f)
≥ inf

f∈F̃L

ρ̃m(ε; f)

ρ̃m(cε; f)
.

Let
G(k) =

⋃
k1+k2=k

G̃(k1, k2), for k = 2, 3, 4, 5, 6.

It suffices to prove that for k ≥ 3

inf
f∈G(k)

ρ̃m(ε; f)

ρ̃m(cε; f)
≥ inf

f∈G(k−1)

ρ̃m(ε; f)

ρ̃m(cε; f)
,
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which gives Inequality (C.26) and complete the proof of step 4.
Similar to the arguments in previous steps, we prove it by constructing

mappings L4 : G(k) −→ G(k − 1) and L5 : G(k) −→ G(k − 1) such that

for any f ∈ G(k), at least one of the following holds: ρ̃m(ε;f)
ρ̃m(cε;f) ≥

ρ̃m(ε;L4(f))
ρ̃m(cε;L4(f))

,
ρ̃m(ε;f)
ρ̃m(cε;f) ≥

ρ̃m(ε;L5(f))
ρ̃m(cε;L5(f))

.

In this step, we keep using the extended definition of max{·, ·} for function-
value arguments defined in Step 3.

Let St be the set of the knots of f ∈ F̃ll, then
∣∣St/{Z(f)}

∣∣ = k − 2 ≥ 1.
Let

x∗ = max{x ∈ St : f(x) = max{f(t) : t ∈ St}}, tl = minSt, tr = maxSt.

Clearly, x∗ ̸= Z(f). Without loss of generality, assume x∗ > Z(f). Then by
definition of x∗, f

∣∣
[x∗,∞)

is a linear function. We define a function L4(f) ∈
G(k − 1). Convexity of f ensures the existence of the left derivative f ′(x∗−).
Further, by definition of x∗, f ′(x∗−) > 0. For t ∈ R, L4(f)(t) is defined by

(C.27) (L4(f)) (t) =

{
f(t), t < x∗

f(x∗) + f ′(x∗−)(t− x∗), t ≥ x∗
.

If f(x∗) ≥ M(f) + ρ̃m(cε; f), we have

ρ̃m(cε;L4(f)) = ρ̃m(cε; f), ρ̃m(ε;L4(f)) ≤ ρ̃m(ε; f),

which implies that ρ̃m(ε;f)
ρ̃m(cε;f) ≥

ρ̃m(ε;L4(f))
ρ̃m(cε;L4(f))

.

If f(x∗) < M(f) + ρ̃m(cε; f), we have f(tl) ≤ f(x∗) < M(f) + ρ̃m(cε; f).
Denote pl, pr to be the left and right root of f(t) = M(f)+ρ̃m(ε; f). Then pl <
xl,m < tl ≤ Z(f) < x∗ < xr,m < pr. Now we will first prove Inequality (C.34),

and then construct a new function L5(f) ∈ G(k− 1) such that ρ̃m(ε;L5(f))
ρ̃m(cε;L5(f))

≤
ρ̃m(ε;f)
ρ̃m(cε;f) . We start with splitting ∥max{L4(f),M(f)+ρ̃m(ε; f)}−L4(f)∥2 into
three parts of integration. We introduce the shorthand τ = M(f)+ρ̃m(ε;f)−f(x∗)

f ′(x∗−)
and note that[

max{L4(f),M(f) + ρ̃m(ε; f)} − L4(f)
]
(t) =

0 t /∈ [pl, x
∗ + τ ]

M(f) + ρ̃m(ε; f)− f(t) t ∈ [pl, tl] ∪ [tl, x
∗]

M(f) + ρ̃m(ε; f)−
[
f(x∗) + f ′(x∗−)(t− x∗)

]
t ∈ [x∗, x∗ + τ ]

.
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We have

(C.28) ∥max{L4(f),M(f) + ρ̃m(ε; f)} − L4(f)∥2 =∫ tl

pl

(M(f) + ρ̃m(ε; f)− f(t))2dt︸ ︷︷ ︸
Γ1

+

∫ x∗

tl

(M(f) + ρ̃m(ε; f)− f(t))2dt︸ ︷︷ ︸
Γ2

+
1

f ′(x∗−)

(ρ̃m(ε; f) +M(f)− f(x∗))3

3︸ ︷︷ ︸
Γ3

Similarly, ∥max{L4(f),M(f) + ρ̃m(cε; f)} − L4(f)∥2 can be split into 3
parts as well.

(C.29) ∥max{L4(f),M(f) + ρ̃m(cε; f)} − L4(f)∥2

=

∫ tl

xl,m

(M(f) + ρ̃m(cε; f)− f)2dt︸ ︷︷ ︸
γ1

+

∫ x∗

tl

(M(f) + ρ̃m(cε; f)− f)2dt︸ ︷︷ ︸
γ2

+

1

f ′(x∗−)

(ρ̃m(cε; f) +M(f)− f(x∗))3

3︸ ︷︷ ︸
γ3

.

We will compare ∥max{L4(f),M(f)+ρ̃m(ε;f)}−L4(f)∥2
∥max{L4(f),M(f)+ρ̃m(cε;f)}−L4(f)∥2 with

∥max{f,M(f)+ρ̃m(ε;f)}−f∥2
∥max{f,M(f)+ρ̃m(cε;f)}−f∥2 = 1

c2
. Now we split ∥max{f,M(f) + ρ̃m(cε; f)} −

f∥2 and ∥max{f,M(f)+ ρ̃m(ε; f)}−f∥2 into 3 parts for each. Further, some
of the parts equal to the aforementioned parts.

(C.30) ∥max{f,M(f) + ρ̃m(cε; f)} − f∥2

=

∫ tl

xl,m

(M(f) + ρ̃m(cε; f)− f)2dt︸ ︷︷ ︸
γ1

+

∫ x∗

tl

(M(f) + ρ̃m(cε; f)− f)2dt︸ ︷︷ ︸
γ2

+
1

f ′(x∗+)

(ρ̃m(cε; f) +M(f)− f(x∗))3

3︸ ︷︷ ︸
γ4

.
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(C.31) ∥max{f,M(f) + ρ̃m(ε; f)} − f∥2

=

∫ tl

pl

(M(f) + ρ̃m(ε; f)− f)2dt︸ ︷︷ ︸
Γ1

+

∫ x∗

tl

(M(f) + ρ̃m(ε; f)− f)2dt︸ ︷︷ ︸
Γ2

+

1

f ′(x∗+)

(ρ̃m(ε; f) +M(f)− f(x∗))3

3︸ ︷︷ ︸
Γ4

.

Elementary calculation gives

Γ1

γ1
≤
(

M(f) + ρ̃m(ε; f)− f(tl)

M(f) + ρ̃m(cε; f)− f(tl)

)3

≤
(

ρ̃m(ε; f) +M(f)− f(x∗)

ρ̃m(cε; f) +M(f)− f(x∗)

)3

,

(C.32a)

Γ2

γ2
≤
(

ρ̃m(ε; f) +M(f)− f(x∗)

ρ̃m(cε; f) +M(f)− f(x∗)

)2

<

(
ρ̃m(ε; f) +M(f)− f(x∗)

ρ̃m(cε; f) +M(f)− f(x∗)

)3

,

(C.32b)

Γ4

γ4
=

(
ρ̃m(ε; f) +M(f)− f(x∗)

ρ̃m(cε; f) +M(f)− f(x∗)

)3

=
Γ3

γ3
.

(C.32c)

Further, f ′(x∗+) ≥ f ′(x∗−) > 0 implies that Γ3 ≥ Γ4 > 0. Consequently, we
have

Γ1 + Γ2 + Γ3

γ1 + γ2 + γ3
≥ Γ1 + Γ2 + Γ4

γ1 + γ2 + γ4
,(C.33)

which follows from the fact that a+c
b+d ≥ a

b if a, b, c, d > 0 and c
d ≥ a

b . Note that
the terms in Inequality (C.33) are exactly the split parts of the quantities
in Equation (C.28), Equation (C.29), Equation (C.30), and Equation (C.31).
Consequently, we have

(C.34)
∥max{L4(f),M(f) + ρ̃m(ε; f)} − L4(f)∥2

∥max{L4(f),M(f) + ρ̃m(cε; f)} − L4(f)∥2
≥ 1

c2
.

Define function L5(f) ∈ G(k − 1) by scaling L4(f) horizontally with scaling
factor λ = cε

∥max{L4(f),M(f)+ρ̃m(cε;f)}−L4(f)∥ .

(C.35) L5(f) : t 7→ M(f) + [(L4(f)) (t)−M(f)]λ.

Clearly,

ρ̃m(cε;L5(f)) = λρ̃m(cε; f), ρ̃m(ε;L5(f)) ≤ λρ̃m(ε; f).

Thus the statement is proved.
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Now let us turn to the proof of the geometric property of the minimizer,
namely, for ε > 0, c ∈ (0, 1), and f ∈ F ,

(C.36) max{(c/2)
2
3 , c} ≤ ρz(cε; f)

ρz(ε; f)
≤ 1.

Proof. The right hand side of the inequality is straightforward. For the
left hand side, we prove a stronger version,

(C.37) c−2 ≥ 3

4

(
ρz(ε; f)

ρz(cε; f)

)2

+
1

4

(
ρz(ε; f)

ρz(cε; f)

)3

.

Similar to Step 3 in the previous proof for the minimum, for any f ∈ F , we
have a class of functions {f̃δ1,δ2 : δ1, δ2}, but with a bit of abuse of notation,
we define f̃δ1,δ2 here as

f̃δ1,δ2(t) =


f(t), t ∈ [0, 1]

f(0) + min{−δ−1
1 , lims→0+

f(s)−f(0)
s }t, t ∈ (−∞, 0)

f(1) + max{δ−1
2 , lims→0+

f(1)−f(1−s)
s }(t− 1), t ∈ (1,∞)

.

Similarly , we have

lim
max{δ1,δ2}→0+

ρ̃z(ε; f̃δ1,δ2) = ρz(ε; f), lim
max{δ1,δ2}→0+

ρ̃z(cε; f̃δ1,δ2) = ρz(cε; f).

Hence

(C.38) sup
f∈F

ρz(ε; f)

ρz(cε; f)
≤ sup

f∈F̃c

ρ̃z(ε; f)

ρ̃z(cε; f)
.

Similar to the proof of the minimum, for f ∈ F̃c, denote pl, pr as the two
roots of f(t) = M(f) + ρ̃m(ε; f), and ql, qr as the two roots of f(t) =
M(f)+ ρ̃m(cε; f). Without loss of generality, we assume pr = Z(f)+ ρ̃z(ε; f).
We define four quantities:

∆1 =

∫ Z(f)

pl

(ρ̃m(ε; f) +M(f)− f)2dt,

∆2 =

∫ Z(f)

ql

(ρ̃m(cε; f) +M(f)− f)2dt,

∆3 =

∫ qr

Z(f)
(ρ̃m(cε; f) +M(f)− f)2dt,

∆4 =

∫ pr

Z(f)
(ρ̃m(ε; f) +M(f)− f)2dt.

(C.39)
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Then we know that

(C.40) ε2 = ∥max{f,M(f) + ρ̃m(ε; f)} − f∥2 = ∆1 +∆4,

and that

(C.41) c2ε2 = ∥max{f,M(f) + ρ̃m(cε; f)} − f∥2 = ∆2 +∆3.

We also have

(C.42)
∆1

∆2
≥
(

ρ̃m(ε; f)

ρ̃m(cε; f)

)2

≥
(
pr − Z(f)

qr − Z(f)

)2

≥
(

ρ̃z(ε; f)

ρ̃z(cε; f)

)2

.

Next we will show that

∆4

∆3
≥
(
pr − Z(f)

qr − Z(f)

)3

≥
(

ρ̃z(ε; f)

ρ̃z(cε; f)

)3

.

For the ease of presentation, let us define four quantities w1 = pr − Z(f) =
ρ̃z(ε; f), w2 = qr −Z(f) ≤ ρ̃z(cε; f), v1 = ρ̃m(ε; f), v2 = ρ̃m(cε; f). Using this
notation, we can rewrite the expression for ∆4/∆3 as follows:

∆4

∆3
=

∫ w1

0 (v1 +M(f)− f(pr − t))2dt∫ w2

0 (v2 +M(f)− f(qr − t))2dt

=
w1

∫ 1
0 (v1 +M(f)− f(pr − w1 · t))2dt

w2

∫ 1
0 (v2 +M(f)− f(qr − w2 · t))2dt

.

(C.43)

We also have the following inequality:

M(f) + v1 − f(pr − w1 · t) = f(pr)− f(pr − w1 · t)

=
f(pr)− f(pr − w1 · t)

w1 · t
w1 · t

(iii)

≥ f(qr)− f(qr − w2 · t)
w2 · t

w1 · t

=
w1

w2
(f(qr)− f(qr − w2 · t)),

(C.44)

where step (iii) follows from the convexity of f and the facts that pr > qr,
and pr − w1 · t ≥ qr − w2 · t. Continuing with Inequality (C.43), we have

(C.45)
∆4

∆3
≥

w1

∫ 1
0

(
w1
w2

(f(qr)− f(qr − w2 · t))
)2

dt

w2

∫ 1
0 (f(qr)− f(qr − w2 · t))2dt

=

(
w1

w2

)3

.

In addition, we have

(C.46)
∆3

∆2
≥ 1

3

w2

ρ̃z(cε; f)
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Therefore,

c−2 =
∆1 +∆4

∆2 +∆3
≥

(
w1
w2

)2
∆2 +∆3

(
w1
w2

)3
∆2 +∆3

≥
1 + 1

3
w2

ρ̃z(cε;f)
w1
w2

1 + 1
3

w2
ρ̃z(cε;f)

(
w1

w2

)2

≥
1 + 1

3
ρ̃z(ε;f)
ρ̃z(cε;f)

4
3

(
ρ̃z(ε; f)

ρ̃z(cε; f)

)2

=
3

4

(
ρ̃z(ε; f)

ρ̃z(cε; f)

)2

+
1

4

(
ρ̃z(ε; f)

ρ̃z(cε; f)

)3

.

(C.47)

Since this inequality holds for all f ∈ F̃c and together with Inequality (C.38),
we obtain

c−2 ≥ 3

4

(
sup
f∈F

ρ̃z(ε; f)

ρ̃z(cε; f)

)2

+
1

4

(
sup
f∈F

ρ̃z(ε; f)

ρ̃z(cε; f)

)3

.

C.3. Proof of Proposition 2.2. We begin by establishing the lower
bound on the local modulus of continuity ωz(ε; f), namely, ρz(ε; f). We define
uε = sup{u : ∥f − fu∥2 ≤ ε} for given f and ε. Let tℓ and tr (tℓ < Z(f) < tr)
be the two end points of the interval {t : f(t) ≤ uε}. Without loss of
generality we assume that |tr − Z(f)| ≥ |tℓ − Z(f)|, which implies that
ρz(ε; f) = tr −Z(f). For any δ ∈ (0, tr − tℓ), consider the function gδ defined
as

(C.48) gδ : t 7→ max

{
f(t), uε −

uε − f(tr − δ)

tr − tℓ − δ
(t− tℓ)

}
.

It is easy to verify that gδ is convex with minimum point at tr − δ, and that
∥f −gδ∥ ≤ ∥f −fuε∥ ≤ ε. See a graphical illustration in Figure 20. Therefore,
taking δ → 0+ gives

ωz(ε; f) ≥ lim
δ→0+

(tr − δ) = ρz(ε; f).

Now we switch to the upper bound. Suppose g is a function such that
∥f − g∥ ≤ ε, with minimum point at Z(g) > Z(f). We will use proof by
contradiction.

If Z(g) > Z(f) + 3ρz(ε; f), then 1 ≥ Z(f) + 3ρz(ε; f). Recycling our
notation, we define tℓ(uε) = inf{t : f(t) ≤ uε} and tr(uε) = sup{t : f(t) ≤
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f(t)

tr

tr − δ

Fig 20: Illustration of construction of gδ, colored red in the plot

uε}. Convexity of f implies that f is continuous, hence f(tr(uε)) = uε. We
have two cases: 1, g(tr(uε)) > uε, 2, g(tr(uε)) ≤ uε.

For case 1, we know g(t) > uε for tl(uε) ≤ t ≤ tr(uε), so

∥f − g∥2 >
∫ tr(uε)

tl(uε)
(uε − f(t))2dt = ε2.

For case 2, we know g(t) ≤ uε for tr(uε) ≤ t ≤ tr(uε) + 2ρz(ε; f), so

∥f − g∥2 ≥
∫ tr(uε)+2ρz(ε;f)

tr(uε)
(

uε
tr(uε)− Z(f)

(t− tr(uε)))
2dt

≥ u2

(tr(uε)− Z(f))2
8ρz(ε; f)

3

3
=

8

3
ρz(ε; f)u

2 ≥ 4ε2

3

Either case, the there is a contradiction. Therefore, Z(g) ≤ Z(f)+3ρz(ε; f).
Let us now turn to ωm(ε; f) and firstly show that ωm(ε; f) ≥ ρm(ε; f). In

fact, if we take the convex function gδ as defined in Equation (C.48), we have
that ∥f − gδ∥ ≤ ε and that

lim
δ→0+

min
t

gδ(t)− Z(f) = ρm(ε; f),

which completes the proof.
Next, we will show that ωm(ε; f) can be upper bounded by ρm(ε; f) up to

a constant factor of 3.
For any g ∈ F such that ∥f − g∥ ≤ ε, we can immediately obtain

M(g)−M(f) ≤ ρm(ε; f).
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Otherwise, if M(g)−M(f) > ρm(ε; f), then g(t) > ρm(ε; f) +M(f) for all
t, and hence ε2 ≥ ∥f − g∥2 ≥ (M(g)−M(f)− ρm(ε; f))2(tr(uε)− tl(uε)) +
∥fuε − f∥2 > ε2.

On the other hand, we need to show the minimum value of g cannot be
too small compared to M(f). For the ease of presentation, we assume that
M(f) = 0 only for this part. As in the previous parts, we write tℓ = inf{t :
f(t) ≤ uε}, tr = sup{t : f(t) ≤ uε}, and vε = tr − tℓ. Graphically, vε is
the width of the water-filling surface. Suppose that M(g) = −αuε for some
α > 0. Consider the width of the set {t : g(t) ≤ 0}, which we denote as γvε
for some γ > 0. From Figure 21, we see that the integral ∥f − g∥22 has to
contain the ℓ2 area of the three shaded triangles (the two triangles on the
side might not exist). Given that M(g) = −auε and |{t : g(t) ≤ 0}| = γvε,
some calculation shows that

∥f − g∥2 ≥ u2εvε ·
1

3
α2γ

(
1 +

(
1

γ
− α+ 1

α

)3

∨ 0

)

≥ ε2 · 1
3
α2γ

(
1 +

(
1

γ
− α+ 1

α

)3

∨ 0

)

where the second inequality follows from u2εvε ≥ ε2. Fixing α and minimizing
over γ, we have that if α > 3, ∥f−g∥2 > ε2, which is contradictory. Therefore,
we have

M(f)−M(g) ≤ 3ρm(ε; f).

trtℓ

uε

g∗

f(t)g(t)

Fig 21: Illustration of upper bound proof

C.4. Proof of Theorem 2.1. We begin with the lower bounds by
first proving that Rz(ε; f) ≥ Φ(−0.5)ωz(ε; f). The proof for Rm(ε; f) ≥
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Φ(−0.5)ωm(ε; f) is analogous and will hence be omitted.
Let f ∈ F . Let g ∈ F , which we will specify later. Take θ ∈ {1,−1} as a

parameter to be estimated and let f1 = f and f−1 = g.
Any estimator Ẑ of the minimizer Z(fθ) gives an estimator of θ by

θ̂ =
Ẑ − Z(f1)+Z(f−1)

2
Z(f1)−Z(f−1)

2

,

and therefore Eθ|Ẑ − Z(fθ)| = |Z(f1)− Z(f−1)|Eθ
|θ̂−θ|
2 . On the other hand,

a sufficient statistic for θ is given by

(C.49) W =

∫ 1
0 (f1(t)− f−1(t))dY (t)− 1

2

∫ 1
0 (f1(t)

2 − f−1(t)
2)dt

ε∥f1 − f−1∥
.

Let Pθ be the probability measure associated with the white noise model

corresponding to fθ. Then W ∼ N
(
θ
2 · ∥f1−f−1∥

ε , 1
)
under Pθ.

Note that for any ωz(ε; f) > δ > 0 there exists hδ ∈ F such that
∥f − hδ∥2 = ε and |Z(f) − Z(hδ)| ≥ ωz(ε; f) − δ. Let g = hδ. Then
we have Rz(ε; f) ≥ (ωz(ε; f)− δ) · r1, where r1 is the minimax risk of
the two-point problem based on an observation X ∼ N( θ2 , 1), i.e., r1 =

inf θ̂ maxθ=±1 Eθ
|θ̂−θ|
2 . It is easy to see that r1 = Φ(−0.5). Taking δ → 0+,

we have Rz(ε; f) ≥ Φ(−0.5)ωz(ε; f), so a1 ≥ Φ(−0.5) ≈ 0.309.
Next, we show for 0 < α < 0.3 that Lz,α(ε; f) ≥ bαωz(ε/3; f) where

bα = 0.6 − 2α. A lower bound for Lm,α(ε; f) can be derived following a
similar argument. We begin by recalling a lemma from Cai and Guo (2017).

Lemma C.4 (Cai and Guo, 2017). For any CI ∈ Iz,α({f, g}),

EfL(CI) ≥ |Z(f)− Z(g)|(1− 2α− TV(Pf , Pg)),

where TV denotes the total variation distance between the two distributions
of the white noise models corresponding to f and g. Similarly, for any
CI ∈ Im,α({f, g}),

EfL(CI) ≥ |M(f)−M(g)|(1− 2α− TV(Pf , Pg)).

Again let g ∈ F . Then for CI ∈ Iz,α({f, g}), by Lemma C.4,

EfL(CI) ≥ |Z(f)− Z(g)|(1− 2α− TV(Pf , Pg)).
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Note that TV(Pf , Pg) ≤
√
χ2(Pf , Pg), where χ2(Pf , Pg) =

∫ (dPf

dPg

)2
dPg − 1

is the χ2 distance between Pf and Pg. Girsanov’s theorem yields that
dPf

dPg
=

exp
(∫ f(t)−g(t)

ε2
dY (t)− 1

2

∫ f(t)2−g(t)2

ε2
dt
)
, and hence

χ2(Pf , Pg) =

∫
exp(2

∫
f(t)− g(t)

ε2
dY (t)−

∫
f(t)2 − g(t)2

ε2
dt)dPg − 1

= exp(
∥f − g∥2

ε2
)− 1.

Using it to bound the total variation distance, we get

EfL(CI) ≥ |Z(f)− Z(g)|

(
1− 2α−

√
exp

(
∥f − g∥2

ε2

)
− 1

)
.

We continue by specifying g. For any ωz(ε/3; f) > δ > 0, picking g = gδ ∈
F such that ∥f − gδ∥ = ε/3 and |Z(f) − Z(gδ)| ≥ ωz(ε/3; f) − δ, we have
EfL(CI) ≥ (0.6− 2α) (ωz(ε/3; f)− δ) . By taking δ → 0+, we have

Lz,α(ε; f) ≥ (0.6− 2α)ωz(ε/3; f).

Now we turn to the upper bounds and introduce two lemmas, one for the
minimum and another for the minimizer, that will be proved later.

Lemma C.5. For 0 < α ≤ 0.3 and any f ∈ F ,

Rm(ε; f) ≤ Amρm(ε; f) ≤ Amωm(ε; f),(C.50)

Lm,α(ε; f) ≤ Bm,αρm(ε; f) ≤ Bm,αωm(ε; f),(C.51)

where Am = 1.03 and 0 < Bm,α ≤ 3(1− 2α)zα.

Lemma C.6. For 0 < α ≤ 0.3 and any f ∈ F ,

Rz(ε; f) ≤ Azρz(ε; f) ≤ Azωz(ε; f),(C.52)

Lz,α(ε; f) ≤ Bz,αρz(ε; f) ≤ Bz,αωz(ε; f),(C.53)

where Az = 1.5 and 0 < Bz,α ≤ 3(1− 2α)min{zα, (2zα)2/3}.

The theorem follows as Bα ≥ max{Bz,α, Bm,α} and A1 ≥ max{Am, Az}.
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Proof of Lemma C.5. For any function g ∈ F , define fθ with θ ∈
{−1, 1} and f−1 = f and f1 = g. Recall that for W defined in (C.49),

W ∼ N(θ · ∥f1−f−1∥
2ε , 1). Let M̂ = sign(W ) · M(g)−M(f)

2 + M(g)+M(f)
2 . Then

Ef (|M̂ −M(f)|) = |M(f)−M(g)|Φ(−∥g−f∥
2ε ) = Eg(|M̂ −M(g)|). Therefore,

Rm(ε; f) ≤ sup
g∈F

|M(f)−M(g)|Φ(−∥g − f∥
2ε

)
(i)

≤ sup
c>0

ωm(cε; f)Φ(− c

2
)

(ii)

≤ max{3ρm(ε; f) sup
0<c≤1

c
2
3Φ(− c

2
), sup

c≥1
ωm(cε; f)Φ(− c

2
)}

(iii)

≤ max{3ρm(ε; f)Φ(−1

2
), sup

c≥1
ωm(cε; f)Φ(− c

2
)},

where (i) is due to the definition of ωm(cε; f) in Equation (2.2), (ii) follows

from Proposition 2.1, (iii) is due to the fact that c
2
3Φ(− c

2) increases in
c ∈ [0, 1]. Furthermore we have,

sup
c≥1

ωm(cε; f)Φ(− c

2
)}

(iv)

≤ sup
c≥1

3ρm(cε; f)Φ(− c

2
)
(v)

≤ 3ρm(ε; f) · sup
c≥1

cΦ(− c

2
)

(vi)

≤ 3ρm(ε; f)× 0.3423
(vii)

≤ 1.03ωm(ε; f),

where (iv) is due to Proposition 2.2, (v) and (vii) are due to Proposition
2.1, and (vi) is due to a bound for supc≥1 cΦ(− c

2), which follows from the

elementary inequalities: Φ(−c/2) ≤ 1
c

√
2
π exp (− c2

8 ) for c > 0; ∂(cΦ(−c/2))
∂c =

Φ(−c/2)− c
2

√
1
2π exp (− c2

8 ) < 0 for c > 2; and supc∈[k/100,(k+1)/100] cΦ(−c/2) ≤
0.01(k + 1)Φ(−0.01 × k/2) for k = {100, 101, · · · , 200}. Therefore, we can
take Am = max{3Φ(−1/2), 1.03} = 1.03.

For inference of the minimum, consider the following confidence interval:

CIm,α =


{M(f)} W < −zα + ∥f−g∥

2ε

{M(g)} W ≥ (zα − ∥f−g∥
2ε ) ∨ (−zα + ∥f−g∥

2ε )

[M(f) ∧M(g),M(f) ∨M(g)] otherwise

.

Note that Ph(M(h) /∈ CIm,α) ≤ α for h ∈ {f, g} and for θ ∈ {0, 1},

EfθL(CIm,α) ≤ |M(f)−M(g)|Pfθ(−zα + 0.5
∥f − g∥

ε
≤ W < zα − 0.5

∥f − g∥
ε

)

≤ |M(f)−M(g)|(Φ(zα − ∥f − g∥
ε

)− α)+.
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Therefore, it follows from Proposition 2.1 that

Lm,α(ε; f)

≤ sup
g∈F

|M(f)−M(g)|(Φ(zα − ∥f − g∥
ε

)− α)+ ≤ sup
c>0

ωm(cε; f)(Φ(zα − c)− α)+

≤ max{ωm(ε; f)(Φ(zα)− α)+, sup
c>1

ωm(cε; f)(Φ(zα − c)− α)+}

= max{ωm(ε; f)(1− 2α), sup
c>1

ωm(cε; f)(Φ(zα − c)− α)+}.

Further, recalling α < 0.3, we have 2zα > 1, thus

sup
c>1

ωm(cε; f)(Φ(zα − c)− α)+ ≤ sup
c>1

3ρm(cε; f)(Φ(zα − c)− α)+

≤ 3ρm(ε; f) sup
c>1

c(Φ(zα − c)− α)+ = 3ρm(ε; f) sup
2zα>c>1

c(Φ(zα − c)− α)

(viii)

≤ 3ρm(ε; f) [(1− 2α)zα1{zα ≥ 1}+ (0.5− α) · 2zα1{zα < 1}]
≤ 3ωm(ε; f)(1− 2α)zα,

where (viii) follows from supc∈[A,B] c(Φ(zα − c)− α) ≤ B(Φ(zα −A)− α) for
any 1 ≤ A ≤ B ≤ 2zα. In conclusion, Lm,α(ε; f) ≤ 3(1 − 2α)zαρm(ε; f) ≤
3(1− 2α)zαωm(ε; f).

Proof of Lemma C.6. For any g ∈ F , consider fθ with θ ∈ {−1, 1},
f−1 = f and f1 = g. Recall that for W defined in (C.49), W ∼ N(θ ·
∥f1−f−1∥

2ε , 1). Let Ẑ = sign(W ) · Z(g)−Z(f)
2 + Z(g)+Z(f)

2 . Then Ef (|Ẑ−Z(f)|) =
|Z(f)− Z(g)|Φ(−∥g−f∥

2ε ) = Eg(|Ẑ − Z(g)|). Therefore,

Rz(ε; f) ≤ sup
g∈F

|Z(f)− Z(g)|Φ(−∥g − f∥
2ε

) ≤ sup
c>0

ωz(cε; f)Φ(−
c

2
)

≤ max{0.5ωz(ε; f), sup
c≥1

ωz(cε; f)Φ(−
c

2
)}.

(C.54)

In addition,

sup
c≥1

ωz(cε; f)Φ(−
c

2
)} ≤ sup

c≥1
3ρz(cε; f)Φ(−

c

2
)

≤ 3 sup
c≥1

min{c, (2c)
2
3 }ρz(ε; f)Φ(−

c

2
) ≤ 1.03ρz(ε; f).

(C.55)

Inequalities (C.55) and (C.54) together with Proposition 2.1 show that we
can take Az = 1.5.
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For inference of the minimizer, let

CIz,α =


{Z(f)} W < −zα + 0.5∥f−g∥

ε

{Z(g)} W ≥ (zα − ∥f−g∥
2ε ) ∨ (−zα + ∥f−g∥

2ε )

[Z(f) ∧ Z(g), Z(f) ∨ Z(g)] otherwise

.

Clearly, we have Pf (Z(f) /∈ CIz,α) ≤ α, Pg(Z(g) /∈ CIz,α) ≤ α.
For the expected length, similar to the proof for Lemma C.5, we have for

θ ∈ {−1, 1},

(C.56) EfθL(CIz,α) ≤ |Z(f)− Z(g)|(Φ(zα − ∥f − g∥
ε

)− α)+.

Therefore

Lz,α(ε; f)

≤ sup
g∈F

|Z(f)− Z(g)|(Φ(zα − ∥f − g∥
ε

)− α)+ ≤ sup
c>0

ωz(cε; f)(Φ(zα − c)− α)+

≤ max{ωz(ε; f)(Φ(zα)− α)+, sup
c>1

ωz(cε; f)(Φ(zα − c)− α)+}

≤ max{ωz(ε; f)(1− 2α), sup
c>1

ωz(cε; f)(Φ(zα − c)− α)+}.

Note that 0 < α < 0.3 implies 2zα > 1. Hence

sup
c>1

ωz(cε; f)(Φ(zα − c)− α)+ ≤ sup
c>1

3ρz(cε; f)(Φ(zα − c)− α)+

≤ 3ρz(ε; f) sup
c>1

min{c, (2c)2/3}(Φ(zα − c)− α)+

≤ 3ρz(ε; f)max
{
(1− 2α)min{zα, (2zα)2/3}1{zα ≥ 1}, (0.5− α)min{2zα, (4zα)2/3}

}
≤ 3ωz(ε; f)(1− 2α)min{zα, (2zα)2/3}.

In conclusion, Lz,α(ε; f) ≤ 3(1− 2α)min{zα, (2zα)2/3}ωz(ε; f).

C.5. Proof of Theorem 2.2. It follows from Theorem 2.1 and Propo-
sition 2.2 that A3

1ωz(ε; f) · ωm(ε; f)2 ≥ Rz(ε; f) · Rm(ε; f)2 ≥ a31ωz(ε; f) ·
ωm(ε; f)2 and ρz(ε; f)·ρm(ε; f)2 ≤ ωz(ε; f)·ωm(ε; f)2 ≤ 27ρz(ε; f)·ρm(ε; f)2.
Furthermore,

(C.57)
ε2

2
≤ ρz(ε; f) · ρm(ε; f)2 ≤ 3ε2.

This can be shown as follows. Let u = ρm(ε; f) +M(f) and define fu(t) =
max{f(t), u} as in Section 2.1. Note that ∥f−fu∥∞ ≤ ρm(ε; f) and it follows
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from the definition of ρm(ε; f) that ∥f − fu∥2 = ε. As illustrated in Figure 1
in Section 2.1 (with special attention to the rectangle ABCD and the triangle
EDF),

2ρz(ε; f) · ρm(ε; f)2 ≥
∫ 1

0
(f(t)− fu(t))

2dt = ε2

≥ max

{∫ Z(f)

0
(f(t)− fu(t))

2dt,

∫ 1

Z(f)
(f(t)− fu(t))

2dt

}
≥ 1

3
ρz(ε; f) · ρm(ε; f)2.

To conclude, we have for any f ∈ F

274ε2 > 81A3
1ε

2 ≥ Rz(ε; f) ·Rm(ε; f)2 ≥ a31
2
ε2 ≥ Φ(−0.5)3

2
ε2.

Similarly, we have

Lz,α(ε; f) · Lm,α(ε; f)
2 ≥ (0.6− 2α)3 · ωz(

ε

3
; f) · ωm(

ε

3
; f)2 ≥ (0.6− 2α)3

18
ε2,

and Lz,α(ε; f) · Lm,α(ε; f)
2 ≤ B3

αωz(ε; f)ωm(ε; f)2 ≤ 37 · (1− 2α)3ε2.

C.6. Proof of Theorem 2.3 . We will first introduce two propositions,
the proofs of which are deferred to the next section. Based on these two
propositions, we will complete the proof of the theorem.

Proposition C.1 (Penalty for super-efficiency in estimation of the mini-
mizer). For any estimator Ẑ, if ∃f ∈ F such that Ef |Ẑ−Z(f)| ≤ cRz(ε; f),
then ∃f1 ∈ F , such that

Ef1(|Ẑ − Z(f1)|) ≥ hz(c)Rz(ε; f1),

for 0 < c < 2
15 , where hz(c) is a constant only depending on c satisfying

that hz(c) ≥ 1{0.0007 ≤ c < 2
15}0.111

(
1− Φ(1 + Φ−1(3c))

)
+ 1{0 < c <

0.0007}max{ 1
24Φ

−1(1− 3c)
2
3 , 0.111

(
1− Φ(1 + Φ−1(3c))

)
}.

Proposition C.2 (Penalty for super-efficiency in estimation of the mini-
mum). For any estimator M̂ , if ∃f ∈ F such that E|M̂−M(f)| ≤ cRm(ε; f),
then ∃f1 ∈ F , such that

Ef1 |M̂ −M(f1)| ≥ hm(c)Rm(ε; f1),

for 0 < c < 0.1, where hm(c) is a constant only depending on c satisfying

hm(c) ≥ 1{0.1 > c ≥ Φ(−1)
2.06 }0.208118 + 1{0 < c < Φ(−1)

2.06 }z
2
3
2.06c/4.12.
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In the propositions, we will use c instead of γ as used in the main paper.
We will keep this change in the remaining proof of the theorem to avoid
confusion with the usage of γ in the proofs of supporting lemmas that we
deferred to the next section.

By Proposition C.1, we have

hz(c) ≥
1

24
z

2
3
3c, for c < 0.0007.

Suppose h̄z(c) = 0.111(1−Φ(1− z3c)). Clearly, h̄z(c) decreases as c increases.

Moreover, we know that
(
log
(
1
c

)) 1
3 also decreases as c increases, when

c ∈ (0, 0.1). Thus,

inf
c∈[0.0007,0.1]

h̄z(c)(
log
(
1
c

)) 1
3

≥ min
7≤k≤999

inf
c∈[ k

10000
, k+1
10000

]

h̄z(c)(
log
(
1
c

)) 1
3

≥ min
7≤k≤999

h̄z(
k+1
10000)(

log
(
10000

k

)) 1
3

≥ 0.0266 >
1

38
.

By Proposition C.2, we have

inf
c∈[Φ(−1)

2.06
,0.1)

hm(c)(
log
(
1
c

)) 1
3

≥ 0.208118(
log
(

2.06
Φ(−1)

)) 1
3

≥ 0.1520614 >
1

7
.

Therefore, it remains to understand relationships between z
2
3
2.06c, z

2
3
3c and(

log (1c )
) 1

3 . We have the following lemma that we will prove in Section D on
page 108.

Lemma C.7. For α < 0.08, z2.06α ≥ 0.61
√
log 1/α. For α < 0.005,

z3α ≥ 0.599
√

log 1/α.

Since 0.08 > Φ(−1)
2.06 , we have for c < 0.1,

hm(c) ≥ min{1
7
, 0.61

2
3 /4.12}

(
log

1

c

) 1
3

=
1

7

(
log

1

c

) 1
3

.

For hz(c), we have, for c < 0.1,

hz(c) ≥ min{ 1

38
, 0.599

2
3
1

24
}
(
log

1

c

) 1
3

=
1

38

(
log

1

c

) 1
3

.

Now we prove the propositions.
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Proof of Proposition C.1. We have the following two lemmas, which
we will prove in Section D on page 109 and 115.

Lemma C.8. For any estimator Ẑ, if ∃f ∈ F such that Ef |Ẑ − Z(f)| ≤
cρz(ε; f) , then ∃f1 ∈ F , such that

Ef1(|Ẑ − Z(f1)|) ≥ h̃z(c)ρz(ε; f1)

for c < 1. For 0 < c < 0.0011, h̃z(c) ≥ 1
16Φ

−1(1− 2c)
2
3 .

Lemma C.9. For any estimator Ẑ, if ∃f ∈ F such that Ef |Ẑ − Z(f)| ≤
cρz(ε; f) , then ∃f1 ∈ F , such that

Ef1(|Ẑ − Z(f1)|) ≥ h̃z(c)ρz(ε; f1)

for c < 1. For 0 < c < 0.2, h̃z(c) ≥ 0.1666
(
1− Φ(1 + Φ−1(2c))

)
.

Recall that, by Lemma C.6, 0.308ρz(ε; f) ≤ Rz(ε; f) ≤ 3
2ρz(ε; f). There-

fore, for any estimator Ẑ, if ∃f ∈ F such that Ef |Ẑ − Z(f)| ≤ cRz(ε; f),
then ∃f1 ∈ F , such that

Ef1(|Ẑ − Z(f1)|) ≥ hz(c)Rz(ε; f1),

for c < 2
15 . hz(c) ≥ 1{0.0007 ≤ c < 2

15}0.111
(
1− Φ(1 + Φ−1(3c))

)
+ 1{c <

0.0007}max{ 1
24Φ

−1(1− 3c)
2
3 , 0.111

(
1− Φ(1 + Φ−1(3c))

)
}.

Proof of Proposition C.2. Again we introduce a lemma and prove it
in Section D on page 115.

Lemma C.10. For any estimator M̂ , if ∃f ∈ F such that Ef |M̂−M(f)| ≤
cρm(ε; f) , then ∃f1 ∈ F , such that

Ef1(|M̂ −M(f1)|) ≥ h̃m(c)ρm(ε; f1)

for c < 1. For c ≤ 0.103, h̃m(c) ≥ 1{0.103 ≥ c ≥ Φ(−1)
2 }0.214362 + 1{c <

Φ(−1)
2 }z

2
3
2c/4.

According to Lemma C.5, we have Rm(ε; f) ≤ 1.03ρm(ε; f). Therefore, we
have, for any estimator M̂ , if ∃f ∈ F such that Ef |M̂ −M(f)| ≤ cRm(ε; f),
then ∃f1 ∈ F , such that

Ef1 |M̂ −M(f1)| ≥ hm(c)Rm(ε; f1)

for c < 1. For c < 0.1, hm(c) ≥ 1{0.1 > c ≥ Φ(−1)
2.06 }0.208118 + 1{c <

Φ(−1)
2.06 }z

2
3
2.06c/4.12.
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C.7. Proof of Theorem 3.1 . Recall that j̃ is defined in Equation
(C.1) and only depends on Yl. Then, We have

E(|Ẑ − Z(f)|) =E(1{ĵ < j̃}|Ẑ − Z(f)|) + E(1{ĵ ≥ j̃}|Ẑ − Z(f)|)
≤E(1{ĵ < j̃}1.5mĵ) + E(1{ĵ ≥ j̃}|Ẑ − Z(f)|).

(C.58)

We will show separately that

E(1{ĵ < j̃}1.5mĵ) ≤ 32.1ρz(ε; f),(C.59a)

E(1{ĵ ≥ j̃}|Ẑ − Z(f)|) ≤ 20.9ρz(ε; f).(C.59b)

Bounds in Inequality (C.59) combined with Theorem 2.1 and Proposi-
tion 2.2 give the statement:

(C.60) E(|Ẑ − Z(f)|) < 53ρz(ε; f) ≤
53

a1
Rz(ε; f).

C.7.1. Proof of Bound (C.59a).

El,s(1{ĵ < j̃}mĵ)

=

j∗−1∑
j1=3

mj1 El,s(1{ĵ < j̃, ĵ = j1})︸ ︷︷ ︸
η0(j1)

+

∞∑
j1=j∗

mj1El,s(1{ĵ < j̃, ĵ = j1})︸ ︷︷ ︸
κ

(C.61)

Next, we will analysis κ and η0(j1) for j1 ≤ j∗ − 1 separately.

Analysis of κ. Clearly,

(C.62) κ ≤
∞∑

j1=j∗

mj∗El,s(1{ĵ < j̃, ĵ = j1}) ≤ mj∗P (j∗ ≤ ĵ < j̃).

Analysis of η0(j1). Note that we have the following relationship between
events:

(C.63) {j1 < j̃, ĵ = j1} ⊂ {Tj1 ≤ 2
√
6ε
√
mj1 , j1 < j̃}

⊂ {X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5 ≤ 2
√
6ε
√
mj1 , j1 < j̃}∪

{X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5 ≤ 2
√
6ε
√
mj1 , j1 < j̃}.
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Therefore, the expectation of indicator function of the first event is no
larger than that of the last event (the union). Further, taking conditional
expectation first with respect to Yj gives

(C.64) η0(j1) ≤ El

(
Es

(
1{X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5 ≤ 2

√
6ε
√
mj1 , j1 < j̃}|Yl

))
︸ ︷︷ ︸

η1(j1)

+ El

(
Es

(
1{X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5 ≤ 2

√
6ε
√
mj1 , j1 < j̃}|Yl

))
︸ ︷︷ ︸

η2(j1)

.

Bounding η1(j1) and η2(j1) for j1 ≤ j∗ − 1 take similar steps, so we only
walk through the steps for η1(j1) for j1 ≤ j∗ − 1. Note that only when
îj1 + 6 ≤ 2j1 the indicator function in the expectation can take 1, so in the
following we have indicator function 1{̂ij1 + 6 ≤ 2j1} in the expectation
without writing it out.

We introduce the following quantity for the (partly standardized) noise
part of the statistic defined in stopping-rule Section 3.1.3.

(C.65) Ej,i =
1

√
mj

(W2(tj,i)− 2W2(tj,i−1) +W2(tj,i−2)) ,

where W2 is define in Equation (3.2).
Then for 2 ≤ i ≤ 2j , we have

Ej,i ∼ N(0, 6ε2).

Hence for j1 ≤ j∗ − 1 we have

η1(j1) = El(Es(1{X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5 ≤ 2
√
6ε
√
mj1 , j1 < j̃}|Yl))

= El(Es(1{(µj1 ,̂ij1+6 − µj1 ,̂ij1+5)
√
mj1 − 2

√
6ε ≤ −Ej1 ,̂ij1+6}|Yl)1{j1 < j̃})

≤ El(Es(1{(µj1,i∗j1
+5 − µj1,i∗j1

+4)
√
mj1 − 2

√
6ε ≤ −Ej1 ,̂ij1+6}|Yl)1{j1 < j̃}).

(C.66)

Further, for (µj1,i∗j1
+5 − µj1,i∗j1

+4)
√
mj1 , we have

(µj1,i∗j1
+5 − µj1,i∗j1

+4)
√
mj1

(i)

≥ (
ρm(ε; f)

ρz(ε; f)
mj1)

√
mj1

= ρm(ε; f)
√
ρz(ε; f)2

3
2
(j∗−j1)

(
mj∗

ρz(ε; f)

) 3
2

(ii)

≥ 1√
2
ε2

3
2
(j∗−j1)

(
mj∗

ρz(ε; f)

) 3
2 (iii)

≥ 1√
2
ε2

3
2
(j∗−j1)2−

9
2 ,

(C.67)
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where step(i) follows from j1 ≤ j∗−1, step (ii) follows from Inequality (C.57),
step (iii) is by the definition of j∗ in Equation (C.2). We will use both bounds
after step (ii) and step (iii) in Inequality (C.67) later. Continuing with
Inequality (C.66), we have

η1(j1)

≤ El

(
Es

(
1{ 1√

2
ε2

3
2 (j

∗−j1)2−
9
2

(
8mj∗

ρz(ε; f)

) 3
2

− 2
√
6ε ≤ −Ej1 ,̂ij1+6}|Yl

)
1{j1 < j̃}

)
= El

(
Φ(2− 2

3
2 (j

∗−j1−3)−1 1√
3

(
8mj∗

ρz(ε; f)

) 3
2

)1{j1 < j̃}

)
︸ ︷︷ ︸

η3(j1)

≤ El

(
Φ(2− 2

3
2 (j

∗−j1−3)−1 1√
3
)1{j1 < j̃}

)
︸ ︷︷ ︸

η4(j1)

.

Therefore, we have η1(j1) ≤ η3(j1) ≤ η4(j1) for j1 ≤ j∗ − 1. Following
almost the same steps, we also have η2(j1) ≤ η3(j1) ≤ η4(j1) for j1 ≤ j∗ − 1.
This gives

η0(j1) ≤ 2η3(j1) ≤ 2η4(j1) for j1 ≤ j∗ − 1.(C.68)

Plugging in the bounds for η0(j1) (j1 ≤ j∗ − 1) and κ back into In-
equality (C.61), together with the facts that mj1 = 2j

∗−j1mj∗ and 2 −
2

3
2
(j∗−j1−3)−1 1√

3
≤ 0 for j1 ≤ j∗ − 5, we have that

El,s(1{ĵ < j̃}mĵ)

≤ mj∗P (j∗ ≤ ĵ < j̃) +

j∗−5∑
j1=3

2j
∗−j1mj∗ · 2η4(j1) +

j∗−1∑
j1=j∗−4

2j
∗−j1mj∗ · 2η3(j1)

≤ mj∗ × 25
j∗−6∑
j1=3

2j
∗−j1−4Φ(2− 2

3
2
(j∗−j1−4) ·

√
2

3
) + 2Φ(2− 2

3
2 ·
√

2

3
)25mj∗

+
ρz(ε; f)

8
× 32× (

3∑
k=0

2−k8mj∗

ρz(ε; f)
Φ(2−

√
2

3

(
2−k8mj∗

ρz(ε; f)

) 3
2

)) +mj∗

(a)

≤ mj∗ × 25 ×
4Φ(2− 8×

√
2/3)

1− 0.008
+ 24.3mj∗ + 2ρz(ε; f)(2 + 1 + 0.5 + 0.25) +mj∗

< 25.4mj∗ + 15ρz(ε; f) ≤ 21.4ρz(ε; f).

(C.69)
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Therefore,

El,s(1{ĵ < j̃}1.5mĵ) ≤ 32.1ρz(ε; f).(C.70)

The detailed calculations of step (a) are based on Lemma C.2.

C.7.2. Proof of Bound (C.59b).

E(1{ĵ ≥ j̃}|Ẑ − Z(f)|)

(i)

≤
j∗−4∑
j=1

E(1{ĵ ≥ j, j̃ = j}|Ẑ − Z(f)|) +
∞∑

j=j∗−3

E(1{ĵ ≥ j, j̃ = j}|Ẑ − Z(f)|)

(ii)

≤
j∗−4∑
j=1

2j
∗−jmj∗E

(
1{ĵ ≥ j}

([
51{Xj,i∗j−3 ≤ Xj,i∗j−1}+ 41{Xj,i∗j−2 ≤ Xj,i∗j−1}

+ 61{Xj,i∗j−4 ≤ Xj,i∗j−1}
]
1{tj,i∗j−1 ≥ mj}+

[
51{Xj,i∗j+3 ≤ Xj,i∗j+1}

+ 61{Xj,i∗j+4 ≤ Xj,i∗j+1}+ 41{Xj,i∗j+2 ≤ Xj,i∗j+1}
]
1{tj,i∗j+1 ≤ 1}

))
+ 6× 8×mj∗

(iii)

≤ 2

j∗−4∑
j=1

2j
∗−jmj∗

(
4Φ(−ρm(ε; f)

ρz(ε; f)
mj

√
mj√
6ε

) + 5Φ(−2
ρm(ε; f)

ρz(ε; f)
mj

√
mj√
6ε

)+

6Φ(−3
ρm(ε; f)

ρz(ε; f)
mj

√
mj√
6ε

)
)
+ 48mj∗

≤ 48mj∗ + 2

j∗−4∑
j=1

2j
∗−jmj∗

(
4Φ(−

√
2/3(

1

8
)

3
2 × 2

3
2 (j

∗−j−1))+

5Φ(−
√
2/3 · 2(1

8
)

3
2 × 2

3
2 (j

∗−j−1)) + 6Φ(−
√
2/3 · 3(1

8
)

3
2 × 2

3
2 (j

∗−j−1))
)

(a)

≤ 48mj∗ + 2mj∗

(
16Φ(−

√
2

3
)× 4 + 32Φ(−4

√
1

3
)

1

1− 2× Φ(−8
√

2
3 )

Φ(−4/
√
3)

× 4+

5× Φ(−2

√
2

3
)× 16× 1

1− 2× Φ(−8/
√
3)

Φ(−2
√

2/3)

+ 6× Φ(−
√
6)× 1

1− 2× Φ(−4
√
3)

Φ(−
√
6)

)
< 20.9ρz(ε; f).

Step (i)(ii)(iii) follows from splitting, simplifying, and analyzing the events

in the indicator functions. Step (a) follows from the fact that Φ(−2
√
2x)

Φ(−x)
decreases as x > 0 increases.

C.8. Proof of Theorem 3.2. We will show the coverage guarantee
and the upper bound of the expected length separately.
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C.8.1. Proof of Coverage Guarantee. Recalling that we introduced the
notation jw to denote the step that the localization procedure chooses an
interval relatively far away from the right one:

(C.71) jw = min{j : |̂ij − i∗j | ≥ 5}.

Then we know that |̂ijw−1 − i∗jw−1| ≤ 4, so we have that |̂ijw+k − i∗jw+k| ≤
6∗2k+1−2 for all k ≥ −1. We now introduce a lemma that provides an upper
bound on the probability of stopping at least K + 1 steps after reaching jw.

Lemma C.11. For jw defined in Equation (C.71), and for K ≥ 0, we
have

P (ĵ ≥ jw +K + 1) ≤ Φ(−2)K .

In particular, for Kα = ⌈ logα
log Φ(−2)⌉, P (ĵ ≥ jw +Kα + 1) ≤ α.

Note that when ĵ ≤ jw +Kα, we have |̂iĵ − i∗
ĵ
| ≤ 12 · 2Kα − 2, implying

that Z(f) ∈ [L,U ]. Therefore, we have

P (Z(f) ∈ CIz,α) ≥ P (ĵ ≤ jw +Kα) = 1−P (ĵ ≥ jw +Kα +1) ≥ 1−α.

It remains to prove Lemma C.11.

Proof of Lemma C.11. Now we will calculate the probability that the
stopping rule does not stop K steps after jw. When jw = ∞, ĵ can never be
larger that jw, so it suffices to consider the event {jw < ∞}.

El,s

(
1{ĵ ≥ jw +K + 1}1{jw < ∞}

)
= El,s

( ∞∑
j1=3

1{ĵ ≥ j1 +K + 1}1{jw = j1}
)

= El

( ∞∑
j1=3

Es(1{ĵ ≥ j1 +K + 1}|Yl)1{jw = j1}
)

(i)

≤ El

( ∞∑
j1=3

Φ(−2)K1{jw = j1}
)
≤ Φ(−2)K .

(C.72)

The rationale for step (i) in Equation (C.72) is as follows. Define the set of
possible localization sequences with jw = j1 truncated at step j1 +K + 1:

S(j1,K + 1) =

{
(i0, . . . , ij1+1+K)

∣∣∣∣(1 ∨ 2ij − 2) ≤ ij+1 ≤ (2ij + 1 ∧ 2j+1),

∀0 ≤ j ≤ j1 +K,& i0 = 1,& |ij1 − i∗j1 | ≥ 5,& |ij − i∗j | ≤ 4, ∀0 ≤ j < j1

}
.
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∀s ∈ S(j1,K + 1), denote (il, . . . , ih) in s as s(l, h), and denote the
sequence (̂il, . . . , îh) produced by the localization procedure as ŝ(l, h). If
l = h, we will abbreviate s(l, l) into s(l) and ŝ(l, l) into ŝ(l). Then we know
that for s ∈ S(j1,K + 1) with s(j1) ≤ i∗j1 − 5, we have s(j) + 6 < i∗j for
j = j1 + 1, . . . ,K + 1, therefore, µj,s(j)+6 − µj,s(j)+5 ≤ 0. On the other hand,
for s ∈ S(j1,K + 1) with s(j1) ≥ i∗j1 + 5, we have µj,s(j)−6 − µj,s(j)−5 ≤ 0.
Now we define a sign function indicating which side s(j) is on to i∗j ,

sg(s, j) = sign{i∗j − s(j)}.

We introduce the shorthand τj,i = W2(tj,i)−W2(tj,i−1) . Now we proceed to
the analysis of the first inequality in Equation (C.72), and without confusion,
we write S(j,K + 1) as S and sg(s, j) as sg.

Es

(
1{ĵ ≥ j1 +K + 1}|Yl

)
1{jw = j1}

= Es

(∑
s∈S

1{ĵ ≥ j1 +K + 1, ŝ(0, j1 + 1 +K) = s}|Yl

)
1{jw = j1}

≤ Es

(∑
s∈S

1
{
min{X̃j,s(j)+6 − X̃j,s(j)+5, X̃j,s(j)−6 − X̃j,s(j)−5} ≥ 2

√
2csε

√
mj ,

∀j = j1 + 1, · · · , j1 +K
}
1{ŝ(0, j1 + 1 +K) = s}|Yl

)
1{jw = j1}

≤
∑
s∈S

Es

(
1{X̃j,s(j)+6sg − X̃j,s(j)+5sg ≥ 2

√
2csε

√
mj ,

∀j = j1 + 1, · · · , j1 +K}1{ŝ(0, j1 + 1 +K) = s}|Yl

)
1{jw = j1}

≤
∑
s∈S

Es

(
1{mj · µj,s(j)+6sg −mj · µj,s(j)+5sg + τj,s(j)+6sg − τj,s(j)+5sg ≥ 2

√
2csε

√
mj ,

∀j = j1 + 1, · · · , j1 +K}1{ŝ(0, j1 + 1 +K) = s}|Yl

)
1{jw = j1}

≤
∑
s∈S

Es

(
1{τj,s(j)+6sg − τj,s(j)+5sg ≥ 2

√
2csε

√
mj ,

∀j = j1 + 1, · · · , j1 +K}1{ŝ(0, j1 + 1 +K) = s}|Yl

)
1{jw = j1}

=
∑
s∈S

Φ(−2)KEs

(
1{ŝ(0, j1 + 1 +K) = s}|Yl

)
1{jw = j1}

= Φ(−2)K1{jw = j1}.

C.8.2. Proof of Upper Bound of Expected Length. We have the following
lemma for the length of the confidence interval for the minimizer.

Lemma C.12 (Length of Confidence Interval for the Minimizer). For
0 < α < 0.3, the expected length of the confidence interval given in (3.6)
satisfies

E(CIz,α(Y )) ≤ (24× 2Kα − 3)× 17.5× ρz(ε; f) ≤ Cz,αLz,α(ε; f).
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Proof of Lemma C.12. Recall that we denote by j̃ the stage where the
localization procedure start choosing an interval not close to the target:

j̃ = min{j : |̂ij − i∗j | ≥ 2}.

To prove the lemma, we only need to upper bound E(mĵ). Splitting the
entire probability space into smaller events gives

(C.73) E(mĵ) = E(mĵ1{ĵ ≥ j∗ − 3}) + E(mĵ1{ĵ ≤ j∗ − 4})

≤ 8mj∗ + E(mĵ1{ĵ ≥ j̃, ĵ ≤ j∗ − 4}) + E(mĵ1{ĵ ≤ j̃ − 1, ĵ ≤ j∗ − 4})

≤ 2ρz(ε; f) + E(mj̃1{j̃ ≤ ĵ ≤ j∗ − 4})︸ ︷︷ ︸
η1

+

j∗−4∑
j=1

mjE(1{ĵ = j, j̃ ≥ j + 1})︸ ︷︷ ︸
η2

.

We bound η1 and η2 separately as follows. We start with η1.

η1 = E(mj̃1{j̃ ≤ ĵ ≤ j∗ − 4}) ≤ E(mj̃1{j̃ ≤ j∗ − 4}) =
j∗−4∑
j=1

mjE(1{j̃ = j})

≤
j∗−4∑
j=1

mjE(1{Xj,i∗j+3 ≤ Xj,i∗j+1, tj,i∗j+3 ≤ 1}+ 1{Xj,i∗j+2 ≤ Xj,i∗j+1, tj,i∗j+1 ≤ 1}

+ 1{Xj,i∗j−3 ≤ Xj,i∗j−1, tj,i∗j−3 ≥ mj }+ 1{Xj,i∗j−2 ≤ Xj,i∗j−1, tj,i∗j−2 ≥ mj})

+ 1{Xj,i∗j−4 ≤ Xj,i∗j−1, tj,i∗j−4 ≥ mj}+ 1{Xj,i∗j+4 ≤ Xj,i∗j+1, tj,i∗j+4 ≤ 1})

≤
j∗−4∑
j=1

2j
∗−jmj∗ × 2(Φ(−ρm(ε; f)

ρz(ε; f)
mj

√
mj

1

cl
√
2ε

) + Φ(−ρm(ε; f)

ρz(ε; f)
2mj

√
mj

1

cl
√
2ε

)

+ Φ(−ρm(ε; f)

ρz(ε; f)
3mj

√
mj

1

cl
√
2ε

))

≤
j∗−4∑
j=1

2j
∗−j ρz(ε; f)

2

(
Φ(−2

3
2 (j

∗−j)(
1

8
)

3
2

1

2cl
) + Φ(−2

3
2 (j

∗−j) × 2× (
1

8
)

3
2

1

2cl
)

+ Φ(−2
3
2 (j

∗−j) × 3× (
1

8
)

3
2

1

2cl
)
)

= 4

j∗−4∑
j=1

2j
∗−j−3ρz(ε; f)

(
Φ(−2

3
2 (j

∗−j−4)
√
2/3) + Φ(− 1√

2
2

3
2 (j

∗−j−3)
√
2/3)

+ Φ(−3× 2
3
2 (j

∗−j−3)
√
2/3)

)
(a)

≤ 8ρz(ε; f)×
(
Φ(−

√
2/3) + Φ(−2

√
2/3) + Φ(−

√
6)+

[2Φ(−4/
√
3) + 2Φ(−8/

√
3) + 2Φ(−12/

√
3)]

1

1− 2
Φ(−8

√
2/3)

Φ(−4/
√
3)

)
.
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Step (a) follows from the fact that Φ(−2
√
2x)

Φ(−x) decreases as x > 0 increases.

Now we bound η2 in Equation (C.73).

η2 =

j∗−4∑
j=1

mjE(1{ĵ = j, j̃ ≥ j + 1}) =
j∗−4∑
j=1

mjEl

(
Es(ĵ = j|Yl)1{j̃ ≥ j + 1}

)
≤

j∗−4∑
j=1

mjEl

(
Es(X̃j,̂ij+6 − X̃j,̂ij+5 ≤ 2

√
2csε

√
mj |Yl)1{j̃ ≥ j + 1}+

Es(X̃j,̂ij−6 − X̃j,̂ij−5 ≤ 2
√
2csε

√
mj |Yl)1{j̃ ≥ j + 1}

)
≤

j∗−4∑
j=1

mjEl

(
2Φ(2− ρm(ε; f)

ρz(ε; f)
mj

√
mj

cs
√
2ε

)1{j̃ ≥ j + 1}
)

≤
j∗−4∑
j=1

2j
∗−j ρz(ε; f)

4
× 2Φ(2− 2

3
2
(j∗−j−3)

2cs
)El

(
1{j̃ ≥ j + 1}

)
≤

j∗−4∑
j=1

2j
∗−j ρz(ε; f)

4
× 2Φ(2− 2

3
2
(j∗−j−4)

√
2/3)

≤ 8ρz(ε; f)
(
Φ(2−

√
2/3) + 2Φ(2− 4/

√
3) + 4Φ(2− 8×

√
2/3)

1

1− 0.008

)
.

Plugging the bounds for η1 and η2 back to Equation (C.73) gives

(C.74) E(mĵ) < 17.5ρz(ε; f).

Therefore,

E(CIz,α) ≤ (24× 2Kα − 3)× E(mĵ) ≤ (24× 2Kα − 3)× 17.5ρz(ε; f).

(C.75)

Further, by Theorem 2.1, Proposition 2.1, and Proposition 2.2, we have
Lz,α(ε; f) ≥ bαωz(ε/3; f) ≥ bαρz(ε; f)/3 when 0 < α < 0.3, which gives the
statement.

C.9. Proof of Theorem 3.3. We introduce two quantities associated
with (Yl, Ys) induced error and Ye induced error.

f̂ =
1

mĵ

∫ t̂i
ĵ
+∆

t̂i
ĵ
+∆−1

f(t)dt, Ẑ =
1

mĵ

(W3(t̂iĵ+∆)−W3(t̂iĵ+∆−1)),
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where

∆ = 2
(
1{X̃ĵ ,̂iĵ+6 − X̃j,̂iĵ+5 ≤ 2σj} − 1{X̃ĵ ,̂iĵ−6 − X̃j,̂iĵ−5 ≤ 2σj}

)
.

Clearly, f̂ only depends on (Yl, Ys) and Ẑ|(Yl, Ys) is independent with (Yl, Ys).
Therefore, we have:

El,s,e

(
(M̂ −M(f))2

)
= El,s,e

(
(f̂ −M(f))2 + Ẑ2 + 2Ẑ(f̂ −M(f))

)
(a)
= El,s

(
(f̂ −M(f))2 +

3ε2

mĵ

)
≤ El,s

(
(f̂ −M(f))2

)
+

24ε2

ρz(ε; f)
E
(
2ĵ−j∗

)
.

(C.76)

Step (a) follows from taking conditional expectation on (Yl, Ys) and the
mutual independence between Yl, Ys and Ye.

For the second term of the right hand side of Inequality (C.76), we have
the following lemma that we will prove later.

Lemma C.13.

(C.77) E(2ĵ−j∗) <
35

8
≤ 35

4

ρz(ε; f)ρm(ε; f)2

ε2
.

For the first term of the right hand side of Inequality (C.76), we have

El,s

(
(f̂ −M(f))2

)
= El,s

(
(f̂ −M(f))21{j̃ ≤ ĵ}

)
+ El,s

(
(f̂ −M(f))21{j̃ > ĵ}

)
.

(C.78)

To bound the first term in Equation (C.78), on the event {j̃ ≤ ĵ}, we have

(f̂ −M(f))2 ≤
(
(f̂ − µĵ ,̂iĵ

)+ + (µĵ ,̂iĵ
−M(f))

)2
≤ 2
(
f̂ − µĵ ,̂iĵ

)2
+
+ 2
(
µĵ ,̂iĵ

−M(f)
)2

≤ 2
(
f̂ − µĵ ,̂iĵ

)2
+
+

8

3

(
µĵ ,̂iĵ

− µj̃ ,̂ij̃

)2
+
+ 8
(
µj̃ ,̂ij̃

−M(f)
)2
.

(C.79)

Therefore, going back to Inequality (C.78), we have

El,s

(
(f̂ −M(f))2

)
≤ 2El,s

((
(f̂ − µĵ ,̂iĵ

)+
)2
1{j̃ ≤ ĵ}

)
+ El,s

(
(f̂ −M(f))21{j̃ > ĵ}

)
+ 2El,s

(
4

3

((
µĵ ,̂iĵ

− µj̃ ,̂ij̃

)
+

)2
1{j̃ ≤ ĵ}

)
+ 2El,s

(
4
(
µj̃ ,̂ij̃

−M(f)
)2
1{j̃ ≤ ĵ}

)
.

(C.80)
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To bound each term in Inequality (C.80), we introduce and prove the following
proposition.

Proposition C.3.

El,s

(
(f̂ −M(f))21{j̃ > ĵ}

)
< 15949ρm(ε; f)2,(C.81)

El,s

((
(f̂ − µĵ ,̂iĵ

)+
)2
1{j̃ ≤ ĵ}

)
< 13064ρm(ε; f)2,(C.82)

El,s

((
µj̃ ,̂ij̃

−M(f)
)2
1{j̃ ≤ ĵ}

)
< 3104ρm(ε; f)2,(C.83)

El,s

(((
µĵ ,̂iĵ

− µj̃ ,̂ij̃

)
+

)2
1{j̃ ≤ ĵ}

)
< 50857ρm(ε; f)2.(C.84)

By applying Proposition C.3 to Inequality (C.80) and using Lemma C.13,
followed by plugging in Inequality (C.76), we arrive at the statement of the
theorem. Now we are left with proving Proposition C.3 and Lemma C.13.
Before we proceed, we introduce and prove the following lemma, which makes
the equation E(Y) = E(Y

∑
j≥1 1{ĵ = j}) holds for any random variable Y.

Lemma C.14. P (ĵ < ∞) = 1.

Proof. To prove this, we only need to prove limj→∞ P (ĵ > j) = 0.
Suppose j ≥ j∗ + 3. For j1 ≥ j∗ + 2,

min{µj1 ,̂ij1+6 − µj1 ,̂ij1+5, µj1 ,̂ij1−6 − µj1 ,̂ij1−5} < 13.5mj1

ρm(ε; f)

ρz(ε; f)
.

Note that we have inequalities

(C.85) 3ε2 ≥ ρz(ε; f)ρm(ε; f)2 ≥ 1

2
ε2, and ρz(ε; f) ≥ 4mj∗ ,

which gives

min{µj1 ,̂ij1+6 − µj1 ,̂ij1+5, µj1 ,̂ij1−6 − µj1 ,̂ij1−5}mj1/(cs
√
2mj1ε

2) ≤ 13.5 · 2
−3(j1−j∗+2)

2 .

Therefore,
(C.86)
P (ĵ > j)

= El

(
Es(Π

j−1
j1=j∗+21{min{X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5, X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5} > 2σj1}|Yl)

)
≤ El

(
Πj−1

j1=j∗+2Φ(−2 + 13.5 · 2
−3(j1−j∗+2)

2 )

)
< Φ(−1.85)j−j∗−2.

Therefore, limj→∞ P (ĵ > j) ≤ limj→∞Φ(−1.85)j−j∗−2 = 0.
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Continuing with the proof of the Proposition C.3, we have the following
lemmas that we will prove in the Section D (page 117, 122, 123 and 125).

Lemma C.15.

El,s

(
(f̂ −M(f))21{j̃ > ĵ}

)
≤(7680V + 2)ρm(ε; f)2 + 78V ρm(ε; f)2 +

1

16
ρm(ε; f)2,

(C.87)

where V = supx≥0 x
2Φ(2− x).

Lemma C.16.

(C.88) El,s

((
(f̂ − µĵ ,̂iĵ

)+
)2
1{j̃ ≤ ĵ}

)
≤ 6355.2V ρm(ε; f)2,

where V = supx≥0 x
2Φ(2− x).

Lemma C.17.
(C.89)

El,s

((
µj̃ ,̂ij̃

−M(f)
)2
1{j̃ ≤ ĵ}

)
< 3(28 + 28 Φ(−1.85)

(1−Φ(−2+ 1
12

))2
)ρm(ε; f)2(231

8)Q,

where Q = supx≥0 x
2Φ(−x).

Lemma C.18.
(C.90)

El,s

(((
µĵ ,̂iĵ

− µj̃ ,̂ij̃

)
+

)2
1{j̃ ≤ ĵ}

)
≤ 277075Qρm(ε; f)2 + 23850.1Qρm(ε; f)2,

where Q = supx≥0 x
2Φ(−x).

These four lemmas combined with Lemma C.3 give the statement of
Proposition C.3.

Finally we will prove Lemma C.13.

Proof of Lemma C.13. Splitting the entire probability space into smaller
events gives

E
(
2ĵ−j∗

)
= E(2ĵ−j∗

1{ĵ ≤ j∗ + 2}) + E({2ĵ−j∗
1{ĵ ≥ j∗ + 3})

≤ 4 + E
(
2ĵ−j∗

1{ĵ ≥ j∗ + 3}
)

= 4 + El,s

( ∑
j1≥j∗+3

2j1−j∗
1{ĵ = j1, tĵ ,̂iĵ

≤ 7ρm(ε; f)

16
+ Z(f)}

+
∑

j1≥j∗+3

2j1−j∗
1{ĵ = j1, tĵ ,̂iĵ

>
7ρm(ε; f)

16
+ Z(f)}

)
.

(C.91)
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Now we will bound the second term and the third term in the Inequality
(C.91). Without loss of generality, we can assume

sup{t > Z(f) : f(t) ≤ ρm(ε; f) +M(f)} = ρz(ε; f) + Z(f),

because otherwise the following would hold:

min{t < Z(f) : f(t) ≤ ρm(ε; f) +M(f)} = Z(f)− ρz(ε; f),

for which one only need to flip everything around with Z(f) being the center.
Then for the second term, simplifying event, taking conditional expectation
and calculating that gives
(C.92)

El,s

( ∑
j1≥j∗+3

2j1−j∗
1{ĵ = j1, tĵ ,̂iĵ

≤ 7ρm(ε; f)

16
+ Z(f)}

)
= El,s

[ ∑
j1≥j∗+3

2j1−j∗
1{ĵ = j1, tj1 ,̂ij1

≤ 7ρm(ε; f)

16
+ Z(f),

∀j∗ + 2 ≤ j ≤ j1 − 1, Ej,̂ij+6

1√
2csε

≥ 2−
√
mj√
2csε

(µj,̂ij+6 − µj,̂ij+5)}
]

≤
∑

j1≥j∗+3

2j1−j∗El

[
Es

(
1{tj1 ,̂ij1 ≤ 7ρm(ε; f)

16
+ Z(f),

∀j∗ + 2 ≤ j ≤ j1 − 1, Ej,̂ij+6

1√
2csε

≥ 2−
√
mj√
2csε

(µj,̂ij+6 − µj,̂ij+5)}|Yl
)]

≤
∑

j1≥j∗+3

2j1−j∗El

[
1{tj1 ,̂ij1 ≤ 7ρm(ε; f)

16
+ Z(f)}

Es

(
1{∀j∗ + 2 ≤ j ≤ j1 − 1,

Ej,̂ij+6√
2csε

≥ 2−
√
mj√
2csε

ρm(ε; f)( 7
16ρz(ε; f) + 6mj)

ρz(ε; f)
}|Yl

)]
,

≤
∑

j1≥j∗+3

2j1−j∗El

[
1{tj1 ,̂ij1 ≤ 7ρm(ε; f)

16
+ Z(f)}

Πj1−1
j=j∗+2Φ(−2 +

ρm(ε; f)
√
ρz(ε; f)

ε

2
j∗−j−2

2

√
2cs

(
7

16
+ 6 ∗ 2j∗−j−2))

]
≤

∑
j1≥j∗+3

2j1−j∗El

[
1{tj1 ,̂ij1 ≤ 7ρm(ε; f)

16
+ Z(f)}]

Πj1−1
j=j∗+2Φ(−2 +

2
j∗−j−2

2

√
2

(
7

16
+ 6 ∗ 2j∗−j−2))

≤
∑

j1≥j∗+3

2j1−j∗El

[
1{tj1 ,̂ij1 ≤ 7ρm(ε; f)

16
+ Z(f)}

]
Φ(−1.8)j1−j∗−2.
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Now we go to the third term in the Inequality (C.91).

El,s

( ∑
j1≥j∗+3

2j1−j∗
1{ĵ = j1, tĵ ,̂iĵ

>
7ρm(ε; f)

16
+ Z(f)}

)
=

∑
j1≥j∗+3

2j1−j∗El,s

(
1{ĵ = j1, tj1 ,̂ij1

>
7ρm(ε; f)

16
+ Z(f)}

)
=

∑
j1≥j∗+3

2j1−j∗El,s

(
1{ĵ = j1, tj1 ,̂ij1

>
7ρm(ε; f)

16
+ Z(f)},

∀j∗ + 2 ≤ j ≤ j1 − 1,−Ej,̂ij−5 ≥ 2−
√
mj

cs
(µj,̂ij−6 − µj,̂ij−5)}

)
≤

∑
j1≥j∗+3

2j1−j∗El

[
1{tj1 ,̂ij1 >

7ρm(ε; f)

16
+ Z(f)}

Es

(
1{∀j∗ + 2 ≤ j ≤ j1 − 1,−Ej,̂ij−5

1
√
mjcsε

≥ 2}|Yl
)]

≤
∑

j1≥j∗+3

2j1−j∗El

[
1{tj1 ,̂ij1 >

7ρm(ε; f)

16
+ Z(f)}

]
Φ(−2)j1−j∗−2.

(C.93)

Plugging Inequality (C.92) and Inequality (C.93) back to Inequality (C.91)
gives

E
(
2ĵ−j∗

)
≤ 4 +

( ∑
j1≥j∗+3

2j1−j∗El

[
1{tj1 ,̂ij1 ≤ 7ρm(ε; f)

16
+ Z(f)}

]
Φ(−1.8)j1−j∗−2

+
∑

j1≥j∗+3

2j1−j∗El

[
1{tj1 ,̂ij1 >

7ρm(ε; f)

16
+ Z(f)}

]
Φ(−2)j1−j∗−2

)

≤ 4 +
∑

j1≥j∗+3

2j1−j∗Φ(−1.8)j1−j∗−2 = 4 + 8Φ(−1.8) ∗ 1

1− 2Φ(−1.8)

<
35

8
.

(C.94)

Therefore, we have

E
(
2ĵ−j∗

)
≤ 35

8
≤ 35

4

ρm(ε; f)2ρz(ε; f)

ε
.
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C.10. Proof of Theorem 3.4. We will prove the following two lemmas
separately, which give rise to the theorem.

Lemma C.19 (Coverage of the Confidence Interval for the Minimum).
For any 0 < α < 1, the confidence interval CIm,α given in (3.10) is a 1− α
confidence interval.

Lemma C.20 (Length of the Confidence Interval for the Minimum). For
0 < α < 1, the expected length of the confidence interval given in (3.10)
satisfies

E(|fhi − flo|) ≤ cm,αρm(ε; f), for all f ∈ F ,

where cm,α is a constant depending only on α.
Further, when 0 < α < 0.3, we have

E(|fhi − flo|) ≤ cm,αρm(ε; f) ≤ Cm,αLm,α(ε; f), for all f ∈ F ,

where Cm,α is an absolute constant depending only on α.

Proof of Lemma C.19. Define five events:

E = {Z(f) /∈ [t(ĵ−Kα
4
−1)+ ,̂i(ĵ−Kα

4
−1)+

−5, t(ĵ−Kα
4
−1)+ ,̂i(ĵ−Kα

4
−1)+

+4]}

E1 = {ĵ ≥ jw +Kα
4
+ 1}

F = {ĵ ≤ j∗ − 2− K̃α
4
}

G = {fhi < M(f)}
H = {flo > M(f)}.

(C.95)

By definition {M(f) ∈ [flo, fhi]} = Gc ∩Hc. We will bound the probabili-
ties of the above events.

Recalling Kα = ⌈ logα
log Φ(−2)⌉, then with Lemma C.11 we have

P (ĵ ≥ jw +Kα + 1) ≤ α,

so P (E1) ≤ α
4 .

When the event Ec
1 = {ĵ ≤ jw +Kα} occurs, we have

Z(f) ∈ [t(ĵ−Kα−1)+ ,̂i(ĵ−Kα−1)+
−5, t(ĵ−Kα−1)+ ,̂i(ĵ−Kα−1)+

+4],

so P (E) ≤ α
4 .

To bound P (F ), we introduce the following lemma (proved in Section D
page 130), showing that the procedure can not stop too early.
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Lemma C.21. When K̃ ≥ 4, we have

P (ĵ ≤ j∗ − 2− K̃) ≤ Φ(−2
3
2
(K̃−2)− 1

2 + 2)
2

1− exp (−40)
.

Using this lemma and setting K̃α = max{4, 2 + ⌈log2 (2− Φ−1(α3 ))⌉} >
max{4, 2 + ⌈23 log2max{2− Φ−1((1− e−40)α2 ), 1} + 1

3⌉}, we can conclude
that

P (ĵ ≤ j∗ − 2− K̃α) ≤ α.

Therefore, we have P (F ) ≤ α
4 .

We now present two more lemmas that establish the remaining foundation
of the proof. The lemmas are proved in Section D (page 130 and 131).

Lemma C.22.

(C.96) P (G|Ec) ≤ α

4
.

Lemma C.23.

(C.97) P (H|Ec ∩ F c) ≤ α

4
.

With these additional lemmas, we have

P (M(f) ∈ CIm,α(Y )) ≥ P (Ec ∩ F c ∩Gc ∩Hc)

≥ (1− P (H|Ec ∩ F c)− P (G|Ec ∩ F c))P (Ec ∩ F c)

≥ −P (H|Ec ∩ F c) + P (Ec ∩ F c)− P (G ∩ Ec ∩ F c)

≥ −P (H|Ec ∩ F c) + 1− P (E)− P (F )− P (G|Ec)

≥ −α

4
+ 1− α

4
− α

4
− α

4
= 1− α.

(C.98)

Proof of Lemma C.20.

E(|fhi − flo|)

= E((SiR−iL,
α
4
ce + zα

4
ce +

√
3)

ε√
mĵ+K̃α

4

)

< (SiR−iL,
α
4
+ zα

4
+
√
3)
2

K̃ α
4
2 ceε√
mj∗

E(2
1
2
(ĵ−j∗))

≤ (SiR−iL,
α
4
+ zα

4
+
√
3)2

K̃ α
4
2 ce · 4ρm(ε; f)E(2

1
2
(ĵ−j∗)).

(C.99)
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Similarly to the way we bound variance in Theorem 3.3, we have

E(2
1
2
(ĵ−j∗))

≤ 2E(1{ĵ ≤ j∗ + 2}) +E(2
1
2
(ĵ−j∗)

1{ĵ ≥ j∗ + 3})

≤ 2 + 2
√
2Φ(−1.85)

1

1− 2Φ(−1.85)

< 2.16.

(C.100)

According to the definition of SiR−iL,
α
4
, SiR−iL,

α
4
is decided by the following

(C.101) (1− Φ(−SiR−iL,
α
4
))iR−iL = 1− α

4
.

Therefore,

(C.102) SiR−iL,
α
4
= −Φ−1(1− (1− α

4
)

1
iR−iL ).

Furthermore, we have

iR − iL = 9× 2× 2
K̃α

4 × 2
Kα

4 ,(C.103)

so we know that (SiR−iL,
α
4
+ zα

4
+
√
3)2

K̃ α
4
2 ce only depend on α. Therefore,

(C.104) E(|fhi − flo|) ≤ cm,αρm(ε; f).

Since for 0 < α < 0.3, using Theorem 2.1 and Proposition 2.2, we have

ρm(ε; f) ≤ 3ρm(ε/3; f) ≤ 3

bα
Lm,α(ε; f),

which gives our statement.

C.11. Analysis of Lower Bounds of the Benchmarks in Regression
Setting. To establish the optimality of the procedures, we need to analyze
the lower bounds of the benchmarks. Compared with the white noise model,
we will incur an additional discretization error.

This discretization error is caused by the fact that a set of convex functions
can have the same values as f on the grid points (i.e., x0.x1, . . . , xn). This
fact implies that when we only look at the observations, this set of functions
are equivalent. We denote this set of functions by Gn(f):

(C.105) Gn(f) = {g ∈ F : g(xi) = f(xi), for all 0 ≤ i ≤ n}.
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However, functions in Gn(f) can have difference minimizers and minimums,
giving rise to discretization errors for Z(f) and M(f) defined as

Dz(n, f) = max{Z(g) : g ∈ Gn(f)} −min{Z(g) : g ∈ Gn(f)},(C.106a)

Dm(n, f) = max{M(g) : g ∈ Gn(f)} −min{M(g) : g ∈ Gn(f)}.(C.106b)

It is easy to see that 0 ≤ Dz(n, f) < 2
n and any value in [0, 2

n) can be
taken by Dz(n, f) for some f ∈ F .

The lower bounds for the benchmarks are given as follows.

Proposition C.4. Let R̃z,n(σ; f), R̃m,n(σ; f), L̃z,α,n(σ; f), L̃m,α,n(σ; f)
be defined in Equation (4.2). Let Gn(f) be defined in Equation (C.105). Let
Dz(n, f) and Dm(n, f) be defined in Equation (C.106). Suppose 0 < α < 0.3.
Then there exist constants C̃z, C̃m, C̃z,α, C̃m,α > 0 such that for all f ∈ F ,
(C.107)

R̃z,n(σ; f) ≥ C̃z sup
g∈Gn(f)

ρz(
σ√
n
; g)

(
1 ∧

√
nρz(

σ√
n
; g)

)
∨ 1

4
Dz(n, f),

R̃m,n(σ; f) ≥ C̃m sup
g∈Gn(f)

ρm(
σ√
n
; g)

(
1 ∧

√
nρz(

σ√
n
; g)

)
∨ 1

4
Dm(n, f),

L̃z,α,n(σ; f) ≥ C̃z,α sup
g∈Gn(f)

ρz(
σ√
n
; g)

(
1 ∧

√
nρz(

σ√
n
; g)

)
∨ (1− 2α)

2
Dz(n, f),

L̃m,α,n(σ; f) ≥ C̃m,α sup
g∈Gn(f)

ρm(
σ√
n
; g)

(
1 ∧

√
nρz(

σ√
n
; g)

)
∨ (1− 2α)

2
Dm(n, f).

Compared with the lower bounds in the white noise model, the lower
bounds in the regression model include additional discretization errors, which
do not vanish with the noise level σ → 0 for fixed n and f .

Proof of Proposition C.4. Similar to white noise model. The proba-
bility density under truth f is:

p(y0, · · · yn|f) = Πn
i=0

1√
2πσ2

exp (−(yi − f(xi))
2

2σ2
).

Hence the likelihood ratio is

p(y0, · · · yn|f)
p(y0, · · · yn|g)

= exp (

∑n
i=0(f(xi)− g(xi))(2yi − f(xi)− g(xi))

2σ2
).

Let θ1 = 1 denote the truth being f , and θ2 = −1 denote the truth being g.

Suppose θ̂ is an estimator of θ. Then we know that
∑n

i=0(f(xi)−g(xi))(yi− 1
2
f(xi)− 1

2
g(xi))

σ2

is a sufficient statistic for θ. We further standardize this statistic by ln(f, g) =
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i=0

1
n(f(xi)− g(xi))2 and σ, which results in the following sufficient

statistic for θ:

W̌ =

∑n
i=0(f(xi)− g(xi))(yi − 1

2f(xi)−
1
2g(xi))

ln(f, g)
√
nσ

∼ N(θ
ln(f, g)

2 σ√
n

, 1).

Letting θ̂ = 2Ẑ−(Z(f)+Z(g))
Z(f)−Z(g) gives

Ef (|Ẑ − Z(f)|) = |Z(f)− Z(g)|Eθ=1(
1

2
|θ̂ − θ|),

Eg(|Ẑ − Z(g)|) = |Z(f)− Z(g)|Eθ=−1(
1

2
|θ̂ − θ|).

Therefore, similar arguments as in the white noise model give
(C.108)

R̃z,n(σ; f) ≥ sup{|Z(g)− Z(f)| : g ∈ F , ln(f, g) ≤ σ/
√
n}︸ ︷︷ ︸

wz(σ/
√
n;f)

Φ(−0.5).

For minimum, similar procedure shows that
(C.109)

R̃m,n(σ; f) ≥ sup{|M(g)−M(f)| : g ∈ F , ln(f, g) ≤ σ/
√
n}︸ ︷︷ ︸

wm(σ/
√
n;f)

Φ(−0.5).

For confidence interval with 0 < α < 0.3, using similar arguments as in
the white noise model, we have that for CI ∈ Iz,α,n({f, g}),

EfL(CI) ≥ |Z(f)− Z(g)|(1− 2α− TV (Pf,n, Pg,n))

≥ |Z(f)− Z(g)|(1− 2α−
√
χ2(Pf,n, Pg,n)),

where Pf,n is the distribution of the regression model with n+1 observations
corresponding to f .

Further, elementary calculation of chi-square divergence gives

χ2(Pf,n, Pg,n) =∫
exp (

∑n
i=0(f(xi)− g(xi))(2yi − f(xi)− g(xi))

σ2
)p(y0, · · · yn|g)dy0dy1 · · · dyn − 1

= exp(
ln(f, g)

2

σ2/n
)− 1.

Picking g ∈ F such that ln(f, g) ≤ 1
3

σ√
n
gives EfL(CI) ≥ (0.6−2α)|Z(f)−

Z(g)|. Therefore,
(C.110)

L̃z,α,n(σ; f) ≥ (0.6− 2α) sup{|Z(g)− Z(f)| : g ∈ F , ln(f, g) ≤
1

3
σ/

√
n}︸ ︷︷ ︸

wz(
1
3
σ/

√
n;f)

.
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Similarly, we have
(C.111)

L̃m,α,n(σ; f) ≥ (0.6− 2α) sup{|M(g)−M(f)| : g ∈ F , ln(f, g) ≤
1

3
σ/

√
n}︸ ︷︷ ︸

wm( 1
3
σ/

√
n;f)

.

Therefore, it remains to find wz(σ/
√
n; f) and wm(σ/

√
n; f), which are

analogies of continuity moduli in white noise model.
We have the following lemma that constructs convex functions g such

that ln(f, g) ≤ σ/
√
n. We will use these functions to calculate lower bounds

of wz(σ/
√
n; f) and wm(σ/

√
n; f). The proof of this lemma is deffered to

Section D (page 131).

Lemma C.24. Suppose h ∈ Gn(f), where Gn(f) is defined in Equa-
tion (C.105). If ρz(

σ√
6n
;h) ≥ 1/2n, let gn,σ,h(t) = max{h(t),M(h)+ρm( σ√

6n
;h)}.

Then we have
ln(f, gn,σ,h) ≤ σ2/n.

If ρz(
σ√
6n
;h) < 1/2n, let

gn,σ,h(t) = max{h(t),M(h) + ρm(
σ√
6n

;h)

√
2nρz(

σ√
6n

;h)}.

Then we have
ln(f, gn,σ,h) ≤ σ2/n.

Let tl(h) = inf{t ∈ [0, 1] : gn,σ,h(t) > h(t)}, and tr(h) = sup{t ∈ [0, 1] :
gn,σ,h(t) > h(t)}, where we will omit h when there are no ambiguities. Clearly,

tr − tl ≥ ρz(
σ√
6n

;h)(1 ∧
√
2nρz(

σ√
6n

;h)),

M(gn,σ,h) ≥ min{ρm(
σ√
6n

;h), ρm(
σ√
6n

;h)

√
2nρz(

σ√
6n

;h)}+M(h).

Similar arguments as in Proposition 2.2 give that for any δ > 0, there
exist gn,σ,h,δ,l, gn,σ,h,δ,r ∈ F , such that

ln(f, gn,σ,h,δ,l) ≤ σ2/n, ln(f, gn,σ,h,δ,r) ≤ σ2/n,

Z(gn,σ,h,δ,l) ≤ tl + δ, Z(gn,σ,h,δ,r) ≥ tr − δ, and

M(gn,σ,h,δ,r) = M(gn,σ,h,δ,l) ≥ρm(
σ√
6n

;h)min{1,
√

2nρz(
σ√
6n

;h)}+M(h)− δ.



SUPPLEMENT 87

Then we have the following lower bounds for wz(σ/
√
n; f), wm(σ/

√
n; f),

wz(
1
3σ/

√
n; f), and wm(13σ/

√
n; f).

wz(σ/
√
n; f)

= sup{|Z(g)− Z(f)| : ln(f, g) ≤ σ/
√
n, g ∈ F}

≥ sup
h∈Gn(f)

1

2
lim
δ→0+

(Z(gn,σ,h,δ,r)− Z(gn,σ,h,δ,l)) = sup
h∈Gn(f)

1

2
(tr − tl)

≥ 1

2
sup

h∈Gn(f)
ρz(

σ√
6n

;h)(1 ∧
√
2nρz(

σ√
6n

;h))

≥ 1

2
sup

h∈Gn(f)
54−

1
4 ρz(

σ√
n
;h)

(
1 ∧

√
nρz(

σ√
n
;h)

)
,

wz(σ/3
√
n; f)

= sup{|Z(g)− Z(f)| : ln(f, g) ≤ σ/3
√
n, g ∈ F}

≥ sup
h∈Gn(f)

1

2
lim
δ→0+

(Z(gn,σ/3,h,δ,r)− Z(gn,σ/3,h,δ,l)) = sup
h∈Gn(f)

1

2
(tr − tl)

≥ 1

2
sup

h∈Gn(f)
ρz(

σ

3
√
6n

;h)(1 ∧
√
2nρz(

σ

3
√
6n

;h))

≥ 1

2
sup

h∈Gn(f)

1

9
6−

1
4 ρz(

σ√
n
;h)

(
1 ∧

√
nρz(

σ√
n
;h)

)
,

wm(σ/
√
n; f)

= sup{|M(g)−M(f)| : ln(f, g) ≤ σ/
√
n, g ∈ F}

≥ 1

2
min{ρm(

σ√
6n

;h), ρm(
σ√
6n

;h)

√
2nρz(

σ√
6n

;h)}

≥ 1

2
54−

1
4 min{ρm(

σ√
n
;h), ρm(

σ√
n
;h)

√
nρz(

σ√
n
;h)}, and

wm(σ/3
√
n; f)

= sup{|M(g)−M(f)| : ln(f, g) ≤ σ/3
√
n, g ∈ F}

≥ 1

2
min{ρm(

σ

3
√
6n

;h), ρm(
σ

3
√
6n

;h)

√
2nρz(

σ

3
√
6n

;h)}

≥ 1

18
6−

1
4 min{ρm(

σ√
n
;h), ρm(

σ√
n
;h)

√
nρz(

σ√
n
;h)}.
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Returning to Inequalities (C.108),(C.109), (C.110), (C.111), we have

R̃z,n(σ; f) ≥
1

2
Φ(−0.5)54−

1
4 sup
h∈Gn(f)

ρz(
σ√
n
;h)

(
1 ∧

√
nρz(

σ√
n
;h)

)
,

R̃m,n(σ; f) ≥
1

2
Φ(−0.5)54−

1
4 sup
h∈Gn(f)

ρz(
σ√
n
;h)

(
1 ∧

√
nρz(

σ√
n
;h)

)
,

L̃z,α,n(σ; f) ≥
1

2
(0.6− 2α)

1

9
6−

1
4 sup
h∈Gn(f)

ρz(
σ√
n
;h)

(
1 ∧

√
nρz(

σ√
n
;h)

)
,

L̃m,α,n(σ; f) ≥ (0.6− 2α)
1

18
6−

1
4 sup
h∈Gn(f)

ρm(
σ√
n
;h)

(
1 ∧

√
nρz(

σ√
n
;h)

)
.

Now we turn to the discretization error. For any g ∈ Gn(f), we have
dPf,n

dPg,n
(y0, y1, · · · , yn) = 1 for all (y0, y1, · · · , yn) ∈ Rn. Therefore, for any

estimator Ẑ, we have

Eg|Ẑ − Z(g)|+ Ef |Ẑ − Z(f)| = Ef

(
|Ẑ − Z(g)|+ |Ẑ − Z(f)|

)
≥ Ef |Z(f)− Z(g)| = |Z(f)− Z(g)|.

Hence we have

R̃z,n(σ; f) ≥
1

2
sup

g∈Gn(f)
|Z(f)− Z(g)| ≥ 1

4
Dz(n, f).

Similarly, we have R̃m,n(σ; f) ≥ 1
4Dm(n, f). For the confidence interval, we

have that for any g ∈ Gn(f), and for any CI ∈ Iz,α,n({f, g}),

EfL(CI) ≥
(
1− Pf (Z(f) ̸∈ CI)− Pf (Z(g) ̸∈ CI)

)
+
|Z(f)− Z(g)|

≥ (1− 2α)|Z(f)− Z(g)|.

Hence we have

L̃z,α,n(σ; f) ≥ (1− 2α) · 1
2
Dz(n, f).

Similarly, we have L̃m,α,n(σ; f) ≥ (1− 2α) · 1
2Dm(n, f).

C.12. Proof of Theorem 4.1. With the lower bound in Proposition
C.4, we only need to prove the following two propositions to prove the
theorem.

Proposition C.5. For Ẑ defined in (4.5), we have

(C.113) E(|Ẑ − Z(f)|) ≤ Č1ρz(
σ√
n
; f) +

2

n
.
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Proposition C.6. For Ẑ defined in (4.5), if suph∈Gn(f){ρz(
σ√
n
;h)} < 1

2n ,

we have

(C.114) E(|Ẑ − Z(f)|) ≤ Č2 sup
h∈Gn(f)

ρz(
σ√
n
;h)

√
nρz(

σ√
n
;h) +Dz(n, f).

The statement of the theorem follows from letting C1 =
√
2Č1+4+Č2

C̃z
+ 4,

where C̃z is defined in (C.107).
Now we proceed with proving the Propositions.

Proof of Proposition C.5.

E(|Ẑ − Z(f)|) = E(1{ĵ < j̃}
∣∣Ẑ − Z(f)

∣∣) + E(1{ĵ ≥ j̃}
∣∣Ẑ − Z(f)

∣∣)
≤ E(1{ĵ < j̃}1.5mĵ) + E(1{ĵ ≥ j̃}

∣∣Ẑ − Z(f)
∣∣)

To bound the two terms, we give two lemmas below, the proofs of the
lemmas are in Section D (page 132, 133).

Lemma C.25.

(C.115) E(1{ĵ < j̃}1.5mĵ) ≤ cz1ρz(
σ√
n
; f) +

1.5

n
1{J ≤ j∗ − 3}.

Lemma C.26.

(C.116) E(1{ĵ ≥ j̃}
∣∣Ẑ − Z(f)

∣∣) ≤ cz2ρz(
σ√
n
; f).

Therefore,
(C.117)

E(|Ẑ−Z(f)|) ≤ (cz1+cz2)ρz(
σ√
n
; f)+

1.5

n
1{J ≤ j∗−3} ≤ Č1ρz(

σ√
n
; f)+

1.5

n
.

Proof of Proposition C.6. since suph∈Gn(f){ρz(
σ√
n
;h)} < 1

2n , we know

that |{i : f(xi) = min{f(xk) : 0 ≤ k ≤ n}}| = 1. Suppose imin ∈ {i : f(xi) =
min{f(xk) : 0 ≤ k ≤ n}}. Let h̃ be the piece wise linear function such that
h̃(xi) = f(xi) for all 0 ≤ i ≤ n, and h̃ is linear on all the sub-intervals
[k/n, k + 1/n], for 0 ≤ k ≤ n− 1. It is clear that Z(h̃) = ximin .

Then we have

E(|Ẑ − Z(f)|) ≤ E(|Ẑ − Z(h̃)|) + |Z(h̃)− Z(f)| ≤ E(|Ẑ − Z(h̃)|) +Dz(n, f)

= E(1{ǰ < ∞}|Ẑ − Z(h̃)|) + E(1{ǰ = ∞}|Ẑ − Z(h̃)|) +Dz(n, f).
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Splitting the first and second terms by the {ĵ < j̃} and {ĵ ≥ j̃} gives

E(1{ǰ < ∞}|Ẑ − Z(h̃)|)
= E(1{ǰ < ∞}1{ǰ < j̃}|Ẑ − Z(h̃)|) + E(1{ǰ < ∞}1{ǰ ≥ j̃}|Ẑ − Z(h̃)|),

and

E(1{ǰ = ∞}|Ẑ − Z(h̃)|)
= E(1{ǰ = ∞}1{ĵ < j̃}|Ẑ − Z(h̃)|) + E(1{ǰ = ∞}1{ĵ ≥ j̃}|Ẑ − Z(h̃)|)

≤ 5

n
Φ(−

ρm( σ√
n
; h̃)

√
3σnρz(

σ√
n
; h̃)

) + E(1{ǰ = ∞}1{ĵ ≥ j̃}|Ẑ − Z(h̃)|)

≤ čz0ρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃) + E(1{ǰ = ∞}1{ĵ ≥ j̃}|Ẑ − Z(h̃)|).

Therefore,
(C.118)

E(|Ẑ − Z(f)|) ≤ čz0ρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃) + E(1{ǰ < ∞}1{ǰ < j̃}|Ẑ − Z(h̃)|)

+ E(1{ǰ < ∞}1{ǰ ≥ j̃}|Ẑ − Z(h̃)|) + E(1{ǰ = ∞}1{ĵ ≥ j̃}|Ẑ − Z(h̃)|) +Dz(n, f)

= E(1{ǰ < ∞}1{ǰ < j̃}|Ẑ − Z(h̃)|) + E(1{ĵ ≥ j̃}|Ẑ − Z(h̃)|) +Dz(n, f)

+ čz0ρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃).

Finally, with the help of the following lemmas (proved in Section D, page
134, 134), we prove the proposition.

Lemma C.27.

(C.119) E(1{ǰ < ∞}1{ǰ < j̃}|Ẑ − Z(h̃)|) ≤ čz1ρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃)

Lemma C.28.

(C.120) E(1{ĵ ≥ j̃}|Ẑ − Z(h̃)|) ≤ čz2ρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃)

C.13. Proof of Theorem 4.2. With Proposition C.4, we only need to
prove following three lemmas to prove the theorem.
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Lemma C.29 (length of the confidence interval for minimizer).

EfL(CIz,α(Y )) < C̃2,α(C0ρz(
σ√
n
; f) +

1

n
).

Lemma C.30. When suph∈Gn(f){ρz(
σ√
n
;h)} < 1

2n , we have

EfL(CIz,α(Y )) < Č2,α sup
h∈Gn(f)

ρz(
σ√
n
;h)

√
nρz(

σ√
n
;h) + 2Dz(n, f)

Lemma C.31 (coverage of the confidence interval for minimizer).

P (Z(f) ∈ CIz,α(Y )) ≥ 1− α.

Let C2,α = max{ C̃2,α(C0+2)
√
2

C̃z,α
,
Č2,α

C̃z,α
+ 4

1−2α}, then we have the statement

of the theorem.

Proof of Lemma C.29.

EfL(CIz,α(Y ))

≤ 24× 2
Kα

2 · E(2
J−ĵ

n
)

= 24× 2
Kα

2
2J

n
E(

j∗−1∑
j=1

2−j
1{ĵ = j}+

∞∑
j=j∗

2−j
1{ĵ = j})

≤ 24× 2
Kα

2
2J

n

( j∗−1∑
j=1

2−jE(1{ĵ = j, j̃ > j}+ 1{ĵ = j, j̃ ≤ j}) + 2−j∗
)

(C.121)

To bound the first two terms, we will introduce two lemmas. The proofs
of the lemmas are given at Section D (page 134 and 135).

Lemma C.32.

(C.122)

j∗−1∑
j=1

E(2−j
1{ĵ = j, j̃ > j}) ≤ 2−j∗cz3 + 2−J

1{J ≤ j∗ − 1}.

Lemma C.33.

(C.123)

j∗−1∑
j=1

E(2−j
1{ĵ = j, j̃ ≤ j}) ≤ 2−j∗cz4.
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With these lemmas, we have

EfL(CIz,α(Y ))

≤ 24× 2
Kα

2

(
2J−j∗

n
(cz4 + cz3 + 1) +

1

n
1{J ≤ j∗ − 1}

)
≤ C̃2,α(C0ρz(

σ√
n
; f) +

1

n
1{J ≤ j∗ − 1}),

(C.124)

where C̃2,α = 24× 2Kα/2 , C0 =
cz3+cz4+1

4 .

Proof of Lemma C.30. To prove the lemma, we introduce the following
lemmas while postponing their proofs.

Lemma C.34. When suph∈Gn(f){ρz(
σ√
n
;h)} < 1

2n ,

(C.125) E(1{ǰ < ∞}L(CIz,α(Y ))) ≤ č1,α sup
h∈Gn(f)

ρz(
σ√
n
;h)

√
nρz(

σ√
n
;h).

Lemma C.35. When suph∈Gn(f){ρz(
σ√
n
;h)} < 1

2n ,

(C.126)
E(1{ǰ = ∞}1{thi − tlo ≥ 3

n}L(CIz,α(Y ))) ≤ č2,α suph∈Gn(f) ρz(
σ√
n
;h)
√
nρz(

σ√
n
;h).

Lemma C.36. When suph∈Gn(f){ρz(
σ√
n
;h)} < 1

2n ,

E(1{ǰ = ∞}1{thi − tlo <
3

n
}L(CIz,α(Y )))

≤ č3,α sup
h∈Gn(f)

ρz(
σ√
n
;h)

√
nρz(

σ√
n
;h) + 2Dz(n, f).

(C.127)

With these lemmas, we have the statement of Lemma C.30.
The proofs of the lemmas are in Section D (page 135, 137 and 138). Here

we point out the common thing that will be used in all these proofs.
When suph∈Gn(f){ρz(

σ√
n
;h)} < 1

2n , we know that |{k : f(xk) = min{f(xi) :
0 ≤ i ≤ n}}| = 1, we denote this unique element to be im.

Let h̃ be the piece wise linear function such that h̃(xi) = f(xi) for all
0 ≤ i ≤ n, and h̃ is linear on all the sub-intervals [k/n, k + 1/n], for
0 ≤ k ≤ n− 1. Then we know that ρz(

σ√
n
; h̃) < 1

2n .

Suppose Ye,1 = {ye,i +
√
3σz3,i : (L − 1) ∨ 0 ≤ i ≤ (U + 1) ∧ n}, Ye,2 =

{ye,i −
√
3σz3,i : (L − 1) ∨ 0 ≤ i ≤ (U + 1) ∧ n}. Then we know that

Yl,Ys,Ye,1,Ye,2 are independent.
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Proof of Lemma C.31. For clarity of the main idea of the proof, we
postpone the proofs of the supporting lemmas to Section D.

With a bit abuse of notation, define the following events:

E =

{
Z(f) ∈

[ (
îĵ − (6 · 2Kα/2+1 − 2)− 1

) 2J−ĵ

n
− 1

2n
,

(
îĵ + (6 · 2Kα/2+1 − 2)

) 2J−ĵ

n
− 1

2n

]
∩ [0, 1]

}

F1 =

{
il ≤ min

{
i : f(xi) = min{f(xk) : 0 ≤ k ≤ n}

}}

F2 =

{
ir + 1 ≥ max

{
i : f(xi) = min{f(xk) : 0 ≤ k ≤ n}

}}
.

(C.128)

For jw defined in equation (C.5), we have the following lemma (proved in
Section D, on page 146).

Lemma C.37. For K ≥ 1,

(C.129) Φ(ĵ ≥ jw +K + 1) ≤ Φ(−2)K .

Therefore, with this lemma, we have

(C.130) P (Ec) ≤ P (
∣∣i∗ĵ− îĵ

∣∣ > 6 ·2Kα
2
+1−2) ≤ P (1{ĵ > jw+Kα/2}) ≤

α

2
.

Therefore,
(C.131)
P (Z(f) ̸∈ CIz,α(Y ))

= E(1{Z(f) ̸∈ CIz,α(Y )}1{E}) + E(1{Z(f) ̸∈ CIz,α(Y )}1{Ec})
≤ E(1{Z(f) ̸∈ CIz,α(Y )}1{E}1{ǰ < ∞})+

E(1{Z(f) ̸∈ CIz,α(Y )}1{E}1{ǰ = ∞}) + α

2

= E(1{Z(f) ̸∈ CIz,α(Y )}1{E}1{ǰ = ∞}) + α

2

≤ E
(
1{Z(f) ̸∈ CIz,α(Y )}1{E}1{ǰ = ∞}

(
1{F1 ∩ F2}+ 1{F c

1}+ 1{F c
2}
))

+
α

2

≤ E
(
1{Z(f) ̸∈ CIz,α(Y )}1{E}1{ǰ = ∞}1{F1 ∩ F2}

)
+ E(1{E}1{ǰ = ∞}(1{F c

1}+ 1{F c
2})) +

α

2
.

We introduce the following lemma, which is proved in Section D on page
146.
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Lemma C.38.

(C.132) E(1{E}1{ǰ = ∞}1{F c
1}) ≤ α1,E(1{E}1{ǰ = ∞}1{F c

2}) ≤ α1.

Therefore

(C.133) P (Z(f) ̸∈ CIz,α(Y )) ≤

E
(
1{Z(f) ̸∈ CIz,α(Y )}1{E}1{ǰ = ∞}1{F1 ∩ F2}

)
+

α

2
+ 2α1.

The only term needs analysis it the first term on the right hand side. Note
that the entire probability space is the union of the following three disjoint
events.

{(il − U)(ir − L+ 1) = 0},
{(il − U)(ir − L+ 1) ̸= 0} ∩ {ihi − ilo ≤ 2, 0 < ilo, ihi < n},
{(il − U)(ir − L+ 1) ̸= 0} ∩ {ihi − ilo ≥ 3 or (ihi − n)ilo = 0}.

Further, on the event E ∩ F1 ∩ F2 ∩ {ǰ = ∞} ∩ {(il − U)(ir − L + 1) ̸=
0} ∩ {ihi − ilo ≥ 3 or (ihi − n)ilo = 0}, Z(f) ∈ CIz,α(Y ). The first term on
the right hand side of Inequality (C.133) therefore simplifies to
(C.134)

E
(
1{Z(f) ̸∈ CIz,α(Y )}1{E}1{ǰ = ∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) = 0}

)
+ E

(
1{Z(f) ̸∈ CIz,α(Y )}1{E}1{ǰ = ∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) ̸= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}
)
.

We have the following lemmas, which are proved in Section D on page 147
and 147.

Lemma C.39.
(C.135)

E
(
1{Z(f) ̸∈ CIz,α(Y )}1{E}1{ǰ = ∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) = 0}

)
≤ 3α2E

(
1{ǰ = ∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) = 0}

)
.

Lemma C.40.
(C.136)

E
(
1{Z(f) ̸∈ CIz,α(Y )}1{E}1{ǰ = ∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) ̸= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}
)

≤ 6α2P
(
1{E}1{ǰ = ∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) ̸= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}
)
.
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With these two lemmas, we finally have

(C.137) P (Z(f) ̸∈ CIz,α(Y )) ≤ 6α2 +
α

2
+ 2α1 ≤ α

C.14. Proof of Theorem 4.3. With the lower bound in Proposition
C.4, we only need to prove the following two propositions to prove the
theorem.

Proposition C.7.
(C.138)

E(|M̂ −M(f)|) ≤ Č3,0ρm(
σ√
n
; f) +

√
2 (min{f(xi) : 0 ≤ i ≤ n} −M(f)) .

Proposition C.8. When suph∈Gn(f){ρz(
σ√
n
;h)} < 1

2n , we have

E(|M̂ −M(f)|) ≤ Č3 sup
h∈Gn(f)

ρm(
σ√
n
;h)

√
nρz(

σ√
n
;h)

+
√
2 (min{f(xi) : 0 ≤ i ≤ n} −M(f)) .

(C.139)

Let C3 =
√
2Č3,0+Č3

C̃m
+ 4

√
2 gives the statement of Theorem 4.3.

Proof of Proposition C.7. We have

E((M̂ −M(f))2) = E((M̂ −M(f))21{ǰ < ∞}+ (M̂ −M(f))21{ǰ = ∞}).
(C.140)

For the first term we have
(C.141)

E((M̂ −M(f))21{ǰ < ∞}) = E

((
(f̂−M(f)) + Eǰ,ĩǰ ,e

1

2J−ǰ

)2

1{ǰ < ∞}

)
= E

((
f̂−M(f))2 + 2(f̂−M(f))Eǰ,ĩǰ ,e

1

2J−ǰ
+ (Eǰ,ĩǰ ,e

1

2J−ǰ
)2
)
1{ǰ < ∞}

)
= E

(
(f̂−M(f))21{ǰ < ∞}

)
+ E

(
(Eǰ,ĩǰ ,e

1

2J−ǰ
)21{ǰ < ∞}

)
.

We introduce following two lemmas (proved in Section D on page 149 and
149) to bound the two terms.

Lemma C.41.

(C.142) E((Eǰ,ĩǰ ,e

1

2J−ǰ
)21{ǰ < ∞}) ≤ cm1ρm(

σ√
n
; f)2.
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Lemma C.42.

(C.143) E((f̂−M(f))21{ǰ < ∞}) ≤ cm2ρm(
σ√
n
; f)2.

For the second term in Equation (C.140), let

i = argmin
îJ−2≤i≤îJ+2

f(xi−1),

fi = f(xi−1),

δi = ye,i−1 − f(xi−1),

η = min{δi : îJ − 2 ≤ i ≤ îJ + 2},

(C.144)

then we know E(η|îJ) ≤ 0, and we have
(C.145)

E
(
(M̂ −M(f))21{ǰ = ∞}

)
≤ E

(
(fi −M(f) + δi)

2
1{ǰ = ∞}1{M̂ > M(f)}

)
+ E

(
(fi −M(f) + η)21{ǰ = ∞}1{M̂ < M(f)}

)
≤ 2E

(
(fi −M(f))21{ǰ = ∞}

)
+ 2γ2eσ

2E(1{ǰ = ∞})
+ E

(
E(η21{η < 0}|Yl, Ys)1{ǰ = ∞}

)
≤ 2E

(
(fi −M(f))21{ǰ = ∞}

)
+ 2γ2eσ

2E(1{ǰ = ∞}) + σ2γ2eQ2E(1{ǰ = ∞}),

where Q2 =
∫∞
0 x25Φ(x)4 1√

2π
exp (−x2

2 )dx ≤ 5
2 .

To bound it we have the following lemmas, which are proved in Section D
on page 159 and 160.

Lemma C.43.

E
(
(fi −M(f))21{ǰ = ∞}

)
≤ cm6ρm(

σ√
n
; f)2 + (min{f(xi) : 0 ≤ i ≤ n} −M(f))2

(C.146)

Lemma C.44.

σ2E(1{ǰ = ∞}) ≤ 32ρm(
σ√
n
; f)2(C.147)

Combining them together, we have
(C.148)
E((M̂ −M(f))2)

≤ (cm1 + cm2 + 144γ2e + 2cm6)ρm(
σ√
n
; f)2 + 2 (min{f(xi) : 0 ≤ i ≤ n} −M(f))2

≤ C3,0ρm(
σ√
n
; f)2 + 2 (min{f(xi) : 0 ≤ i ≤ n} −M(f))2 .
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Therefore,

E(|M̂ −M(f)|) ≤
√

E((M̂ −M(f))2)

≤ Č3,0ρm(
σ√
n
; f) +

√
2 (min{f(xi) : 0 ≤ i ≤ n} −M(f)) .

(C.149)

Proof of Proposition C.8. Since we have

(C.150) sup
h∈Gn(f)

ρm(
σ√
n
;h)

√
nρz(

σ√
n
;h) ≥

√
n

1√
2

σ√
n
=

σ√
2
,

we only need to prove that

(C.151) E(|M̂ −M(f)|) ≤ čm1σ +
√
2 (min{f(xi) : 0 ≤ i ≤ n} −M(f)) .

We recycle all the notation in the proof of Proposition C.7, especially in
Equation (C.144) and (D.103).

Similar to the proof of Proposition of C.7, we have

E((M̂ −M(f))2)

= E((f̂−M(f))21{ǰ < ∞}) + E((Eǰ,ĩǰ ,e

1

2J−ǰ
)21{ǰ < ∞})+

2E
(
(fi −M(f))21{ǰ = ∞}

)
+ 2γ2eσ

2E(1{ǰ = ∞}) + σ2γ2eQ2E(1{ǰ = ∞}),

(C.152)

where Q2 =
∫∞
0 x2 · 5Φ(x)4 1√

2π
exp (−x2

2 )dx ≤ 5
2 .

Since we have

(C.153) E((Eǰ,ĩǰ ,e

1

2J−ǰ
)21{ǰ < ∞}) = E(

σ2

2J−ǰ
1{ǰ < ∞}) ≤ σ2,

we are only left with bounding the terms: E((f̂−M(f))21{ǰ < ∞}), E((fi −
M(f))21{ǰ = ∞}).

We have the following two lemmas, which are proved in Section D on page
160 and 163.

Lemma C.45.

(C.154) E((f̂−M(f))21{ǰ < ∞}) ≤ č2m2σ
2.

Lemma C.46.
(C.155)
E((fi −M(f))21{ǰ = ∞}) ≤ č2m3σ

2 + (min{f(xi) : 0 ≤ i ≤ n} −M(f))2 .
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With these lemmas, we know that

E((M̂ −M(f))2)

≤ (č2m2 + 1 + 2č2m3 + 2γ2e + γ2eQ2)σ
2 + 2 (min{f(xi) : 0 ≤ i ≤ n} −M(f))2 .

(C.156)

Therefore, we have

E(
∣∣M̂ −M(f)

∣∣)
≤
√
č2m2 + 1 + 2č2m3 + 2γ2e + γ2eQ2σ +

√
2
(
min{f(xi) : 0 ≤ i ≤ n} −M(f)

)
= Č3

σ√
2
+
√
2
(
min{f(xi) : 0 ≤ i ≤ n} −M(f)

)
.

(C.157)

C.15. Proof of Theorem 4.4. With Proposition C.4, we prove the
theorem by proving the following lemmas.

Lemma C.47 (length of the confidence interval for minimum 0).

EfL(CIm,α(Y )) ≤ Č4,αρm(
σ√
n
; f) +

√
2
(
min{f(xi) : i = 0, 1, · · · , n} − ȟ

)
,

where ȟ = inf{M(g) : g ∈ F , and g(xi) = f(xi), i = 0, 1, · · · , n}.

Lemma C.48 (length of the confidence interval for minimum 1). When
suph∈Gn(f){ρz(

σ√
n
;h)} < 1

2n , we have

EfL(CIm,α(Y )) ≤ Č5,ασ +
√
2
(
min{f(xi) : i = 0, 1, · · · , n} − ȟ

)
,

where ȟ = min{M(g) : g ∈ F , and g(xi) = f(xi), i = 0, 1, · · · , n}.

Note that we always have

sup
h∈Gn(f)

ρm(
σ√
n
;h)

√
nρz(

σ√
n
;h) ≥ σ√

2
,

hence with these two lemmas we know that
(C.158)
EfL(CIm,α(Y ))

≤ (
√
2Č4,α +

√
2Č5,α) sup

h∈Gn(f)
ρm(

σ√
n
;h)

(
1 ∧

√
nρz(

σ√
n
;h)

)
+

√
2Dm(n, f).
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When 0 < α < 0.3, letting

(C.159) C4,α =

√
2Č4,α +

√
2Č5,α

C̃m,α

+
2
√
2

1− 2α

gives the statement with respect to the expected length.

Lemma C.49 (coverage of the confidence interval for minimum).

P (M(f) ∈ CIm,α(Y )) ≥ 1− α.

Proof of Lemma C.47.

Ihi − Ilo + 1 ≤ 2 + 9 · 2jl−js ≤ 2 + 9 · 2Kα
4
+K̃α

4
+1

.(C.160)

Therefore,

(C.161) SIhi−Ilo+1,α
4
≤ −Φ−1(

α

4(2 + 9 · 2Kα
4
+K̃α

4
+1

)
).

EfL(CIm,α(Y )) ≤
(
SIhi−Ilo+1,α

4
− Φ−1(

α

4
) +

√
3
)
γeE(

σ√
2J−jl

)

+ E

(
(f̂1 − zα/4

√
3σ√

2J−jl
−

√
3σ√

2J−jl
− flo)+1{ĵ+ K̃α/4 > J}

)
.

(C.162)

We first bound the first term. Note that σ√
2J−j∗ =

σ√
n√
m∗

j

<
σ√
n√

1
8
ρz(

σ√
n
;f)

≤

4ρm( σ√
n
; f). Therefore, we have

E(
σ√
2J−jl

) ≤ 1{j∗ + 2 ≥ J}σ+

1{j∗ + 3 ≤ J}
(
E(

σ√
2
J−ĵ−K̃α

4

1{ĵ ≤ J − K̃α
4
}) + σE(1{ĵ > J − K̃α

4
})
)

≤ 1{j∗ + 3 ≤ J}
( σ√

2
J−j∗−K̃α

4
−3

+

J∑
j=j∗+3

σ√
2
J−j−1−K̃α

4

Φ(−2 +
1

6
)j−j∗−2

+
σ√

2J−j∗

√
2J−j∗Φ(−2 +

1

6
)
(J−1−K̃α

4
−j∗)+

)
+ 1{ 1

n
>

ρz(
σ√
n
; f)

32
}
√
n

√
2ρz(

σ√
n
; f)ρm(

σ√
n
; f)

≤ 21+
K̃ α

4
2 C̃4ρm(

σ√
n
; f) + 8ρm(

σ√
n
; f)C̄1,α.

(C.163)
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Now we turn to the second term,

E
(
(f̂1 − zα/4

√
3σ√

2J−jl
−

√
3σ√

2J−jl
− flo)+1{ĵ+ K̃α/4 > J}

)
≤ E

(
(f̂1 − flo)+1{ĵ+ K̃α/4 > J}

)
≤ E

(
(f̂1 −M(f))+1{ĵ+ K̃α/4 > J}

)
+ E

(
(M(f)− flo)+1{ĵ+ K̃α/4 > J}

)
≤ E

(
(M̂ −M(f))+1{ĵ+ K̃α/4 > J}

)
+ E

(
(M(f)− flo)+1{ĵ+ K̃α/4 > J}

)
,

where M̂ is defined in Equation (4.9).
Then according to Proposition C.7, we have

E
(
(M̂ −M(f))+1{ĵ+ K̃α/4 > J}

)
≤ Č3,0ρm(

σ√
n
; f) +

√
2 (min{f(xi) : 0 ≤ i ≤ n} −M(f)) .

Now we turn to the term E
(
(M(f)− flo)+1{ĵ+ K̃α/4 > J}

)
. We begin

by defining two sequences of linear functions: {ṽl,k : 1 ≤ k ≤ n − 1} and
{ṽr,k : 0 ≤ k ≤ n− 2}. For 1 ≤ k ≤ n− 1, define linear functions

ṽl,k : t 7→ f(xk)− f(xk−1)

1/n
(t− xk) + f(xk).(C.164)

For 0 ≤ k ≤ n− 2, define linear functions

ṽr,k : t 7→ f(xk+2)− f(xk+1)

1/n
(t− xk+1) + f(xk+1).(C.165)

Recall that Gn(f), as defined in Equation (C.105), is the set of convex
functions that take the same values as f on grid points. Now we define h̃(k)
for 0 ≤ k ≤ n− 1 as follows

(C.166) h̃(k) =


mint∈[x0,x1] ṽr,0(t), k = 0

mint∈[xk,xk+1]max{ṽl,k(t), ṽr,k(t)}, 1 ≤ k ≤ n− 2

mint∈[n−1
n

,1] ṽr,n−1(t), k = n− 1

.

It is easy to check that for 0 ≤ k ≤ n−1, the possible values of inft∈[xk,xk+1] g(t)
for g ∈ Gn(f) are as follows.

(C.167) { inf
t∈[xk,xk+1]

g(t) : g ∈ Gn(f)} = [h̃(k),max{f(xk), f(xk+1)}].
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Now we know that

max{M(g) : g ∈ Gn(f)} = min{f(xi) : 0 ≤ i ≤ n},
min{M(g) : g ∈ Gn(f)} = min{h̃(i) : 0 ≤ i ≤ n− 1}.

(C.168)

Denote ȟ = min{h̃(i) : 0 ≤ i ≤ n− 1}, and then we have

E
(
(M(f)− flo)+1{ĵ+ K̃α/4 > J}

)
≤ (M(f)− ȟ) + E

(
(ȟ− flo)+1{ĵ+ K̃α/4 > J}

)
≤ (M(f)− ȟ) +

Ihi−2∑
i=Ilo−1

E
(
(h̃(i)− h(i))+1{ĵ+ K̃α/4 > J}

)
.

(C.169)

Recall the definition of δi in Equation (C.144): δi = ye,i−1 − f(xi−1). For
(Ilo − 1) ∨ 1 ≤ i ≤ (Ihi − 2) ∧ (n− 2), we have

E
(
(h̃(i)− h(i))+1{ĵ+ K̃α/4 > J}

)
≤ E

((
min

t∈[xi,xi+1]
max{ṽl,i(t), ṽr,i(t)}−

min
t∈[xi,xi+1]

max{ṽl,i(t) + (δi+1 − δi − 2H)n(t− xi) + δi+1 −H,

ṽr,i(t) + (δi+2 − δi+3 − 2H)n(xi+1 − t) + δi+2 −H}
)
+
1{ĵ+ K̃α/4 > J}

)
≤ P (ĵ+ K̃α/4 > J) (E (2|δi+1|+ |δi|+ 2|δi+2|+ |δi+3|) + 3H)

≤

(
6 · γeσ

√
2

π
+ 3γeSIhi−Ilo+3, 1

8
σ

)
P (ĵ+ K̃α/4 > J)

(a)

≤ C̄2,αρm(
σ√
n
; f).

(C.170)

Step (a) follows from σE(1{ĵ + K̃α/4 > J}) < E( σ√
2J−jl

), and Inequal-

ity (C.163).
When Ilo = 1,

(C.171)

E
((

h̃(0)− h(0)
)
+
1{ĵ+ K̃α/4 > J}

)
≤ E

((
min

t∈[0,1/n]
ṽr,0(t)− min

t∈[0,1/n]
(ṽr,0(t) + (δ3 − δ2 + 2H)n(t− x1) + δ2 −H)

)
+

1{ĵ+ K̃α/4 > J}

)
≤ P (ĵ+ K̃α/4 > J)(3H + 3γeσ

√
2

π
) < C̄2,αρm(

σ√
n
; f).
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When Ihi − 2 = n− 1,
(C.172)

E
((

h̃(n− 1)− h(n− 1)
)
+
1{ĵ+ K̃α/4 > J}

)
≤ E

(
1{ĵ+ K̃α/4 > J}(

min
t∈[n−1

n
,1]
ṽl,n−1(t)− min

t∈[n−1
n

,1]
(ṽl,n−1(t) + (δn − δn−1 − 2H)n(t− xn−1) + δn −H)

)
+

)

≤ P (ĵ+ K̃α/4 > J)(3H + 3γeσ

√
2

π
) < C̄2,αρm(

σ√
n
; f).

Going back to Inequality (C.169), we have
(C.173)

E
(
(M(f)− flo)+1{ĵ+ K̃α/4 > J}

)
≤ (Ihi−Ilo)C̄2,αρm(

σ√
n
; f)+(M(f)−ȟ).

Combing all the terms together, we have
(C.174)

EfL(CIm,α(Y )) ≤ Č4,αρm(
σ√
n
; f) +

√
2
(
min{f(xi) : 0 ≤ i ≤ n} − ȟ

)
.

Proof of Lemma C.48. The proof of this lemma is very similar to that
of lemma C.47. For simplicity, we will omit the parts that are the same and
only point out the places that are different.

Similar to Inequality (C.162), we have

EfL(CIm,α(Y ))

≤
(
SIhi−Ilo+1,α

4
− Φ−1(

α

4
) +

√
3
)
γeE(

σ√
2J−jl

)

+ E

(
(f̂1 − zα/4

√
3σ√

2J−jl
−

√
3σ√

2J−jl
− flo)+1{ĵ+ K̃α/4 > J}

)
≤
(
SIhi−Ilo+1,α

4
− Φ−1(

α

4
) +

√
3
)
γeσ+

E
(
(f̂1 −M(f))+1{ĵ+ K̃α/4 > J}

)
+ E

(
(M(f)− flo)+1{ĵ+ K̃α/4 > J}

)
.

(C.175)

For the second term, according to the definition of f̂1 and Proposition C.8,
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we have

E
(
(f̂1 −M(f))+1{ĵ+ K̃α/4 > J}

)
≤ E

(
(M̂ −M(f))+1{ĵ+ K̃α/4 > J}

)
≤ Č3 sup

h∈Gn(f)
ρm(

σ√
n
;h)

√
nρz(

σ√
n
;h) +

√
2 (min{f(xi) : 0 ≤ i ≤ n} −M(f)) ,

(C.176)

where M̂ is defined in (4.9).

For E
(
(M(f)− flo)+1{ĵ+ K̃α/4 > J}

)
, according to the arguments in

the proof of Lemma C.47, we have

E
(
(M(f)− flo)+1{ĵ+ K̃α/4 > J}

)
≤ (M(f)− ȟ) +

Ihi−2∑
i=Ilo−1

E
(
(h̃(i)− h(i))+1{ĵ+ K̃α/4 > J}

)
.

(C.177)

For (Ilo − 1) ∨ 1 ≤ i ≤ (Ihi − 2) ∧ (n− 2), we have

E
(
(h̃(i)− h(i))+1{ĵ+ K̃α/4 > J}

)
≤

(
6 · γe

√
2

π
+ 3γeSIhi−Ilo+3, 1

8

)
P (ĵ+ K̃α/4 > J)σ.

(C.178)

When Ilo = 1,

E
((

h̃(0)− h(0)
)
+
1{ĵ+ K̃α/4 > J}

)
≤ P (ĵ+ K̃α/4 > J)(3H + 3γeσ

√
2

π
).

(C.179)

When Ihi − 2 = n− 1,

E
((

h̃(n− 1)− h(n− 1)
)
+
1{ĵ+ K̃α/4 > J}

)
≤ P (ĵ+ K̃α/4 > J)(3H + 3γeσ

√
2

π
).

(C.180)
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Therefore,

E
(
(M(f)− flo)+1{ĵ+ K̃α/4 > J}

)
≤ (Ihi − Ilo)

(
6 · γe

√
2

π
+ 3γeSIhi−Ilo+3, 1

8

)
P (ĵ+ K̃α/4 > J)σ

+ (M(f)− ȟ).

(C.181)

Hence

(C.182) EfL(CIm,α(Y )) ≤ Č5,ασ +
√
2
(
min{f(xi) : i = 0, 1, · · · , n} − ȟ

)
.

Proof of Lemma C.49. Similar to the proof of lemma C.19, define the
following events:

E = {Z(f) /∈ [
2J−jl(Ilo − 1)

n
,
2J−jlIhi − 1

n
] ∩ [0, 1]}

E1 = {ǰ ≥ jw +Kα
4
+ 1, and jw +Kα

4
+ 1 ≤ J}

F = {ǰ ≤ j∗ − 2− K̃α
4
}

G = {fhi < M(f)}
H = {flo > M(f)}.

(C.183)

Then we know that

(C.184) Ec1 ⊂ Ec.

So we have

{M(f) ∈ CIm,α(Y )} ⊃ Ec ∩ Fc ∩ Gc ∩ Hc ⊃ Ec1 ∩ Fc ∩ Gc ∩ Hc.(C.185)

Then we have

P (M(f) ∈ CIm,α(Y ))

≥ P (Ec1 ∩ Fc ∩ Gc ∩ Hc)

= P (Gc ∩ Hc|Ec1 ∩ Fc)(1− P (E1)− P (F) + P (F ∩ E1))

= (1− P (G|Ec1 ∩ Fc)− P (H|Ec1 ∩ Fc)

+ P (G ∩ H|Ec1 ∩ Fc))(1− P (E1)− P (F) + P (F ∩ E1))

≥ 1− P (G|Ec1 ∩ Fc)− P (H|Ec1 ∩ Fc)− P (E1)− P (F).

(C.186)
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According to Lemma C.37, we have

P (E1) = P (ĵ ≥ jw +Kα
4
+ 1, jw +Kα

4
+ 1 ≤ J)

≤ P (ǰ ≥ jw +Kα
4
+ 1, jw +Kα

4
+ 1 ≤ J)

≤ Φ(−2)
Kα

4 ≤ α

4
.

(C.187)

Similar to the proof of Lemma C.19, especially the proof of Lemma C.21,
which consists the proof of Lemma C.19, we have

P (F) ≤ P (ǰ ≤ j∗ − 2− K̃α
4
) ≤ α

4
.(C.188)

For the remaining terms in Inequality (C.186), we claim

Lemma C.50.

(C.189) P (H|Ec1 ∩ Fc) ≤ α

4
.

Proof. With a little abuse of notation, let A denote the event {ĵ+K̃α/4 ≤
J} in the proof of this lemma. Then

P (H|Ec1 ∩ Fc) =

P (H|Ec1 ∩ Fc ∩A)P (A|Ec1 ∩ Fc) + P (H|Ec1 ∩ Fc ∩Ac)(1− P (A|Ec1 ∩ Fc)).

(C.190)

We start with the second term, for which we introduce another lemma.

Lemma C.51. On event Ac, for h(i) defined in Algorithm 2,

P (h(i) ≤ min
t∈[xi,xi+1]

f(t) for all Ilo − 1 ≤ i ≤ Ihi − 2
∣∣Yl, Ys) ≥ 1− α/4.

Proof. We take the definition of δi in Equation (C.144): δi = ye,i−1 −
f(xi−1). Since

P (max{|δi| : (Ilo − 1) ∨ 1 ≤ i ≤ (Ihi + 1) ∧ (n+ 1)} > H
∣∣Yl, Ys)

≤ P (max{δi : (Ilo − 1) ∨ 1 ≤ i ≤ (Ihi + 1) ∧ (n+ 1)} > H
∣∣Yl, Ys)

+ P (−min{δi : Ilo ≤ i ≤ Ihi} > H
∣∣Yl, Ys) ≤ α/4,

(C.191)

we have that condition on Yl, Ys, on event Ac, the following event holds with
probability at least 1− α/4:

B = {ye,i−H ≤ f(xi) and ye,i+H ≥ f(xi) for all (Ilo− 2)+ ≤ i ≤ Ihi ∧n}.
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On event B, for (Ilo−1)∨1 ≤ i ≤ (Ihi−2)∧(n−2), consider two linear func-

tions ṽl,i : t 7→ f(xi)−f(xi−1)
1/n (t−xi)+f(xi), ṽr,i : t 7→ f(xi+2)−f(xi+1)

1/n (t−xi+1)+

f(xi+1). Then for t ∈ [xi, xi+1], f(t) ≥ max{ṽl,i(t), ṽr,i(t)} ≥ max{vl,i(t), vr,i(t)},
hence h(i) ≤ inft∈[xi,xi+1] f(t).

If Ilo − 1 = 0, suppose event B holds, then consider the linear function
ṽr,0 : t 7→ f(x2)−f(x1)

1/n (t − x1) + f(x1). For t ∈ [0, 1/n], we have that f(t) ≥
ṽr,0(t) ≥ vr,0(t), hence h(0) ≤ mint∈[0,1/n] f(t).

Similarly, if Ihi − 2 = n − 1, on event B we have that h(n − 1) ≤
mint∈[n−1/n,1] f(t).

Therefore, on event B, min{h(i) : Ilo−1 ≤ i ≤ Ihi−2} ≤ inft∈[xIlo−1,xIhi−1] f(t).
Therefore,

(C.192) P

(
h(i) ≤ min

t∈[xi,xi+1]
f(t) for all Ilo − 1 ≤ i ≤ Ihi − 2

∣∣∣Yl, Ys)
≥ P (B|Yl, Ys) ≥ 1− α/4.

Recalling that on event Ec1, we have Z(f) ∈ [xIlo−1, xIhi−1], together with
Lemma C.51, we have
(C.193)
P (H | Ec1 ∩ Fc ∩Ac)

≤ P (min{h(i) : Ilo − 1 ≤ i ≤ Ihi − 2} > M(f) | Ec1 ∩ Fc ∩Ac)

= P

(
min{h(i) : Ilo − 1 ≤ i ≤ Ihi − 2} > min

t∈[xIlo−1,xIhi−1]
f(t) | Ec1 ∩ Fc ∩Ac

)
≤ α/4.

Now we turn to the first term in Inequality (C.190).
First, we show that on event Ec

1∩A∩F c, we have minIlo≤i≤Ihi avef (jl, i) ≤
M(f)+

√
3σ√

2J−jl
using the fact that ρm( σ√

n
; f) ≤

√
3σ√

n
√

ρz(
σ√
n
;f)

≤
√
3σ√

n
√

2j−j∗+2/n
:

{ min
Ilo≤i≤Ihi

avef (jl, i) ≤ M(f) +

√
3σ√

2J−jl
} ∩ Ec1 ∩A

⊃ { min
Ilo≤i≤Ihi

avef (jl, i) ≤ M(f) + ρm(
σ√
n
; f)} ∩ {jl > j∗ − 2} ∩ Ec1 ∩A

⊃ F c ∩ {jl > j∗ − 2} ∩ Ec1 ∩ {ĵ+ K̃α/4 ≤ J}
⊃ Ec1 ∩A ∩ Fc.

Denote imin = argminIlo≤i≤Ihi
avef (jl, i). When there is more than one

qualifying for imin, take any one.
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Therefore,

(C.194) P (H|Ec1 ∩ Fc ∩A) ≤ P (Ejl,imin,e ≥ −Φ−1(
α

4
)σγe2

J−jl
2 ) ≤ α

4
.

Therefore,

P (H|Ec1 ∩ Fc) ≤ α

4
.(C.195)

Similar to the arguments in proof of Lemma C.22, we have

(C.196) P (G|Ec1 ∩ Fc) ≤ α

4
.

Returning to the main theorem, we have,

(C.197) P (M(f) ∈ CIm,α(Y )) ≥ 1− α.

APPENDIX D: PROOFS OF TECHNICAL LEMMAS

We prove all the technical lemmas in this section.

Proof of Lemma C.1. The inequalities are due to

f(x2)−f(x1)
x2−x1

− f(x3)−f(x2)
x3−x2

≤
(x3−x1)(f(x2)− f(x1)(x3−x2)+f(x3)(x2−x1)

x3−x1
)

(x2−x1)(x3−x2)
≤ 0,

and

f(x3)− f(x1)

x3 − x1
=

f(x2)− f(x1)

x2 − x1
· x2 − x1
x3 − x1

+
f(x3)− f(x2)

x3 − x2
· x3 − x2
x3 − x1

.

Proof of Lemma C.2. Let t = x
3
2

√
2/3− 2, then we have

2xΦ(2− (2x)
3
2

√
2/3)

xΦ(2−
√

2/3x3/2)
≤ 2

∫ −2
√
2t−(4

√
2−2)

−∞ exp (−u2

2 )du∫ −t
−∞ exp (−u2

2 )du

≤ 4
√
2

∫ −2
√
2t

−∞ exp (−u2

2 )du exp (− (4
√
2−2)2

2 )∫ −2
√
2t

−∞ exp (−u2

16 )du
< 0.008.

(D.1)
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Proof of Lemma C.3. Let

q(x) = x2Φ(−x)

Then

q′(x) = x(2Φ(−x)− x√
2π

exp (−x2

2
)).

Taking further derivative, we know that sign((2Φ(−x)− x√
2π

exp (−x2

2 ))
′) =

sign(x2 − 3). Hence q′(x)/x goes down and then goes up, its first root is
the place that q(x) takes maximum. Since q′(1.19) > 0, q′(1.2) < 0, we
have supx>0 q(x) ≤ 1.22Φ(−1.19) < 0.168514 < 0.169. Therefore Q ≤
1.22Φ(−1.19) < 0.169. Only in this proof, let u(x) = x2Φ(2 − x). We

have u′(x) = x(2Φ(2 − x) − x 1√
2π

exp (− (2−x)2

2 )). Since sign((2Φ(2 − x) −

x 1√
2π

exp (− (2−x)2

2 ))′) = sign(x(x − 2) − 3), and minx>0 u
′(x) < 0 < u′(1),

we know u′(x) has at least 1 root. And its first root (when the root is
unique, its first root is its unique root) is where u(x) takes maximum, since
u′(2.18) > 0, u′(2.19) < 0, we have u(x) ≤ 2.192Φ(2− 2.18) < 2.0555. Hence
V < 2.0555.

Proof of Lemma C.7. Since we have for t > 0,

(D.2) Φ(−t) ≥ 1√
2π

t

t2 + 1
exp (−t2/2),

we set t(α) =
√

2 log (1/α)−
√
log (2 log (1/α)). So we get, for α < 0.03,

Φ(−t(α)) ≥ 1√
2π

α exp (log (2 log (1/α)) · (
√

exp (1)

1
− 1

2
))

t(α)

t(α)2 + 1

≥ α · (2 log (1/α))1.14 1√
2π

t(α)

t(α)2 + 1
.

(D.3)

Further, denote x = 2 log (1/α), we have

(D.4)
t(α)

t(α)2 + 1
x =

t(α)2

t(α)2 + 1

x

t(α)
≥ t(α)2

t(α)2 + 1

√
x > 0.6

√
x > 1.58.

The inequalities are because of t(α) =
√
x −

√
log x, t increases with x

when x > 2, and x > 7 when α < 0.03.
Therefore, for α < 0.03

(D.5) Φ(−t(α)) ≥ 0.82α.
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Therefore, for α ≤ 0.005, z3α ≥ t( 3
0.82α), z2.06α ≥ t(2.060.82α).

Note that for α < 0.02, t(α) ≥
√
log(1/α)× 0.689.

Hence for α ≤ 0.005,

z3α ≥ t(
3

0.82
α) ≥ 0.689×

√
log(0.82/3α) ≥ 0.599

√
log(1/α),

z2.06α ≥ t(
2.06

0.82
α) ≥ 0.689×

√
log(0.82/2.06α) ≥ 0.627

√
log(1/α).

(D.6)

We are now left with bounding

inf
α∈(0.005,0.08]

z2.06α√
log 1/α

.

Note that both z2.06α and
√
log 1/α increases with α decreasing. Therefore,

inf
α∈(0.005,0.08]

z2.06α√
log 1/α

≥ min
5≤k≤79

z2.06 k+1
1000√

log 1000/k
≥ 0.61.

Therefore, for α < 0.08, z2.06α√
log 1/α

≥ 0.61.

Proof of Lemma C.8. In this proof, we extend the meaning of opera-
tor max{·, ·} to allow function-value arguments. Suppose f and g are two
functions, then max{f, g} := t 7→ max{f(t), g(t)}.

For µ that will be specified later, define xl = argmin{t ∈ [0, 1] : f(t) ≤
M(f) + µ}, xr = argmax{t ∈ [0, 1] : f(t) ≥ M(f) + µ}. We will construct
several functions. Without loss of generality, we assume xr + xl ≥ 2Z(f).
Otherwise, we construct those functions on the left side. As shown in the
Figure 22, the function in bold is f, and the following points have the following
coordinates:
(D.7)
F : (Z(f),M(f)) A : (xl,M(f)+µ) D : (xr,M(f)+µ) N : (xl,M(f)+2µ)

Define four linear functions L0, L1, L2, L3:

(D.8)

L0(t) = M(f) + µ (AD),

L1(t) =

{
M(f) + (t− Z(f)) µ

xl−Z(f) , xl ̸= Z(f)

M(f), xl = Z(f)
(AF ),

L2(t) = M(f) + (t− Z(f))
µ

xr − Z(f)
(FD),

L3(t) = M(f) + µ+ (t− xr)
µ

xl − xr
(ND).
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Define the following functions:
(D.9)
g1 = max(f, L0), g2 = max(f, L3), g3 = max(L1, L2, L0), g4 = max(L1, L2).

Note that the above definition is valid for all µ > 0 as it does not require
A and D to be on the graph of f . Therefore, when µ goes from 0+ to ∞,
∥g1 − f∥ and ∥g2 − f∥ also go from 0+ to ∞. But note that ∥g2 − f∥, as a
function of µ, may not be monotonic, nor continuous. As µ increases, g2 may
jump between the right and the left side. A jump can incur a sudden increase
or decrease. On each small chunk, ∥g2 − f∥ is monotonic and continuous.

B

A

C

DE

F

G

P Q

H

I

J

K

M

L1

L2

L3

N

Fig 22: Illustration figure for proof of lemma C.8
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Therefore, for any given σ > 0, there are two possible cases. Either ∃µ > 0,
s.t. ∥g2 − f∥ = σ, or ∃µ such that the following three things hold.

Property 1 xl(µ) + xr(µ) = 2Z(f).
Property 2 Suppose g2,l and g2,r are constructed essentially in the same way

as g2 but one on the left side (g2,l) and one on the right side (g2,r).
Then (∥g2,l − f∥ − σ) · (∥g2,r − f∥ − σ) < 0.

Property 3 And further, for the side (h ∈ {l, r}) that ∥g2,h − f∥ − σ < 0,
∃µ > τh > 0 such that for any τ ∈ (0, τh),

|xh(µ− τ)− Z(f)| ≥ |xl(µ− τ)− Z(f)|+ |xr(µ− τ)− Z(f)|
2

.

And for the other side h̃ ∈ {l, r}/{h}, ∥g2,h̃ − f∥ − σ > 0, ∃µ > τh̃ > 0
such that for any τ ∈ (0, τh̃),

|xh̃(µ+ τ)− Z(f)| ≥ |xl(µ+ τ)− Z(f)|+ |xr(µ+ τ)− Z(f)|
2

.

To show the main idea more clearly, we assume for the moment that for
the σ that will be chosen later, there exists a µ such that on at least one
side, we have ∥g2 − f∥ = σ and use σ to denote ∥g2 − f∥. For the σ that
does not have a corresponding µ, we will discuss it later.

Now we will introduce several inequalities with respect to ∥g2−f∥, ∥g1−f∥
and ∥g3 − g4∥.

1.

∥g2 − f∥2 ≤ 5∥g1 − f∥2.(D.10)

When Z(f) ̸= xl, we have

∥g2 − f∥2 ≤ 1

3
µ3 1

µ
Z(f)−xl

− µ
xr−xl

+ 2× 1

3
(xr − xl)× µ2 + 2× ∥g1 − f∥2

=
1

3
µ2 (Z(f)− xl)(xr − xl)

xr − Z(f)
+

2

3
µ2(xr − xl) + 2∥g1 − f∥2

≤ µ2(xr − xl) + 2× ∥g1 − f∥2 ≤ 5∥g1 − f∥2.

Otherwise, the first term is zero, we still have Inequality (D.10).
2.

∥g1 − f∥2 ≤ 3∥g3 − g4∥2.(D.11)

This follows from

∥g3 − g4∥2 =
1

3
µ2(xr − xl) ≥

1

3
∥g1 − f∥2.
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3.

∥g2 − f∥2 ≤ 8∥g3 − g4∥2.(D.12)

When xl ̸= Z(f), we have

∥g2 − f∥2

≤ 1

3
µ3 1

µ
Z(f)−xl

− µ
xr−xl

+
1

3
(xr − xl)× µ2 + ∥g1 − f∥2 + 2× µ2 × 1

2
(xr − xl)

=
1

3
µ2 4xr − xl − 3Z(f)

xr − Z(f)
(xr − xl) + ∥g1 − f∥2

≤ 5

3
µ2(xr − xl) + ∥g1 − f∥2 ≤ 8∥g3 − g4∥2.

Otherwise, the first term is zero and Inequality (D.12) still holds.

Define linear function g5 = max{L3, L2}, then we know that

ρz(γ; g2) ≤ ρz(γ; g5), ∀γ > 0.(D.13)

Now we will show that

ρz(γ; g5) ≤ 2ρz(γ; g4),(D.14)

for γ ≤
√

1
3µ

2(xr − xl) = ∥g3 − g4∥. When γ ≤ ∥g3 − g4∥, elementary

calculation gives the followings:

ρz(γ; g4) =
xr − Z(f)

xr − xl
(3
(xr − xl)

2

µ2
γ2)1/3 ≥ 1

2
(3
(xr − xl)

2

µ2
γ2)1/3,

ρz(γ; g5) ≤ (3
(xr − xl)

2

µ2
γ2)1/3,

which give Inequality (D.14).
Therefore, Inequality (D.13) and Inequality (D.14) give

ρz(γ; g2) ≤ 2ρz(γ; g4), ∀γ ∈ (0, ∥g3 − g4∥).(D.15)

Further, for all γ > 0, we have

ρz(γ; g4) =

(
γ

∥g3 − g4∥

) 2
3

(xr − Z(f)) ≤

( √
8γ

∥g2 − f∥

) 2
3

(xr − Z(f))

=

( √
8γ

∥g2 − f∥

) 2
3

|Z(g2)− Z(f)| =

(√
8γ

σ

) 2
3

|Z(g2)− Z(f)|.

(D.16)
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Therefore, we have

(D.17) ρz(γ; g2) ≤ 4(
γ

σ
)
2
3 |Z(g2)− Z(f)|, ∀γ ≤ ∥g3 − g4∥.

Further we have

(D.18) |Z(g2)− Z(f)| = sup{|t− Z(f)| : g1(t) = M(g1)} ≥ ρz(
1√
5
σ; f).

The σ we will specify later is no smaller than
√
8ε, and suppose σ ≥

√
8ε

from now. This gives two consequences.

1. |Z(g2)− Z(f)| ≥ ρz(
1√
5
σ; f) ≥ ρz(ε; f).

2. ∥g3 − g4∥2 ≥ 1
8 × 8ε2. By Inequality (D.15), this further implies

ρz(ε; g2) ≤ 4( εσ )
2
3 |Z(g2)− Z(f)|.

As we know, for the problem of estimation Z(h) with h ∈ {g2, f}, the
following statistic is sufficient

(D.19) WS =

∫ 1
0 (g2(t)− f(t))dY (t)− 1

2

∫ 1
0 (g2(t)

2 − f(t)2)dt

ε∥g2 − f∥
,

and we have WS ∼ N(θ(h)∥g2−f∥
2ε , 1), with θ(g2) = 1, θ(f) = −1.

Define an event O = {|Ẑ − Z(f)| > 1
2ρz(ε; f)}, then we have Pf (O) ≤ 2c.

This is because we have Ef |Ẑ − Z(f)| ≤ cρz(ε; f). Therefore, by arguments

simliar to Neyman–Pearson lemma, we have Pg2(O) ≤ Φ(∥g2−f∥
ε −Φ−1(1−2c)).

Since |Z(g2)−Z(f)| ≥ ρz(ε; f) and |Ẑ−Z(g2)| ≥ |Z(g2)−Z(f)|−|Ẑ−Z(f)|,
we have the following inequalities

Eg2 |Ẑ − Z(g2)| ≥ Eg2

(
(|Z(g2)− Z(f)| − |Ẑ − Z(f)|)+

)
≥ Eg2

(
1{Oc}

(
|Z(g2)− Z(f)| − 1

2
ρz(ε; f)

))
≥ Φ(Φ−1(1− 2c)− ∥g2 − f∥

ε
)
1

2
|Z(g2)− Z(f)|.

(D.20)

For c ≤ 0.0011, let σ = Φ−1(1−2c)ε. Then σ >
√
8ε, thus |Z(g2)−Z(f)| ≥

ρz(ε; f) and ρz(ε; g2) ≤ 4( εσ )
2
3 |Z(g2)− Z(f)|.

So we have

Eg2 |Ẑ − Z(g2)| ≥
1

4
|Z(g2)− Z(f)| ≥ 1

16
Φ−1(1− 2c)

2
3 ρz(ε; g2).(D.21)

Let f1 = g2, we have the result.
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Now we consider the case when σ = Φ−1(1− 2c)ε does not have a corre-
sponding µ. Then ∃µ > 0 such that Property 1, Property 2 and Property 3
hold.

Without loss of generality, we assume h defined in Property 3 is r. Then
Property 2 and Property 3 give that ∥g2,l − f∥ > σ. By Property 1,

|Z(g2,r)− Z(f)| = |Z(g2,l)− Z(f)|.(D.22)

Besides g2,l and g2,r, we can construct g1,l, g3,l, g4,l, g5,l similarly to g1, g3,
g4, g5 on the left hand side, and also g1,r, g3,r, g4,r, g5,r on the right hand
side. Then we know that

g1,l = g1,r = g1, g3,l = g3,r = g3, g4,l = g4,r = g4.(D.23)

According to Inequality (D.12), we have ∥g3 − g4∥2 ≥ 1
8∥g2,l − f∥2 ≥ ε2.

Therefore, we have

|Z(g2,r)− Z(f)| (i)= |Z(g2,l)− Z(f)|
(ii)

≥
(
∥g2,l − f∥√

8ε

) 2
3

ρz(ε; g4,l)
(iii)

≥ 1

2
Φ−1(1− 2c)

2
3 ρz(ε; g4,l)

(iv)
=

1

2
Φ−1(1− 2c)

2
3 ρz(ε; g4,r)

(v)

≥ 1

4
Φ−1(1− 2c)

2
3 ρz(ε; g2,r).

(D.24)

Step (i) follows from Equation (D.22), step (ii) follows from Inequality (D.16),
step (iii) follows from ∥g2,l − f∥ > σ = Φ−1(1− 2c)ε, step (iv) follows from
Equation (D.23), and step (v) follows from Inequality (D.15).

Again, since σ >
√
5ε, we have |Z(g2,r) − Z(f)| = |Z(g2,l) − Z(f)| ≥

ρz(ε; f), which comes from (D.18).
Similar to the arguments in the case of g2, we define event O = {|Ẑ −

Z(f)| > 1
2ρz(ε; f)}, then we have Pf (O) ≤ 2c. And we have

Eg2,r |Ẑ − Z(g2,r)| ≥ Eg2,r

(
(|Z(g2,r)− Z(f)| − |Ẑ − Z(f)|)+

)
≥ Eg2,r

(
1{Oc}

(
|Z(g2,r)− Z(f)| − 1

2
ρz(ε; f)

))
≥ Φ(Φ−1(1− 2c)− ∥g2,r − f∥

ε
)
1

2
|Z(g2,r)− Z(f)|

≥ 1

16
Φ−1(1− 2c)

2
3 ρz(ε; g2,r).

(D.25)

We take f1 = g2,r and get the statement.
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Proof of Lemma C.9. Without loss of generality, we assume f(Z(f) +
ρz(ε; f)) ≤ M(f) + ρm(ε; f). Denote xl = min{t : f(t) ≤ M(f) + ρm(ε; f)}.

For 0 < δ < 1
2ρz(ε; f)), denote

gδ(t) = max
{
f(t),

M(f) + ρm(ε; f) +
f(Z(f) + ρz(ε; f)− δ)−M(f)− ρm(ε; f)

ρz(ε; f) + Z(f)− xl − δ
(t− xl)

}
.

Clearly, ∥gδ−f∥ ≤ ε, Z(gδ) = Z(f)+ρz(ε; f)−δ, and ρz(ε; gδ) ≤ 3ρz(ε; f).
Define event O to be O = {|Ẑ − Z(f)| ≥ 1

2ρz(ε; f)}. Then Pf (O) ≤ 2c,
thus Pgδ(O) ≤ Φ(1 + Φ−1(2c)).

Therefore,

Egδ |Ẑ − Z(gδ)| ≥ Egδ

(
1{Oc}(|Z(f)− Z(gδ)| −

1

2
ρz(ε; f))+

)
≥ Pgδ(O

c)(ρz(ε; f)− δ − 1

2
ρz(ε; f))

≥ (1− Φ(1 + Φ−1(2c)))(ρz(ε; f)− δ − 1

2
ρz(ε; f))

≥ (1− Φ(1 + Φ−1(2c)))

(
1

2
− δ

ρz(ε; f)

)
+

ρz(ε; f)

≥ (1− Φ(1 + Φ−1(2c)))

(
1

2
− δ

ρz(ε; f)

)
+

ρz(ε; gδ)

3
.

(D.26)

Therefore,

sup
1
2
ρz(ε;f)>δ>0

Egδ |Ẑ − Z(gδ)|
ρz(ε; gδ)

≥ lim sup
δ→0+

(1− Φ(1 + Φ−1(2c)))

3

(
1

2
− δ

ρz(ε; f)

)
+

=
1

6

(
1− Φ(1 + Φ−1(2c))

)
> 0.1666

(
1− Φ(1 + Φ−1(2c))

)
.

(D.27)

Note that the inequality is strict, so we have the statement.

Proof of Lemma C.10. Without loss of generality, we can assume

tr = max{t ∈ [0, 1] : f(t) ≤ M(f) + ρm(γ; f)} = Z(f) + ρz(γ; f),

for a γ > 0 that we will specify later. Denote

tl = min{t ∈ [0, 1] : f(t) ≤ M(f) + ρm(γ; f)} = Z(f) + ρz(γ; f).
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It is apparent that tr and tl depend on γ. For 1
4ρz(γ; f) > δ > 0, define

gδ(γ; f) = max{f,M(f) + ρm(γ; f) +
f(tr − δ)−M(f)− ρm(γ; f)

tr − δ − tl
(t− tl)}.

Therefore, we know that ∥gδ(γ; f)− f∥ ≤ γ. We will use g to refer to gδ(γ; f)
when there is no ambiguity. According to the definition, we know that
lim sup
δ→0+

ρm(γ; g) ≤ ρm(γ; f). We will specify γ to be a quantity no smaller

than ε, suppose γ ≥ ε from now.
Denote O = {|M̂ −M(f)| > 1

2ρm(ε; f)}. Since Ef |M̂ −M(f)| ≤ cρm(ε; f),
we have Pf (O) ≤ 2c, then we have

Eg|M̂ −M(g)|

≥ Eg

(
1{Oc}(|M(f)−M(g)| − |M̂ −M(f)|)+

)
≥ Pg(O

c)(|M(f)−M(g)| − 1

2
ρm(ε; f))+

≥ Φ(Φ−1(1− 2c)− γ

ε
)

(
|M(f)−M(g)| − 1

2
ρm(ε; f)

)
+

= Φ(Φ−1(1− 2c)− γ

ε
)

(
ρm(γ; f)− 1

2
ρm(ε; f) + f(tr − δ)− f(tr)

)
+

.

For c ≤ 0.103, let γ = max{Φ−1(1− 2c)ε, ε}. Then γ ≥ ε.
Therefore, we have

sup
0<δ< 1

4
ρz(γ;f)

Eg|M̂ −M(g)|
ρm(ε; g)

≥ lim sup
δ→0+

Eg|M̂ −M(g)|
ρm(ε; g)

≥ lim sup
δ→0+

Φ(z2c −max{z2c, 1})(
(γ
ε

) 2
3 ρm(ε; f)− 1

2ρm(ε; f) + f(tr − δ)− f(tr))+

ρm(ε; g)

≥
Φ(z2c −max{z2c, 1})

((γ
ε

) 2
3 ρm(ε; f)− 1

2ρm(ε; f)
)

ρm(ε; f)

= Φ(z2c −max{z2c, 1})
((γ

ε

) 2
3 − 1

2

)
.

For 0.103 ≥ c ≥ Φ(−1)
2 , we have

(D.28) sup
g∈F

Eg|M̂ −M(g)|
ρm(ε; g)

≥ Φ(z2c − 1)

2
> 0.214362.
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For c < Φ(−1)
2 , we have

(D.29) sup
g∈F

Eg|M̂ −M(g)|
ρm(ε; g)

≥ 1

2

(
z

2
3
2c −

1

2

)
>

z
2
3
2c

4
.

Note that for both cases, the inequality is strict, so we have the statement.

Proof of Lemma C.15. Without loss of generality, we assume

(D.30) sup{t > Z(f) : f(t) ≤ ρm(ε; f) +M(f)} = ρz(ε; f) + Z(f).

Splitting the entire probability space into {ĵ ≤ j∗+1} and {ĵ ≥ j∗+2} gives

El,s

(
(f̂ −M(f))21{j̃ > ĵ}

)
= El,s

( j∗+1∑
j1=2

(f̂ −M(f))21{ĵ = j1, j̃ ≥ j1 + 1}
)

︸ ︷︷ ︸
η1

+ El,s

( ∞∑
j1=j∗+2

(f̂ −M(f))21{ĵ = j1, j̃ ≥ j1 + 1}
)

︸ ︷︷ ︸
η2

(D.31)

We have the following bounds that we will prove separately

η1 ≤ (7680V + 2)ρm(ε; f)2, η2 ≤ (78V +
1

16
)ρm(ε; f)2,(D.32)

which gives the statement of the lemma.

Proof of bound on η1 in Inequality (D.32). Splitting the entire probability
space by the value of ∆ (i.e., ∆ = 2, ∆ = −2, ∆ = 0) gives

η1 =El,s

( j∗+1∑
j1=2

(f̂ −M(f))21{j̃ ≥ j1 + 1, ĵ = j1}
)

≤
j∗+1∑
j1=2

El,s

(
(µj1 ,̂ij1+2 −M(f))21{j̃ ≥ j1 + 1, ĵ = j1,∆ = 2}

)
+

j∗+1∑
j1=2

El,s

(
(µj1 ,̂ij1−2 −M(f))21{j̃ ≥ j1 + 1, ĵ = j1,∆ = −2}

)
+

j∗+1∑
j1=2

El,s

(
(µj1 ,̂ij1

−M(f))21{j̃ ≥ j1 + 1, ĵ = j1,∆ = 0}
)

︸ ︷︷ ︸
ξ

.

(D.33)
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By convexity of f , we can further bound ξ in Inequality (D.33) by

ξ ≤
j∗+1∑
j1=2

El,s

( (µj1 ,̂ij1+2 −M(f))2 + (µj1 ,̂ij1−2 −M(f))2

2
1{j̃ ≥ j1 + 1, ĵ = j1,∆ = 0}

)
.

Plugging this bound of ξ back into Inequality (D.33) gives

η1 ≤
j∗+1∑
j1=2

El,s

(
(µj1 ,̂ij1+2 −M(f))21{j̃ ≥ j1 + 1, ĵ = j1,∆ ∈ {0, 2}}

)︸ ︷︷ ︸
κ1(j1)

+

j∗+1∑
j1=2

El,s

(
(µj1 ,̂ij1−2 −M(f))21{j̃ ≥ j1 + 1, ĵ = j1,∆ ∈ {−2, 0}}

)︸ ︷︷ ︸
κ2(j1)

.

(D.34)

Now we will bound κ1(j1) and κ1(j2) for j1 ≤ j∗. Before we bound for
general j1 ≤ j∗, we list two special cases for κ1(j1). By assumption (D.30),
for j1 = j∗ and j1 = j∗ + 1 in the first term, we have

κ1(j1) ≤ ρm(ε; f)222j
∗−2j1 .(D.35)

For general j1 ≤ j∗, simplifying the event {∆ ∈ {0, 2}} and taking conditional
expectation with respect to Yl gives

κ1(j1) ≤El,s

(
(µj1 ,̂ij1+2 −M(f))21{j̃ ≥ j1 + 1,

X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5√
2cs

√
mj1ε

≤ 2}
)

≤El

(
(µj1 ,̂ij1+2 −M(f))21{j̃ ≥ j1 + 1}

Es

(
1{Ej1 ,̂ij1+6

1√
2csε

≤ 2− µj1 ,̂ij1+6

√
mj1√
2csε

+ µj1 ,̂ij1+5

√
mj1√
2csε

|Yl
))

,

κ2(j2) ≤El,s

( j∗+1∑
j1=2

(µj1 ,̂ij1−2 −M(f))21{j̃ ≥ j1 + 1,
X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5√

2cs
√
mj1ε

≤ 2}
)

≤El

(
(µj1 ,̂ij1−2 −M(f))21{j̃ ≥ j1 + 1}

Es

(
1{−Ej1 ,̂ij1−5

1√
2csε

≤ 2− µj1 ,̂ij1−6

√
mj1√
2csε

+ µj1 ,̂ij1−5

√
mj1√
2csε

|Yl
))

.
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Now we will bound µj1 ,̂ij1−6 − µj1 ,̂ij1−5 by an expression of µj1 ,̂ij1−2 −M(f).

As we have |̂ij1 − i∗j1 | ≤ 1, we have i∗j1 − 3 ≤ îj1 − 2 ≤ i∗j1 − 1. We have

µj1 ,̂ij1−6 − µj1 ,̂ij1−5 ≥ mj1

f(tj1 ,̂ij1−6)−M(f)

tj1 ,̂ij1−6 − Z(f)
≥ mj1

f(tj1 ,̂ij1−3)−M(f)

tj1 ,̂ij1−3 − Z(f)

≥ mj1

µj1 ,̂ij1−2 −M(f)

4mj1

≥ 1

4
(µj1 ,̂ij1−2 −M(f)).

Similarly we have

µj1 ,̂ij1+6 − µj1 ,̂ij1+5 ≥
1

4
(µj1 ,̂ij1+2 −M(f)).

Now we plug these bounds back to bound κ2(j1) and κ1(j1). Since similar
analysis goes for both κ2(j1) and κ1(j1), we only showcase the analysis for
κ2(j1) in detail.
(D.36)

κ2(j1)

≤El

(
(µj1 ,̂ij1−2 −M(f))21{j̃ ≥ j1 + 1}

Es

(
1{−Ej1 ,̂ij1−5

1√
2csε

≤ 2− 1

4
(µj1 ,̂ij1−2 −M(f))

√
mj1√
2csε

|Yl

))
=El

(
(µj1 ,̂ij1−2 −M(f))21{j̃ ≥ j1 + 1}Φ(2− (µj1 ,̂ij1−2 −M(f))2

j∗−j1−4
2

√
mj∗√
2csε

)
)

≤El

(
24+j1−j∗ 2c

2
sε

2

mj∗
1{j̃ ≥ j1 + 1}

[2
j∗−j1−4

2

√
mj∗

2
√
2csε

(µj1 ,̂ij1−2 −M(f))]2Φ(2− (µj1 ,̂ij1−2 −M(f))2
j∗−j1−4

2

√
mj∗

2
√
2csε

)
)

≤24+j1−j∗ 2c
2
sε

2

mj∗
V,

where V = supx≥0 x
2Φ(2− x).

Similarly,

(D.37) κ1(j1) ≤ 24+j1−j∗ 2c
2
sε

2

mj∗
V.

Plugging the bounds of κ1(j1) and κ2(j1) (Inequality (D.35), (D.37),
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(D.36)) back to Inequality (D.34) gives

η1 ≤
j∗−1∑
j=1

(κ1(j1) + κ2(j1)) +

j∗+1∑
j=j∗

κ2(j1) +

j∗+1∑
j=j∗

κ1(j1)

≤ (3× 210V + 3× 29V + 3× 210V +
5

4
)ρm(ε; f)2 ≤ (7680V + 2)ρm(ε; f)2.

(D.38)

Proof of bound on η2 in Inequality (D.32). Similar to the proof of bound
on η1, we split the entire probability space by the value of ∆, simplify the
events, take conditional expectations, and calculate them to arrive at the
bound. Details are as follows.

El,s

( ∞∑
j1=j∗+2

(f̂ −M(f))21{ĵ = j1, j̃ ≥ j1 + 1}
)

≤ El,s

( ∞∑
j1=j∗+2

(µj1 ,̂ij1+2 −M(f))21{j̃ ≥ j1 + 1, ĵ = j1,

X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5√
2cs

√
mj1ε

≤ 2,
X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5√

2cs
√
mj1ε

> 2}
)

+ El,s

( ∞∑
j1=j∗+2

(µj1 ,̂ij1−2 −M(f))21{j̃ ≥ j1 + 1, ĵ = j1,

X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5√
2cs

√
mj1ε

≤ 2,
X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5√

2cs
√
mj1ε

> 2}
)

+ El,s

( ∞∑
j1=j∗+2

(µj1 ,̂ij1
−M(f))21{j̃ ≥ j1 + 1, ĵ = j1,

X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5√
2cs

√
mj1ε

≤ 2,
X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5√

2cs
√
mj1ε

≤ 2}
)

≤ 1

16
ρm(ε; f)2 + El,s

( ∞∑
j1=j∗+2

(µj1 ,̂ij1−2 −M(f))21{j̃ ≥ j1 + 1,

X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5√
2cs

√
mjε

≤ 2,∀j∗ + 1 ≤ j ≤ j1,
X̃j,̂ij+6 − X̃j,̂ij+5√

2cs
√
mjε

> 2}
)

+ El,s

( ∞∑
j1=j∗+2

(µj1 ,̂ij1
−M(f))21{j̃ ≥ j1 + 1, ĵ = j1,

X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5√
2cs

√
mj1ε

≤ 2,

X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5√
2cs

√
mj1ε

≤ 2,
X̃j,̂ij+6 − X̃j,̂ij+5√

2cs
√
mjε

> 2, ∀j∗ + 1 ≤ j ≤ j1 − 1}
)
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≤ El

( ∞∑
j1=j∗+2

(µj1 ,̂ij1−2 −M(f))21{j̃ ≥ j1 + 1}Es

(
1{∀j∗ + 1 ≤ j ≤ j1,

X̃j,̂ij+6 − X̃j,̂ij+5√
2cs

√
mjε

> 2,
X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5√

2cs
√
mj1ε

≤ 2}|Yl
))

+
1

16
ρm(ε; f)2

+ El

( ∞∑
j1=j∗+2

(µj1 ,̂ij1
−M(f))21{j̃ ≥ j1 + 1}Es

(
1{

X̃j1 ,̂ij1−6 − X̃j1 ,̂ij1−5√
2cs

√
mj1ε

≤ 2,

∀j∗ + 1 ≤ j ≤ j1 − 1,
X̃j,̂ij+6 − X̃j,̂ij+5√

2cs
√
mjε

> 2,
X̃j1 ,̂ij1+6 − X̃j1 ,̂ij1+5√

2cs
√
mj1ε

≤ 2}|Yl
))

≤ 1

16
ρm(ε; f)2 + El

( ∞∑
j1=j∗+2

(µj1 ,̂ij1−2 −M(f))21{j̃ ≥ j1 + 1}

[
Πj1

j=j∗+1Φ(−2 +
(µj,̂ij+6 − µj,̂ij+5)

√
mj

√
2csε

)
]
Φ(2−

√
mj1(µj1 ,̂ij1−6 − µj1 ,̂ij1−5)√

2csε
)

)
+ El

( ∞∑
j1=j∗+2

(µj1 ,̂ij1
−M(f))21{j̃ ≥ j1 + 1}Φ(2−

√
mj1(µj1 ,̂ij1−6 − µj1 ,̂ij1−5)√

2csε
)

Φ(2−
√
mj1(µj1 ,̂ij1+6 − µj1 ,̂ij1+5)√

2csε
)
[
Πj1−1

j=j∗+1Φ(−2 +
(µj,̂ij+6 − µj,̂ij+5)

√
mj

√
2csε

)
])

≤ 1

16
ρm(ε; f)2 + El

( ∞∑
j1=j∗+2

(µj1 ,̂ij1−2 −M(f))21{j̃ ≥ j1 + 1}

[
Πj1

j=j∗+1Φ(−2 +

ρm(ε;f)
ρz(ε;f)

8mj
√
mj

√
2csε

)
]
Φ(2−

√
mj1

µj1 ,̂ij1
−2−M(f)

4√
2csε

)

)

+ El

( ∞∑
j1=j∗+2

(µj1 ,̂ij1
−M(f))21{j̃ ≥ j1 + 1}Φ(2−

√
mj1

µj1 ,̂ij1
−M(f)

2√
2csε

))

[
Πj1−1

j=j∗+1Φ(−2 +

ρm(ε;f)
ρz(ε;f)

8mj
√
mj

√
2csε

)
])

≤ 1

16
ρm(ε; f)2 + El

( ∞∑
j1=j∗+2

1{j̃ ≥ j1 + 1}V 32c2sε
2

mj1

Φ(−1.75)j1−j∗
)

+ El

( ∞∑
j1=j∗+2

1{j̃ ≥ j1 + 1}V 8c2sε
2

mj1

Φ(−1.75)j1−j∗−1

)
≤ 1

16
ρm(ε; f)2

+ El

( ∞∑
j1=j∗+2

1{j̃ ≥ j1 + 1}V × 32× 3× 8
ε2

ρz(ε; f)
× 2j1−j∗Φ(−1.75)j1−j∗

)

+ El

( ∞∑
j1=j∗+2

1{j̃ ≥ j1 + 1}V × 24× 8
ε2

ρz(ε; f)
× 2j1−j∗Φ(−1.75)j1−j∗−1

)
<

1

16
ρm(ε; f)2 + ρm(ε; f)2V × 78.
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Proof of Lemma C.16. Note that (f̂−µĵ ,̂iĵ
)+ takes non-zero value only

when ∆ ̸= 0 and µĵ ,̂iĵ+∆ > µĵ ,̂iĵ
. We split the entire probability space by

the value of ∆, and then by the value of ĵ and j̃. Then, we further take
conditional expectation with respect to Yl. Repetitive usage of convexity and
careful calculation give the statement. The details are as follows.

El,s

((
(f̂ − µĵ ,̂iĵ

)+
)2
1{j̃ ≤ ĵ}

)
= El,s

(
(f̂ − µĵ ,̂iĵ

)21{j̃ ≤ ĵ, f̂ > µĵ ,̂iĵ
}
)

≤ El,s

(
(µĵ ,̂iĵ+2 − µĵ ,̂iĵ

)21{j̃ ≤ ĵ, µĵ ,̂iĵ+2 > µĵ ,̂iĵ
,
X̃ĵ ,̂iĵ+6 − X̃ĵ ,̂iĵ+5

√
2√mĵcsε

≤ 2,

X̃ĵ ,̂iĵ−6
− X̃ĵ ,̂iĵ−5√

2√mĵcsε
> 2 if îĵ−6 ≥ 1}

)

+ El,s

(
(µĵ ,̂iĵ−2 − µĵ ,̂iĵ

)21{j̃ ≤ ĵ, µĵ ,̂iĵ−2 > µĵ ,̂iĵ
,
X̃ĵ ,̂iĵ−6 − X̃ĵ ,̂iĵ−5

√
2√mĵcsε

≤ 2,

X̃ĵ ,̂iĵ+6
− X̃ĵ ,̂iĵ+5√

2√mĵcsε
> 2 if tĵ ,̂iĵ+6 ≤ 1}

)

≤
∞∑

j1=2

∞∑
j2=j1

(
El,s

(
(µj2 ,̂ij2+2 − µj2 ,̂ij2

)21{j̃ = j1, ĵ = j2,
X̃j2 ,̂ij2+6 − X̃j2 ,̂ij2+5√

2
√
mj2csε

≤ 2,

∀j∗ + 2 ≤ j ≤ j2 − 1,
X̃j,̂ij+6 − X̃j,̂ij+5√

2
√
mjcsε

> 2,
X̃j,̂ij−6 − X̃j,̂ij−5√

2
√
mjcsε

> 2, µj2 ,̂ij2+2 > µj2 ,̂ij2
}
)

+ El,s

(
(µj2 ,̂ij2−2 − µj2 ,̂ij2

)21{j̃ = j1, ĵ = j2,
X̃j2 ,̂ij2−6 − X̃j2 ,̂ij2−5√

2
√
mj2csε

≤ 2,

∀j∗ + 2 ≤ j ≤ j2 − 1,
X̃j,̂ij+6 − X̃j,̂ij+5√

2
√
mjcsε

> 2,
X̃j,̂ij−6 − X̃j,̂ij−5√

2
√
mjcsε

> 2, µj2 ,̂ij2−2 > µj2 ,̂ij2
}
))

≤
∑
j1≥2
j2≥j1

(
El

(
(µj2 ,̂ij2+2 − µj2 ,̂ij2

)21{j̃ = j1, µj2 ,̂ij2+2 > µj2 ,̂ij2
}Φ(2−

µj2 ,̂ij2+2 − µj2 ,̂ij2

2

√
mj2√
2csε

)

Πj2−1
j=j∗+2max{Φ(−2),Φ(−2 + (

7

16
+

6mj

ρz(ε; f)
)ρm(ε; f)

√
mj√
2csε

)}
)

+ El

(
(µj2 ,̂ij2−2 − µj2 ,̂ij2

)21{j̃ = j1, µj2 ,̂ij2−2 > µj2 ,̂ij2
}Φ(2−

µj2 ,̂ij2−2 − µj2 ,̂ij2

2

√
mj2√
2csε

)

Πj2−1
j=j∗+2max{Φ(−2),Φ(−2 + (

7

16
+

6mj

ρz(ε; f)
)ρm(ε; f)

√
mj√
2csε

)}
))

.

≤
∞∑

j1=2

∞∑
j2=j1

2× El

(
1{j̃ = j1}

8c2sε
2

mj2

V Φ(−1.85)(j2−j∗−2)+

)

≤
∞∑

j1=2

∞∑
j2=j1

2× El

(
1{j̃ = j1} × 8c2s × 2j2−j∗+4ρm(ε; f)2V Φ(−1.85)(j2−j∗−2)+

)
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≤
∞∑

j1=2

∞∑
j2=j1

El

(
1{j̃ = j1}

)
× 210 × 3× ρm(ε; f)2V 2j2−j∗−2Φ(−1.85)(j2−j∗−2)+

≤
∞∑

j1=2

El

(
1{j̃ = j1}

)
× 210 × 3× ρm(ε; f)2V (2× 1{j1 ≤ j∗ + 2}+ 2Φ(−1.85)

1− 2Φ(−1.85)
)

≤ 211 × 3ρm(ε; f)2V × P (j̃ ≤ j∗ + 2) + 211 × 3× Φ(−1.85)
ρm(ε; f)2V

1− 2Φ(−1.85)

≤ 6355.2V ρm(ε; f)2

Proof of Lemma C.17. We introduce the shorthand Op(j2) as the set
of all possible îj2 values when j2 = j̃. More precisely, Op(j2) = {i∗j2 − 4, i∗j2 −
3, i∗j2 − 2, i∗j2 + 2, i∗j2 + 3, i∗j2 + 4}. By the definition of j̃, it is easy to verify

that îj̃ ∈ Op(j̃). We introduce another shorthand îj̃ ∈ Op(j̃). Without loss
of generality, we assume

sup{t > Z(f) : f(t) ≤ ρm(ε; f) +M(f)} = ρz(ε; f) + Z(f).

We split the entire probability space by the value of ĵ, j̃, îj̃ , and take
conditional expectation on Yl. Simplifying the events, repetitive usage of
convexity, and careful calculation give the statement. Details are as follows.

El,s

(
(µj̃ ,̂ij̃

−M(f))21{j̃ ≤ ĵ}
)

=

∞∑
j2=2

∞∑
j1=j2

El,s

(
(µj2 ,̂ij2

−M(f))21{j̃ = j2, ĵ = j1}
)

=

∞∑
j2=2

∞∑
j1=j2

∑
i∈Op(j2)

El,s

(
(µj2,i −M(f))21{j̃ = j2, ĵ = j1, îj2 = i}

)
≤

∞∑
j2=2

∞∑
j1=j2

∑
i∈Op(j2)

El

(
(µj2,i −M(f))21{j̃ = j2, îj2 = i}Es

(
1{ĵ = j1}|Yl

))

≤
∞∑

j2=2

∞∑
j1=j2

∑
i∈Op(j2)

El

(
(µj2,i −M(f))21{j̃ = j2, îj2 = i}

(
Es

(
1{ĵ = j1}|Yl

)
1{j1 ≤ j∗ + 2}+

1{j1 ≥ j∗ + 3}Πj1−1
j=j∗+2max{Φ(−2),Φ(−2 + (

7

16
+

6mj

ρz(ε; f)
)ρm(ε; f)

√
mj√
2csε

)}
))
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≤
∞∑

j2=2

∑
i∈Op(j2)

El

(
(µj2,i −M(f))21{j̃ = j2, îj2 = i}

(
1{j2 ≤ j∗ + 2}+

1{j2 ≥ j∗ + 3}Φ(−1.85)
Φ(−2 + 1

12)
j2−j∗−3

1− Φ(−2 + 1
12)

))
≤

∞∑
j2=2

∑
i∈Op(j2)

El

(
(µj2,i −M(f))21{Xj2,i ≤ Xj2,i∗j2

+Ind(j2,i)}
(
1{j2 ≤ j∗ + 2}+

1{j2 ≥ j∗ + 3}Φ(−1.85)
Φ(−2 + 1

12)
j2−j∗−3

1− Φ(−2 + 1
12)

))
=

∞∑
j2=2

(
1{j2 ≤ j∗ + 2}+ 1{j2 ≥ j∗ + 3}Φ(−1.85)

Φ(−2 + 1
12)

j2−j∗−3

1− Φ(−2 + 1
12)

)
∑

i∈Op(j2)

(µj2,i −M(f))2Φ(
µj2,i∗j2

+Ind(j2,i) − µj2,i
√
2clε

√
mj2)

(a)

≤
∞∑

j2=2

(
1{j2 ≤ j∗ + 2}+ 1{j2 ≥ j∗ + 3}Φ(−1.85)

Φ(−2 + 1
12)

j2−j∗−3

1− Φ(−2 + 1
12)

)
∑

i∈Op(j2)

(µj2,i −M(f))2Φ(−(µj2,i −M(f))
|i− i∗j2 | − 1

|i− i∗j2 |+
1
2

√
mj2√
2clε

)

≤
∞∑

j2=2

(
1{j2 ≤ j∗ + 2}+ 1{j2 ≥ j∗ + 3}Φ(−1.85)

Φ(−2 + 1
12)

j2−j∗−3

1− Φ(−2 + 1
12)

)
∑

i∈Op(j2)

2c2l ε
2

mj2

( |i− i∗j2 |+
1
2

|i− i∗j2 | − 1

)2
Q

<
∞∑

j2=2

(
1{j2 ≤ j∗ + 2}+ 1{j2 ≥ j∗ + 3}Φ(−1.85)

Φ(−2 + 1
12)

j2−j∗−3

1− Φ(−2 + 1
12)

)
×

3× 24+j2−j∗ρm(ε; f)2(23
1

8
)Q× 2

< 3× (28 + 28
Φ(−1.85)

(1− Φ(−2 + 1
12))

2
)ρm(ε; f)2(23

1

8
)Q,

where
Q = sup

x≥0
x2Φ(−x).

Step (a) follows from the following reasoning. Without loss of generality, we
can assume i ≥ i∗j2 + 2. This assumption and conveixty give that µj2,i ≥
f(tj2,i − 1

2) > µj2,i∗j2
+1 > M(f), that f(tj2,i − 1

2) ≥ f(tj2,i + x) for x ∈ [0, 1],
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and that
f(tj2,i−

1
2
)−f(tj2,i∗j2

+x)

tj2,i−
1
2
−(tj2,i∗j2

+x)
≥ f(tj2,i−

1
2
)−M(f)

tj2,i−
1
2
−Z(f)

. Consequently,

µj2,i − µj2,i∗j2
+1

µj2,i −M(f)
≥

f(tj2,i − 1
2)− µj2,i∗j2

+1

f(tj2,i − 1
2)−M(f)

≥
∫
[0,1]

tj2,i − 1
2 − tj2,i∗j2

− x

tj2,i − 1
2 − Z(f)

dx

=
|i− i∗j2 | − 1

tj2,i − 1
2 − Z(f)

≥
|i− i∗j2 | − 1

|i− i∗j2 |+
1
2

.

Proof of Lemma C.18. First, with a bit of abuse of notation, define
the events Ar, Br, Cr, Dr to be the following (they only mean events but not
constants in this proof):

Ar = {ω : îj̃+r < i∗
j̃+r

, tj̃+r+1,̂ij̃+r+1
= tj̃+r,̂ij̃+r

−mj̃+r}

∪ {ω : îj̃+r > i∗
j̃+r

, tj̃+r+1,̂ij̃+r+1
= tj̃+r,̂ij̃+r

+mj̃+r+1}

Br = {ω : îj̃+r < i∗
j̃+r

, tj̃+r+1,̂ij̃+r+1
= tj̃+r,̂ij̃+r

−mj̃+r+1}

∪ {ω : îj̃+r > i∗
j̃+r

, tj̃+r+1,̂ij̃+r+1
= tj̃+r,̂ij̃+r

}

Cr = {ω : îj̃+r < i∗
j̃+r

, tj̃+r+1,̂ij̃+r+1
= tj̃+r,̂ij̃+r

}

∪ {ω : îj̃+r > i∗
j̃+r

, tj̃+r+1,̂ij̃+r+1
= tj̃+r,̂ij̃+r

−mj̃+r+1}

Dr = {ω : îj̃+r < i∗
j̃+r

, tj̃+r+1,̂ij̃+r+1
= tj̃+r,̂ij̃+r

+mj̃+r+1}

∪ {ω : îj̃+r > i∗
j̃+r

, tj̃+r+1,̂ij̃+r+1
= tj̃+r,̂ij̃+r

−mj̃+r}

(D.39)

Basically, these events indicate which interval the localization procedure
picks at the step j̃+ r+1, and from the highest average to the lowest average
is A to D. These sets of notation for events are only used in this proof, and in
the proof of other theorems, the same notation can denote different things.

Still, without loss of generality, we assume

sup{t > Z(f) : f(t) ≤ ρm(ε; f) +M(f)} = ρz(ε; f) + Z(f).

Note that (µĵ ,̂iĵ
− µj̃ ,̂ij̃

)+ is non-zero only when µĵ ,̂iĵ
> µj̃ ,̂ij̃

. We split

the entire probability space by events Ar, Br, Cr, Dr and the values of ĵ
and j̃. We remove the ones that µĵ ,̂iĵ

≤ µj̃ ,̂ij̃
and only keep the ones that

µĵ ,̂iĵ
> µj̃ ,̂ij̃

is possible. We further write (µĵ ,̂iĵ
− µj̃ ,̂ij̃

)+ as a summation of

(µj+1,̂ij+1
− µj,̂ij

)+ for j̃ ≤ j < ĵ and bound this sum. Details are as follows.
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(D.40)

El,s

((
(µĵ ,̂iĵ

− µj̃ ,̂ij̃
)+
)2
1{j̃ ≤ ĵ}

)
= El,s

((
(µĵ ,̂iĵ

− µj̃ ,̂ij̃
)+
)2
1{j̃ ≤ ĵ − 1}

)
= El,s

((
(µĵ ,̂iĵ

− µj̃ ,̂ij̃
)+
)2
1{j̃ ≤ ĵ − 1, A0 ∪B0 ∪ (C0 ∩ (A1 ∪B1))}

)
= El,s

((
(µĵ ,̂iĵ

− µj̃ ,̂ij̃
)+
)2
1{j̃ ≤ ĵ − 1, A0 ∪ (B0 ∩Dc

1) ∪ (B0 ∩D1 ∩ {ĵ = j̃ + 1})}
)

+ El,s

((
(µĵ ,̂iĵ

− µj̃ ,̂ij̃
)+
)2
1{j̃ ≤ ĵ − 2, C0 ∩A1}

)
+ El,s

((
(µĵ ,̂iĵ

− µj̃ ,̂ij̃
)+
)2
1{j̃ ≤ ĵ − 3, (C0 ∩B1) ∪ (B0 ∩D1)}

)
≤

∞∑
j2=2

∞∑
j1=j2+1

El,s

(( j1−1∑
j=j2

(µj+1,̂ij+1
− µj,̂ij

)+
)2

1{ĵ = j1, j̃ = j2, A0 ∪ (B0 ∩Dc
1) ∪ (B0 ∩D1 ∩ {j1 = j2 + 1})}

)
+

∞∑
j2=2

∞∑
j1=j2+2

El,s

(( j1−1∑
j=j2

(µj+1,̂ij+1
− µj,̂ij

)+
)2
1{ĵ = j1, j̃ = j2, C0 ∩A1}

)
+ El,s

((
(µĵ ,̂iĵ

− µj̃ ,̂ij̃
)+
)2
1{ĵ ≥ j̃ + 3, (C0 ∩B1) ∪ (B0 ∩D1)}

)
≤

∞∑
j2=2

∞∑
j1=j2+1

El,s

(
2

j1−1∑
j=j2

2j−j2
(
(µj+1,̂ij+1

− µj,̂ij
)+
)2

1{ĵ = j1, j̃ = j2, A0 ∪ (B0 ∩Dc
1) ∪ (B0 ∩D1 ∩ {j1 = j2 + 1})}

)
︸ ︷︷ ︸

κ1

+
∞∑

j2=2

∞∑
j1=j2+2

El,s

(
2

j1−1∑
j=j2+1

2j−j2−1
(
(µj+1,̂ij+1

− µj,̂ij
)+
)2
1{ĵ = j1, j̃ = j2, C0 ∩A1}

)
︸ ︷︷ ︸

κ2

+ El,s

((
(µĵ ,̂iĵ

− µj̃ ,̂ij̃
)+
)2
1{ĵ ≥ j̃ + 3, (C0 ∩B1) ∪ (B0 ∩D1)}

)
︸ ︷︷ ︸

κ3

.

We will bound κ1 + κ2 and κ3 in Inequality (D.40) separately. We start
with κ1+κ2 and introduce the shorthand δ0 = 1{j1 = j2+1}, δ = 1{j = j2}
that we will only use in bounding κ1 +κ2. Changing the order of summation,
taking conditional expectation with respect to Yl, and elementary calculation
give the following.
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κ1 + κ2

=

∞∑
j2=2

∞∑
j=j2

2j+1−j2

∞∑
j1=j+1

El,s

(
(µj+1,̂ij+1

− µj,̂ij
)21{µj+1,̂ij+1

> µj,̂ij
}1{ĵ = j1}

(
1{j̃ = j2, A0 ∪ (B0 ∩Dc

1)}+ 1{j̃ = j2, j1 = j2 + 1, j = j2, B0 ∩D1}
))

+

∞∑
j2=2

∞∑
j=j2+1

2j−j2

∞∑
j1=j+1

El,s

(
(µj+1,̂ij+1

− µj,̂ij
)21{µj+1,̂ij+1

> µj,̂ij
}

1{j̃ = j2, C0 ∩A1}1{ĵ = j1}
)

≤
∞∑

j2=2

∞∑
j=j2

2j+1−j2El

(
(µj+1,̂ij+1

− µj,̂ij
)21{µj+1,̂ij+1

> µj,̂ij
}

∞∑
j1=j+1

Φ(−1.85)(j2−j∗−δ0)+Φ(−2)(j1−j2−2)+

(
1{j̃ = j2, A0 ∪ (B0 ∩Dc

1)}+ 1{j̃ = j2, B0 ∩D1, j1 = j2 + 1, j = j2}
))

+
∞∑

j2=2

∞∑
j=j2+1

2j−j2El

(
(µj+1,̂ij+1

− µj,̂ij
)21{µj+1,̂ij+1

> µj,̂ij
}1{j̃ = j2, C0 ∩A1}

∞∑
j1=j+1

Φ(−1.85)(j2−j∗)+Φ(−2)(j1−j2−2)+

)

≤
∞∑

j2=2

∞∑
j=j2

Φ(−1.85)(j2−j∗−δ)+2j+1−j2El

(
(µj+1,̂ij+1

− µj,̂ij
)21{µj+1,̂ij+1

> µj,̂ij
}1{j̃ = j2}

(
1{j = j2, A0 ∪B0}(1 +

1

1− Φ(−2)
) + 1{j ≥ j2 + 1, A0 ∪ (B0 ∩Dc

1)}
Φ(−2)j−j2−1

1− Φ(−2)

))
+

∞∑
j2=2

Φ(−1.85)(j2−j∗)+
∞∑

j=j2+1

2j−j2El

(
(µj+1,̂ij+1

− µj,̂ij
)2

1{µj+1,̂ij+1
> µj,̂ij

}1{j̃ = j2, C0 ∩A1}
)(

Φ(−2)j−j2−1 1

1− Φ(−2)

)
.

We will further split the probability space by the sequence given in lo-
calization procedure. Define the set C(j, k, k + 1) to be the set of pairs
(i1, i2) such that P (̂ik+1 = i2, îk = i1|j̃ = j) > 0. Clearly, |C(j, k, k + 1)| ≤
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min{10× 2k−j × 4, 6× 4k+1−j}. Continuing with the bound, we have

κ1 + κ2 ≤
∞∑

j2=2

∞∑
j=j2

Φ(−1.85)(j2−j∗−δ)+ · 2j+1−j2
∑

(i1,i2)∈C(j2,j,j+1)

El

(
(µj+1,i2 − µj,i1)

2
1{µj+1,i2 > µj,i1}1{j̃ = j2, A0 ∪B0, îj = i1, îj+1 = i2}

)
(
1{j = j2}(1 +

1

1− Φ(−2)
) + 1{j ≥ j2 + 1}Φ(−2)j−j2−1

1− Φ(−2)

)
+

∞∑
j2=2

Φ(−1.85)(j2−j∗)+
∞∑

j=j2+1

2j−j2
∑

(i1,i2)∈C(j2,j,j+1)

El

(
(µj+1,i2 − µj,i1)

2
1{µj+1,i2 > µj,i1}1{j̃ = j2, îj+1 = i2, îj = i1, C0 ∩A1}

)
(
Φ(−2)j−j2−1 1

1− Φ(−2)

)
≤

∞∑
j2=2

∞∑
j=j2

Φ(−1.85)(j2−j∗−δ)+ · 2j+1−j2
∑

(i1,i2)∈C(j2,j,j+1)

2c2l ε
2

mj+1
Q1{µj+1,i2 > µj,i1}

(
1{j = j2}(1 +

1

1− Φ(−2)
) + 1{j ≥ j2 + 1}Φ(−2)j−j2−1

1− Φ(−2)

)
+

∞∑
j2=2

Φ(−1.85)(j2−j∗)+
∞∑

j=j2+1

2j−j2
∑

(i1,i2)∈C(j2,j,j+1)

2c2l ε
2

mj+1
Q1{µj+1,i2 > µj,i1}

(
Φ(−2)j−j2−1 1

1− Φ(−2)

)
≤

∞∑
j2=2

∞∑
j=j2

Φ(−1.85)(j2−j∗−δ)+ · 2j+1−j2 ×min{10× 2j−j2 × 2, 6× 4j−j2 × 2}
2c2l ε

2

mj+1
Q

(
1{j = j2}(1 +

1

1− Φ(−2)
) + 1{j ≥ j2 + 1}Φ(−2)j−j2−1

1− Φ(−2)

)
+

∞∑
j2=2

Φ(−1.85)(j2−j∗)+
∞∑

j=j2+1

2j−j2 ×min{10× 2j−j2 × 2, 6× 4j−j2 × 2}
2c2l ε

2

mj+1
Q

(
Φ(−2)j−j2−1 1

1− Φ(−2)

)
=

c2lQε2

mj∗

∞∑
j2=2

2j2+3−j∗ × (12× (1 +
1

1− Φ(−2)
)× Φ(−1.85)(j2−j∗−1)++

Φ(−1.85)(j2−j∗)+ × 160× 1

1− Φ(−2)
× 1

1− 8Φ(−2)
)

+
c2lQε2

mj∗

∞∑
j2=2

Φ(−1.85)(j2−j∗)+27+j2−j∗ × 5× 1

1− Φ(−2)
× 1

1− 8Φ(−2)

<
c2lQε2

mj∗
2790.303× (

1

1− 2Φ(−1.85)
+ 2− 1) ≤ Q× 277075ρm(ε; f)2.
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Now we will turn to κ3 in Inequality (D.40). Analysis similar to bounding
κ1 + κ2 gives

κ3 = El,s

((
(µĵ ,̂iĵ

− µj̃ ,̂ij̃
)+
)2
1{ĵ ≥ j̃ + 3, (C0 ∩B1) ∪ (B0 ∩D1)}

)
≤

∞∑
j2=2

∞∑
j1=j2+3

El,s

(( j1−1∑
j=j2+2

(µj+1,̂ij+1
− µj,̂ij

)+
)2

1{ĵ = j1, j̃ = j2, (C0 ∩B1) ∪ (B0 ∩D1)}
)

≤
∞∑

j2=2

∞∑
j1=j2+3

El,s

(
2

j1−1∑
j=j2+2

2j−j2−2
(
(µj+1,̂ij+1

− µj,̂ij
)+
)2

1{ĵ = j1, j̃ = j2, (C0 ∩B1) ∪ (B0 ∩D1)}
)

≤
∞∑

j2=2

El

(
2

∞∑
j=j2+2

2j−j2−2
(
(µj+1,̂ij+1

− µj,̂ij
)+
)2

1{j̃ = j2, (C0 ∩B1) ∪ (B0 ∩D1)} × Φ(−1.85)(j2+1−j∗)+ Φ(−2)j−j2−2

1− Φ(−2)

)
(a)

≤
∞∑

j2=2

∞∑
j=j2+2

2j−j2−1(2 · 3 · 2j−j2−2 · 2)
2c2l ε

2

mj+1
QΦ(−1.85)(j2+1−j∗)+ Φ(−2)j−j2−2

1− Φ(−2)

=
c2l ε

2

mj∗
Q

∞∑
j2=2

192

1− Φ(−2)
× 2j2+1−j∗ × Φ(−1.85)(j2+1−j∗)+ 1

1− 8Φ(−2)

≤
c2l ε

2

mj∗
Q

192

1− Φ(−2)
× (

1

1− 2Φ(−1.85)
+ 2− 1)

1

1− 8Φ(−2)

≤ 48Q× 192

1− Φ(−2)
× (

1

1− 2Φ(−1.85)
+ 1)

1

1− 8Φ(−2)
ρm(ε; f)2

≤ 23850.1ρm(ε; f)2Q.

Step (a) follows from the fact that the number of possible pairs of (̂ij , îj+1)
such that (C0 ∩ B1) ∪ (B0 ∩D1), µj+1,̂ij+1

> µj,̂ij
, j̃ = j2, j ≥ j2 + 2, and

µĵ ,̂iĵ
> µj̃ ,̂ij̃

is at most 2× 3× 2j−(j2+2) × 2. Plugging the bounds of κ1 + κ2

and κ3 back to Inequalit (D.40) gives

El,s

((
(µĵ ,̂iĵ

− µj̃ ,̂ij̃
)+
)2
1{j̃ ≤ ĵ}

)
≤ Q× 277075× ρm(ε; f)2 +Q× 23850.1× ρm(ε; f)2.

(D.41)
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Proof of Lemma C.21.
(D.42)
P (ĵ ≤ j∗ − 2− K̃)

≤ P (ĵ ≤ j∗ − 2− K̃, |̂iĵ − iĵ∗ | ≤ 4) + P (ĵ ≤ j∗ − 2− K̃, |̂iĵ − i∗
ĵ
| ≥ 5)

≤
j∗−2−K̃∑

j=1

P (|̂ij − ij∗ | ≤ 4, Xîj+6 −Xîj+5 ≤ 2cs
√
2ε)+

P (|̂ij − ij∗ | ≤ 4, Xîj−6 −Xîj−5 ≤ 2cs
√
2ε) + P (|̂ij−1 − i∗j−1| ≥ 2)

≤
j∗−2−K̃∑

j=1

2Φ(2− (
mj

ρz(ε; f)
)
3
2
ρm(ε; f)

√
ρz(ε; f)√

2csε
) + 2Φ(−(

mj−1

ρz(ε; f)
)
3
2
ρm(ε; f)

√
ρz(ε; f)√

2csε
)

+ 2Φ(−2(
mj−1

ρz(ε; f)
)
3
2
ρm(ε; f)

√
ρz(ε; f)√

2csε
) + 2Φ(−3(

mj−1

ρz(ε; f)
)
3
2
ρm(ε; f)

√
ρz(ε; f)√

2csε
)

< 2

j∗−2−K̃∑
j=1

(
Φ(2− 2

3
2
(j∗−j−4)− 1

2 ) + Φ(−2
3
2
(j∗−j−3)− 1

2 ) + Φ(−2
3
2
(j∗−j−3)+ 1

2 )

+ Φ(−3× 2
3
2
(j∗−j−3)− 1

2 )
)

≤ 2
∞∑

k=K̃

(
Φ(2− 2

3
2
(k−2)− 1

2 ) + Φ(−2
3
2
(k−1)− 1

2 ) + Φ(−2
3
2
k−1)

+ Φ(−3× 2
3
2
(k−1)− 1

2 )
)

≤ 2(Φ(2− 2
3
2
(K̃−2)− 1

2 )
1 + 3 exp (−44)

1− exp (−44)
)

≤ 2

1− exp (−40)
Φ(2− 2

3
2
(K̃−2)− 1

2 ).

The last three equations use the fact that Φ(−2
√
2x) ≤ 2

√
2 exp (−7x2

2 )Φ(−x),
for x > 0.

Proof of Lemma C.22. For the ease of expression, we define Ẽj,i =
1√
mj

(Y3(tj,i)−Y3(tj,i−1)−
∫ tj,i
tj,i−1

f(x)dx). Then Ẽj,i
i.i.d∼ N(0, ε2c2e), i = 1, 2, · · · , 2j .

Recall that

Ec = {Z(f) ∈ [t(ĵ−Kα
4
−1)+ ,̂i(ĵ−Kα

4
−1)+

−5, t(ĵ−Kα
4
−1)+ ,̂i(ĵ−Kα

4
−1)+

+4]},
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we have

P
(
G
∣∣∣Ec
)
= P

(
f̂1 + SiR−iL,

α
4

ceε√
mĵ+K̃α

4

< M(f)
∣∣∣Ec
)

≤ P
(
M(f) +

1√
mĵ+K̃α

4

min
iL<i≤iR

Ẽĵ+K̃α
4
,i + SiR−iL,

α
4

ceε√
mĵ+K̃α

4

< M(f)
∣∣∣Ec
)

≤
E
(
E
(
1{miniL<i≤iR Ẽĵ+K̃α

4
,i + ceεSiR−iL,

α
4
< 0}

∣∣∣∣Yl, Ys)1{Ec}
)

E
(
1{Ec}

)
≤

E
(
α
41{E

c}
)

E
(
1{Ec}

) =
α

4
.

(D.43)

Proof of Lemma C.23.

P (H|Ec ∩ F c)

≤ P (f̂1 +Φ−1(
α

4
)

ceε√
mĵ+K̃α

4

−
√
3ε√

mĵ+K̃α
4

> M(f)|Ec ∩ F c)

≤ P (

∫ tĵ+K̃ α
4
,i∗
ĵ+K̃ α

4

+1

tĵ+K̃ α
4
,i∗
ĵ+K̃ α

4

f(x)
1

mĵ+K̃α
4

dx+
1√

mĵ+K̃α
4

Ẽĵ+K̃α
4
,i∗
ĵ+K̃ α

4

+1+

Φ−1(
α

4
)

ceε√
mĵ+K̃α

4

−
√
3ε√

mĵ+K̃α
4

> M(f)|Ec ∩ F c)

≤ P (Ẽĵ+K̃α
4
,i∗
ĵ+K̃ α

4

1

ce
+Φ−1(

α

4
)ε+ ρm(ε; f)

√
mĵ+K̃α

4

−
√
3ε > 0|Ec ∩ F c)

≤ P (Ẽĵ+K̃α
4
i∗
ĵ+K̃ α

4

1

ce
+Φ−1(

α

4
)ε+ ρm(ε; f)

√
1

2
ρz(ε; f)−

√
3ε > 0|Ec ∩ F c)

≤ α

4
.

(D.44)
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Proof of Lemma C.24. Let il = min{i : gn,σ,h(xi) > f(xi)}, ir =
max{i : gn,σ,h(xi) > f(xi)}.

We will first prove the lemma for the case ρz(
σ√
6n
;h) ≥ 1/2n.

When {i : gn,σ,h(xi) > f(xi)} = ∅, the lemma holds naturally.
When il = ir, let xl = inf{x : gn,σ,h(x) > h(x)}, xr = sup{x : gn,σ,h(x) >

h(x)}, then we have

σ2

6n
≥ ∥h− gn,σ,h∥22 ≥

1

3
(xr − xl)ρm(

σ√
6n

;h)2 ≥ 1

6

ρm( σ√
6n
;h)2

n

≥ 1

6
ln(h, gn,σ,h)

2 =
1

6
ln(f, gn,σ,h)

2.

When il < ir,

σ2

6n
≥ ∥h− gn,σ,h∥22 ≥

ir∑
k=il

1

3

1

2n
(h(xk)− gn,σ,h(xk))

2 ≥ 1

6
ln(h, gn,σ,h)

2

=
1

6
ln(f, gn,σ,h)

2.

Now we turn to the second case ρz(
σ√
6n
;h) < 1/2n.

Since ρz(
σ√
6n
;h) < 1/2n, then |{i : gn,σ,h(xi) > f(xi)}| ≤ 1. When |{i :

gn,σ,h(xi) > f(xi)}| = 0, the lemma holds naturally. When |{i : gn,σ,h(xi) >
f(xi)}| = 1, we have

ln(f, gn,σ,h)
2 = ln(h, gn,σ,h)

2 ≤ 1

n
ρm(

σ√
6n

;h)2 · 2nρz(
σ√
6n

;h) ≤ σ2.

Proof of Lemma C.25.

E(1{ĵ < j̃}1.5mĵ)

≤ E(1{ĵ < j̃}1.5mĵ1{ĵ ≤ j∗ − 3}) + E(1{ĵ < j̃}1.5mĵ1{ĵ ≥ j∗ − 2})

≤ 1.5E(1{ĵ < j̃}mĵ1{ĵ ≤ j∗ − 3}) + 1.5× ρz(
σ√
n
; f)

≤ 1.5

(j∗−3)∧(J−1)∑
j=0

E(1{ĵ = j, j̃ > j}mĵ) +
1

n
1{J ≤ j∗ − 3}

+ 1.5× ρz(
σ√
n
; f)

(D.45)

Also we have
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(j∗−3)∧(J−1)∑
j=0

E(1{ĵ = j, j̃ > j}mĵ)

≤
(j∗−3)∧(J−1)∑

j=0

mj

(
E(1{j̃ > j, Yj,îj+6,s − Yj,îj+5,s ≤ γs2

√
2
√
2J−jσ})

+ E(1{j̃ > j, Yj,îj−6,s − Yj,îj−5,s ≤ γs2
√
2
√
2J−jσ})

)

≤
(j∗−3)∧(J−1)∑

j=0

mjE
(
1{j̃ > j,

√
2J−j

γs
√
2σ

(
avef (j, îj + 6)− avef (j, îj + 5)

)
≤(

Ej,îj+5,s − Ej,îj+6,s

)
√
2
√
2J−jγsσ

+ 2}
)
+mjE

(
1{j̃ > j,

√
2J−j

γs
√
2σ

(
avef (j, îj − 6)− avef (j, îj − 5)

)
≤
(
Ej,îj−5,s − Ej,îj−6,s

)
γs
√
2σ

√
2J−j

+ 2}
)

≤
(j∗−3)∧(J−1)∑

j=0

mjE
(
1{j̃ > j}Φ(2−

ρm( σ√
n
; f)

ρz(
σ√
n
; f)

m
3
2
j

√
n

γs
√
2σ

)
)
× 2

≤
(j∗−3)∧(J−1)∑

j=0

ρz(
σ√
n
; f)2j

∗−j−2E(1{j̃ > j})× 2Φ(2− 1

2γs
2

3
2
(j∗−j−3))

≤ cz0ρz(
σ√
n
; f).
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Therefore,

(D.47) E(1{ĵ < j̃}1.5mĵ) ≤ cz1ρz(
σ√
n
; f) +

3

2

1

n
1{J ≤ j∗ − 3}.

Proof of Lemma C.26.

E(1{ĵ ≥ j̃}
∣∣Ẑ − Z(f)

∣∣) ≤ E(1{ĵ ≥ j̃}6mj̃)

≤ 6

(j∗−3)∧J∑
j=3

ρz(
σ√
n
; f)2j

∗−j−2Φ(−
ρm( σ√

n
; f)

ρz(
σ√
n
; f)

m
3
2
j∗2

3
2
(j∗−j)

√
n

γlσ
√
2
)

+ 61{J ≥ j∗ − 2}ρz(
σ√
n
; f) ≤ cz2ρz(

σ√
n
; f)

(D.48)
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Proof of Lemma C.27.

E(1{ǰ < ∞}1{ǰ < j̃}|Ẑ − Z(h̃)|)
≤ E(1{ǰ < ∞}1{ǰ < j̃}1.5mǰ)

≤
J∑

j=3

1.5
2J−j

n
· 2Φ(2−

ρm( σ√
n
; h̃)

ρz(
σ√
n
; h̃)

2J−j

n
2J−j 1

γsσ
√
2
√
2J−j

)

≤
J∑

j=3

3
2J−j

n
· Φ(2−

1√
2n
σ

ρz(
σ√
n
; h̃)
√
ρz(

σ√
n
; h̃)

2
3
2
(J−j)

n

1√
2σγs

)

=
J∑

j=3

3ρz(
σ√
n
; h̃)

2J−j

nρz(
σ√
n
; h̃)

· Φ(2− (
2J−j

nρz(
σ√
n
; h̃)

)
3
2

1

2γs
)

≤
J∑

j=3

3ρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃)2

j−J
2 · 2γsČ

≤ ρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃)čz1,

(D.49)

where Č = supx>0 xΦ(2− x).

Proof of Lemma C.28.

E(1{ĵ ≥ j̃}|Ẑ − Z(h̃)|) ≤ E(1{ĵ ≥ j̃}6mj̃)

≤
J∑

j=1

6
2J−j

n
· 6Φ(−

2J−j
ρm( σ√

n
;h̃)

ρz(
σ√
n
;h̃)

2J−j

n

√
2γsσ

√
2J−j

) ≤
J∑

j=1

6
2J−j

n
· 6Φ(−

( 2J−j

nρz(
σ√
n
;h̃)

)
3
2

2γs
)

≤ ρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃)čz2

(D.50)
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Proof of Lemma C.32.

j∗−1∑
j=1

E(2−j
1{ĵ = j, j̃ > j}) ≤ 2−J

1{J ≤ j∗ − 1}+

min{j∗−1,J}∑
j=1

E
(
2−j
(
1{Yj,îj+6,s − Yj,îj+5,s ≤ 2

√
2γsσ

√
2J−j}

+ 1{Yj,îj−6 − Yj,îj−5 ≤ 2
√
2γsσ

√
2J−j}

)
1{j̃ > j}

)
≤

min{j∗−1,J}∑
j=1

2−j+1Φ(2−

ρm( σ√
n
;f)

ρz(
σ√
n
;f)

2J−j

n 2J−j

√
2γsσ

√
2J−j

)E(1{j̃ > j})

+ 2−J
1{J ≤ j∗ − 1}

≤
min{j∗−1,J}∑

j=1

2−j∗ · 2(j∗−j)+1Φ(2− 1

2γs
2

3
2
(j∗−j−3)) + 2−J

1{J ≤ j∗ − 1}

≤ cz32
−j∗ + 2−J

1{J ≤ j∗ − 1}.

(D.51)

Proof of Lemma C.33.

j∗−1∑
j=1

E(2−j
1{ĵ = j, j̃ ≤ j}) ≤

(j∗−3)∧(J−1)∑
j=1

E(2−j
1{j̃ = j})

≤
(j∗−3)∧(J−1)∑

j=1

2−j · 6Φ(−

ρm( σ√
n
;f)

ρz(
σ√
n
;f) · 2J−j

n 2J−j

√
2γlσ

√
2J−j

)

≤
(j∗−3)∧(J−1)∑

j=1

2−j · 6Φ(− 1

2γl
2

3
2
(j∗−j−3))

≤ 2−j∗
∞∑
j=1

6 · 2jΦ(− 1

2γl
2

3
2
(j−3)) ≤ 2−j∗cz4.

(D.52)
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Proof of Lemma C.34.

E(1{ǰ < ∞}L(CIz,α(Y ))) ≤ 12 · 2Kα/2+1E(
2J−ĵ

n
1{ǰ < ∞})

= 12 · 2Kα/2+1
J∑

j=3

E(1{ǰ = j})2
J−j

n

= 12 · 2Kα/2+1× J∑
j=3

E(1{ǰ = j}1{j̃ ≤ j})2
J−j

n
+

J∑
j=3

E(1{ǰ = j}1{j̃ > j})2
J−j

n

 .

(D.53)

We bound the two terms separately and we start with the first term.
(D.54)

J∑
j=3

E(1{ǰ = j}1{j̃ ≤ j})2
J−j

n
≤

J∑
j=3

E

(
1{ǰ = j}1{j̃ ≤ j}2

J−j̃

n

)

≤
J∑

j=1

E(1{j̃ = j})2
J−j

n
≤

J∑
j=1

2J−j

n
6Φ(−

ρm( σ√
n
; h̃)

ρz(
σ√
n
; h̃)

2J−j

n

2J−j

√
2J−j

√
2γlσ

)

≤
J∑

j=1

ρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃)2

j−J
2

(
2J−j

nρz(
σ√
n
; h̃)

) 3
2

· 6 · Φ(−(
2J−j

nρz(
σ√
n
; h̃)

)
3
2

1

2γl
)

≤ 6
1

1−
√

1/2
Č · 2γl · sup

h∈Gn(f)
ρz(

σ√
n
;h)

√
nρz(

σ√
n
;h),

where Č = supt>0 tΦ(−t).
For the second term, we have

(D.55)
J∑

j=3

E(1{ǰ = j}1{j̃ > j})2
J−j

n

≤
J∑

j=3

2J−j

n
2Φ(2−

ρm( σ√
n
; h̃)

ρz(
σ√
n
; h̃)

2J−j

n

2J−j

√
2J−j

√
2γsσ

)

≤
J∑

j=3

2ρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃)2

j−J
2

(
2J−j

nρz(
σ√
n
; h̃)

) 3
2

Φ(2− (
2J−j

nρz(
σ√
n
; h̃)

)
3
2

1

2γs
)

≤ 2 · 2γs · Q̌ρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃)

1

1−
√
1/2

,

where Q̌ = supt>0 tΦ(2− t).
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Let č1,α = (6 1

1−
√

1/2
2γlČ+4γs ·Q̌ 1

1−
√

1/2
) ·12 ·2Kα/2+1 gives the statement

of Lemma C.34.

Proof of Lemma C.35. When 2 ≤ im ≤ n − 2, thi − tlo ≥ 3
n implies

that il ≤ im − 1 or ir ≥ im. When im ≤ 1, thi − tlo ≥ 3
n implies that ir ≥ im.

When im ≥ n− 1, thi − tlo ≥ 3
n implies that il ≤ im − 1. Therefore, we have

E(1{ǰ = ∞}1{thi − tlo ≥
3

n
}L(CIz,α(Y )))

≤ 12 · 2Kα/2+1

n
E
(
1{il ≤ im − 1}1{ǰ = ∞}1{im ≥ 2}

+ 1{ir ≥ im}1{ǰ = ∞}1{im ≤ n− 2}
)

=
12 · 2Kα/2+1

n
E
(
1{il ≤ im − 1}1{ǰ = ∞}1{U ≤ im − 1, im ≥ 2}+

1{il ≤ im − 1}1{ǰ = ∞}1{U ≥ im, im ≥ 2}
+ 1{ir ≥ im}1{ǰ = ∞}1{L ≥ im + 1, im ≤ n− 2}

+ 1{ir ≥ im}1{ǰ = ∞}1{L ≤ im, im ≤ n− 2}
)
.

(D.56)

Since {U ≤ im− 1, im ≥ 2}∪ {L ≥ im+1, im ≤ n− 2} implies that j̃ < J ,
and {U ≤ im − 1} ∩ {L ≥ im + 1} = ∅, we have
(D.57)

E
(
1{il ≤ im − 1}1{ǰ = ∞}1{U ≤ im − 1}+ 1{ir ≥ im}1{ǰ = ∞}1{L ≥ im + 1}

)
≤ E(1{j̃ < J}) =

J−1∑
j=1

P (j̃ = j) ≤
J−1∑
j=1

Φ(−
ρm( σ√

n
; h̃)

ρz(
σ√
n
; h̃)

2J−j

n

2J−j

√
2J−j

√
2γlσ

)

≤
J−1∑
j=1

Φ(−

(
2J−j

nρz(
σ√
n
; h̃)

) 3
2 1

2γl
)

≤ nρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃)

1

1−
√

1
8

2γlČ,

where Č = supt>0 tΦ(−t).
And for E(1{il ≤ im−1}1{ǰ = ∞}1{U ≥ im, im ≥ 2}+1{ir ≥ im}1{ǰ =
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∞}1{L ≤ im, im ≤ n− 2}), we have

E
(
1{il ≤ im − 1}1{ǰ = ∞}1{U ≥ im, im ≥ 2}

+ 1{ir ≥ im}1{ǰ = ∞}1{L ≤ im, im ≤ n− 2}
)

= E
(
E(1{il ≤ im − 1}|Yl, Ys)1{ǰ = ∞}1{U ≥ im, im ≥ 2}

+ E(1{ir ≥ im}|Yl, Ys)1{ǰ = ∞}1{L ≤ im, im ≤ n− 2}
)

≤ 2E(U − L)Φ(−
ρm( σ√

n
; h̃)

ρz(
σ√
n
; h̃)

1

n2
√
3σ

+ zα1)

≤ 2E(U − L)Φ(−

(
1

nρz(
σ√
n
; h̃)

) 3
2 1√

24
+ zα1)

≤ nρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃)

√
24 · 2 · Q̌2 × 24× 2Kα/2 ,

(D.58)

where Q̌2 = supt>0 tΦ(zα1 − t).
Therefore,

E(1{ǰ = ∞}1{thi − tlo ≥
3

n
}L(CIz,α(Y )))

≤ č2,αρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃)

≤ č2,α sup
h∈Gn(f)

ρz(
σ√
n
;h)

√
nρz(

σ√
n
;h).

(D.59)

Proof of Lemma C.36. Note that when 0 < thi − tlo < 3
n , one of

the following holds: il = n = U = ir + 1, ir = −1 = L − 1 = il − 1,
L+ 1 ≤ il = ir + 1 ≤ U − 1, il = L = ir, ir = U − 1 = il. We denote event

H1 ={il = n = U = ir + 1} ∪ {ir = −1 = L− 1 = il − 1} ∪ {L+ 1 ≤ il = ir + 1 ≤ U − 1},
H2 ={il = L = ir} ∪ {ir = U − 1 = il}.

Therefore,

E(1{ǰ = ∞}1{thi − tlo <
3

n
}L(CIz,α(Y )))

= E
(
1{ǰ = ∞}L(CIz,α(Y ))1{H1}

)
+ E

(
1{ǰ = ∞}L(CIz,α(Y ))1{H2}

)
.

(D.60)
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We start with the second term
(D.61)
E(1{ǰ = ∞}L(CIz,α(Y ))1{H2})

≤ E
(
1{ǰ = ∞}(thi − tlo)

(
1{im ≤ L− 1}+ 1{im ≥ L}1{il = L = ir}

+ 1{im ≥ U + 1}+ 1{im ≤ U}1{ir = U − 1 = il})
)

≤ 2

n
(
J−1∑
j=1

6Φ(−
ρm( σ√

n
; h̃)

ρz(
σ√
n
; h̃)

2J−j

n

2J−j

√
2J−jγlσ

√
2
) + 2Φ(−

ρm( σ√
n
; h̃)

ρz(
σ√
n
; h̃)

1

n

1

2
√
3σ

+ zα1))

≤ ρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃)(24γl2

− 3
2

1

1−
√

1
8

Č + 4 · 2
√
6Q̌2),

where Č = supt>0 tΦ(−t), Q̌2 = supt>0 tΦ(zα1 − t).
Now we turn to the first term and split based on {il = im} and {il ̸= im}

as follows

E(1{ǰ = ∞}L(CIz,α(Y ))1{H1})

≤E
(
1{ǰ = ∞}(thi − tlo)

(
1{il = n = U = ir + 1}

+ 1{ir = −1 = L− 1 = il − 1}+ 1{L+ 1 ≤ il = ir + 1 ≤ U − 1}
))

≤E
(
1{ǰ = ∞}(thi − tlo)1{il = im}

(
1{il = n = U = ir + 1}

+1{ir = −1 = L− 1 = il − 1}+ 1{L+ 1 ≤ il = ir + 1 ≤ U − 1}
))

︸ ︷︷ ︸
κ1

+ E
(
1{ǰ = ∞}(thi − tlo)1{il ̸= im}

(
1{il = n = U = ir + 1}

+1{ir = −1 = L− 1 = il − 1}+ 1{L+ 1 ≤ il = ir + 1 ≤ U − 1}
))

︸ ︷︷ ︸
κ2

.

(D.62)

We will bound κ1 and κ2 in Inequality (D.62) separately, we start with
κ2. Note that the event H1 ∩ {il ≠ im} is a subset of {im /∈ [L,U ]} ∪ {im ∈
[L,U ], il ̸= im, il = ir + 1}. This fact gives

κ2 =E(1{ǰ = ∞}(thi − tlo)1{H1}1{il ̸= im})
≤E(1{ǰ = ∞}(thi − tlo)1{im /∈ [L,U ]})

+ E(1{ǰ = ∞}(thi − tlo)1{im ∈ [L,U ]}1{il ̸= im}1{il = ir + 1}).

(D.63)
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To bound the two expectations, note two facts. One is that im /∈ [L,U ] implies
j̃ < J . Another is that {ǰ = ∞, im ∈ [L,U ], il ̸= im, il = ir + 1} is a subset
of {ǰ = ∞, im ∈ [L,U ], il ≥ im + 1} ∪ {ǰ = ∞, im ∈ [L,U ], ir + 1 ≤ im − 1}.
This two facts give that

κ2 ≤
3

n

(
J−1∑
j=1

6Φ(−(
2J−j

nρz(
σ√
n
; h̃)

)
3
2

1

2γl
)+

2E(Φ(−
ρm( σ√

n
; h̃)

ρz(
σ√
n
; h̃)

1

n
√
12σ

)1{ǰ = ∞, im ∈ [L,U ]})

)

≤ 3

n

J−1∑
j=1

6Φ(−(
2J−j

nρz(
σ√
n
; h̃)

)
3
2

1

2γl
) + 2Φ(−(

1

nρz(
σ√
n
; h̃)

)
3
2

1√
24

)


≤ρz(

σ√
n
; h̃)

√
nρz(

σ√
n
; h̃) · 3 · (12γl + 2

√
24)Č.

(D.64)

Now we turn to κ1 in Inequality (D.62). We discuss the four settings:
im = 0, im = n, 2 ≤ im ≤ n− 2, (im − 1)(im − n+ 1) = 0.

Note that under the case (im − 1)(im − n+ 1) = 0, we have Dz(n, f) ≥ 1
n .

Therefore, in this case

κ1 = E
(
1{ǰ = ∞}(thi − tlo)1{il = im}

(
1{il = n = U = ir + 1}

+ 1{ir = −1 = L− 1 = il − 1}+ 1{L+ 1 ≤ il = ir + 1 ≤ U − 1})
)

≤ 2

n
≤ 2Dz(n, f).

(D.65)

Now we turn to the cases (im − 1)(im − n+ 1) ̸= 0. Note that under the
event H1 = {il = n = U = ir + 1} ∪ {ir = −1 = L− 1 = il − 1} ∪ {L+ 1 ≤
il = ir + 1 ≤ U − 1}, we have tlo ≤ il/n ≤ thi. Therefore, under the case
(im − 1)(im − n+ 1) ̸= 0, we can split thi − tlo into two non-negative parts:
thi − il/n and il/n− tlo. This gives an alternative form of κ1:

κ1 = E
(
1{ǰ = ∞}(thi − il/n)1{il = im}1{H1}

)
︸ ︷︷ ︸

φ1

+ E
(
1{ǰ = ∞}(il/n− tlo)1{il = im}1{H1}

)
︸ ︷︷ ︸

φ2

.
(D.66)
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Due to the symmetric nature of the procedure, the case (im−1)(im−n+1) ̸=
0, and the event {il = im} ∩ {il = n = U = ir + 1} ∪ {ir = −1 = L − 1 =
il − 1} ∪ {L + 1 ≤ il = ir + 1 ≤ U − 1} , we only need to bound the first
term (φ1), and the second term (φ2) shares the similar (symmetric) bound.

φ1 = E
(
1{ǰ = ∞}(thi − il/n)1{il = im}

(
1{il = n = U = ir + 1}

+ 1{ir = −1 = L− 1 = il − 1}+ 1{L+ 1 ≤ il = ir + 1 ≤ U − 1}
))

= E
(
1{ǰ = ∞}(thi − il/n)1{il = im}(
1{ir = −1 = L− 1 = il − 1}+ 1{L+ 1 ≤ il = ir + 1 ≤ U − 1}

))
.

(D.67)

We further simplify φ1 by analyzing the event H3 = {ǰ = ∞, il = im} ∩
({ir = −1 = L− 1 = il − 1} ∪ {L+ 1 ≤ il = ir + 1 ≤ U − 1}). Note that H3,
under the case (im − 1)(im − n+ 1) ̸= 0 can be alternatively written as

(D.68) H3 = {ǰ = ∞} ∩ {il = ir + 1, il ≤ U − 1, il = im}∩
{(im − 1)(im − n+ 1) ̸= 0} ∩ {il = L = 0, or il ≥ L+ 1}.

This event is non-empty only when im ≤ n− 2. This means when im = n,
φ1 = 0. Therefore, we only need to bound φ1 under the case {im ≤ n−2, im ̸=
1}. Now we will simplify thi− il/n under event H3 under this case. From now
on, this case is taken as default. Note that when {L+1 ≤ il = ir+1 ≤ U−1},
we have that ihi = il + 1, ilo = il − 1. When {ir = −1 = L− 1 = il − 1}, ihi
is not defined in the algorithm. We define ihi = il + 1 for the event H3 under
the case {im ≤ n− 2, im ̸= 1}. Clearly, this definition is consistent with the
ones already defined in the algorithm. Now we introduce two quantities:

traw(i) =
ye,i−1 − ye,i −

√
3σ(z3,i−1 − z3,i) + 2

√
6σzα2

n(ye,i+1 − ye,i −
√
3σ(z3,i+1 − z3,i) + 2

√
6σzα2)

,(D.69)

q(i) = n(ye,i+1 − ye,i −
√
3σ(z3,i+1 − z3,i) + 2

√
6σzα2).(D.70)

Under event H3 under the case {im ≤ n− 2, im ̸= 1}, thi can be expressed as

(D.71) thi =

{(
(traw(ihi) +

ihi
n ) ∨ ihi−1

n

)
∧ ihi

n , q(ihi) > 0

il/n = tlo, q(ihi) ≤ 0
.
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Note that under the event H3 under the case {im ≤ n− 2, im ̸= 1}, we can
further simplify thi − il/n using im = il ≤ n− 2 and ihi = il + 1 as follows

(D.72) thi − il/n =

{
(traw(im + 1) + 1

n)+ ∧ 1
n , q(im + 1) > 0

0, q(im + 1) ≤ 0
.

Note that (traw(im + 1), q(im + 1)) is independent with (Yl, Ys, Ye,1). Plug-
ging in the simplified (thi − il/n) in Equation (D.72) (under event H3 under
case {im ≤ n− 2, im ̸= 1}) to φ1 in Equation (D.67) and taking conditional
expectation with respect to (Yl, Ys, Ye,1) give that

φ1 = E((thi − il/n)1{H3})

= E
(((

traw(im + 1) +
1

n

)
+
∧ 1

n

)
1{H3}1{q(im + 1) > 0}

)
= E

(
E
(((

traw(im + 1) +
1

n

)
+
∧ 1

n

)
1{H3}1{q(im + 1) > 0}

∣∣∣Yl, Ys, Ye,1))
= E

(((
traw(im + 1) +

1

n

)
+
∧ 1

n

)
1{q(im + 1) > 0}

)
P (H3).

(D.73)

Now we introduce the shorthand for the error terms ζi = ye,i − f(xi) −√
3σz3,i. Clearly, { ζi√

6σ
} i.i.d.∼ N(0, 1), and

traw(im + 1) + 1
n =

f(xim )−2f(xim+1)+f(xim+2)+ζim−2ζim+1+ζim+2+4
√
6σzα2

n(f(xim+2)−f(xim+1)+ζim+2−ζim+1+2
√
6σzα2 )

.

Therefore, when we, with a bit abuse of the notation, denote the event A0

only in this proof to be the following event:

A0 =
{
ζim+2 ≥ −f(xim+2)− f(xim+1)

6
−
√
6σzα2 ,

ζim+1 ≤
f(xim+2)− f(xim+1)

6
+
√
6σzα2 ,

ζim ≥ −f(xim+2)− f(xim+1)

6
−
√
6σzα2

}(D.74)

, we have, on event A0,

traw(im + 1) +
1

n
≥ − 1

n
,

f(xim+2)− f(xim+1) + ζim+2 − ζim+1 + 2
√
6σzα2 ≥ 2(f(xim+2)− f(xim+1))

3
.
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With a bit abuse of notation, denote event B only in this proof to be
(D.75)
B = {ζim −2ζim+1+ζim+2+f(xim)−2f(xim+1)+f(xim+2)+4

√
6σzα2 ≥ 0}.

Then on Bc ∩A0, traw(im + 1) + 1
n < 0; on B ∩A0, traw(im + 1) + 1

n ≥ 0.
Further, we have

P (Ac
0) ≤ P (ζim+2 < −f(xim+2)− f(xim+1)

6
−
√
6σzα2)

+ P (ζim+1 >
f(xim+2)− f(xim+1)

6
+
√
6σzα2)

+ P (ζim < −f(xim+2)− f(xim+1)

6
−
√
6σzα2)

= 3Φ(−f(xim+2)− f(xim+1)

6
√
6σ

− zα2) ≤ 3Φ(−

(
1

nρz(
σ√
n
; h̃)

) 3
2 1

6
√
12

− zα2)

≤ nρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃)18

√
12Q̌3,

(D.76)

where Q̌3 = supx>0 xΦ(−x− zα2).
Therefore, going back to Inequality (D.73) and spliting the entire proba-

bility space by A0 and B give

φ1 ≤ E

(((
traw(im + 1) +

1

n

)
∧ 1

n

)
1{q(im + 1) > 0,− 1

n
≤ traw(im + 1)}

)

= E

(((
traw(im + 1) +

1

n

)
∧ 1

n

)
1{q(im + 1) > 0,− 1

n
≤ traw(im + 1)}

(1{A0 ∩B}+ 1{A0 ∩Bc}+ 1{Ac
0})

)

≤ E

((
traw(im + 1) +

1

n

)
1{A0 ∩B}

)
+

1

n
P (Ac

0)

≤ E

((
traw(im + 1) +

1

n

)
1{A0 ∩B}

)
+ ρz(

σ√
n
; h̃)

√
nρz(

σ√
n
; h̃)18

√
12Q̌3.

(D.77)

Further, convexity gives that

sup{Z(h) : h(xi) = f(xi), 0 ≤ i ≤ n} − im
n

=
f(xim)− f(xim+1)

n(f(xim+2)− f(xim+1))
+

1

n
.
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Therefore, we have

E
((

traw(im + 1) +
1

n

)
1{A0 ∩B}

)
= sup{Z(h) : h(xi) = f(xi), 0 ≤ i ≤ n}

− im
n

+ E
((

traw(im + 1)− f(xim)− f(xim+1)

n(f(xim+2)− f(xim+1))

)
1{A0 ∩B}

)
.

(D.78)

Further, on event A0, we have
(D.79)

traw(im + 1)− f(xim)− f(xim+1)

n(f(xim+2)− f(xim+1))
=

ζim(f(xim+2)− f(xim+1)) + ζim+1(f(xim)− f(xim+2))

n(f(xim+2)− f(xim+1) + ζim+2 − ζim+1 + 2
√
6σzα2)(f(xim+2)− f(xim+1))

+
ζim+2(f(xim+1)− f(xim)) + 2

√
6σzα2 (f(xim+2)− f(xim))

n(f(xim+2)− f(xim+1) + ζim+2 − ζim+1 + 2
√
6σzα2)(f(xim+2)− f(xim+1))

,

≤
(
|ζim |(f(xim+2)− f(xim+1)) + |ζim+1|(f(xim)− f(xim+2))

+ |ζim+2|(f(xim+1)− f(xim)) + 2
√
6σzα2 (f(xim+2)− f(xim))

)
1

2
3n (f(xim+2)− f(xim+1))

2

≤
√
6σ

3

2n

(∣∣∣ ζim√
6σ

∣∣∣+ 2
∣∣∣ζim+1√

6σ

∣∣∣+ ∣∣∣ζim+2√
6σ

∣∣∣+ 4zα2

) 1

f(xim+2)− f(xim+1)
.

Therefore,
(D.80)

E
((

traw(im + 1)− f(xim)− f(xim+1)

n(f(xim+2)− f(xim+1))

)
1{A0 ∩B}

)
≤ E

(√
6σ

3

2n

(∣∣∣ ζim√
6σ

∣∣∣+ 2
∣∣∣ζim+1√

6σ

∣∣∣+ ∣∣∣ζim+2√
6σ

∣∣∣+ 4zα2

) 1

f(xim+2)− f(xim+1)
1{A0 ∩B}

)
≤ E

(√
6σ

3

2n

(∣∣∣ ζim√
6σ

∣∣∣+ 2
∣∣∣ζim+1√

6σ

∣∣∣+ ∣∣∣ζim+2√
6σ

∣∣∣+ 4zα2

) 1

f(xim+2)− f(xim+1)

)
≤

√
6σ

3

2n
(4Q̌4 + 4zα2)

1

f(xim+2)− f(xim+1)

≤ ρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃)

√
12(6Q̌4 + 6zα2),

where Q̌4 =
∫∞
−∞ |x| 1√

2π
exp (−x2/2)dx.



SUPPLEMENT 145

Going back to Equation (D.67), we have

φ1 ≤ ρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃)

√
12(6Q̌4 + 6zα2 + 18Q̌3)

+ sup{Z(h) : h(xi) = f(xi), 0 ≤ i ≤ n} − im
n
.

(D.81)

Therefore, under the case (im − n+ 1)(im) ̸= 0, φ1 is bounded.
Similarly, for the φ2 in Equation (D.66), we have

φ2 = E
(
1{ǰ = ∞}(il/n− tlo)1{il = im}

(
1{il = n = U = ir + 1}

+ 1{ir = −1 = L− 1 = il − 1}+ 1{L+ 1 ≤ il = ir + 1 ≤ U − 1}
))

≤ ρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃)

√
12(6Q̌4 + 6zα2 + 18Q̌3)

+
im
n

− inf{Z(h) : h(xi) = f(xi), 0 ≤ i ≤ n}.

(D.82)

Therefore, under the case (im − n+ 1)(im) ̸= 0,

κ1 = E
(
1{ǰ = ∞}(thi − tlo)1{il = im}

(
1{il = n = U = ir + 1}

+ 1{ir = −1 = L− 1 = il − 1}+ 1{L+ 1 ≤ il = ir + 1 ≤ U − 1}
))

≤ ρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃)2

√
12(6Q̌4 + 6zα2 + 18Q̌3)+

sup{Z(h) : h(xi) = f(xi), 0 ≤ i ≤ n} − inf{Z(h) : h(xi) = f(xi), 0 ≤ i ≤ n}

= ρz(
σ√
n
; h̃)

√
nρz(

σ√
n
; h̃)2

√
12(6Q̌4 + 6zα2 + 18Q̌3) +Dz(n, f).

(D.83)

All the cases analyzed, and all the terms added up (Inequatliy (D.83),
Inequality (D.65), Inequality (D.64), Inequality (D.62), Inequality (D.61))
give the statement

E(1{ǰ = ∞}1{thi − tlo <
3

n
}L(CIz,α(Y )))

≤ č3,α sup
h∈Gn(f)

ρz(
σ√
n
;h)

√
nρz(

σ√
n
;h) + 2Dz(n, f).

(D.84)
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Proof of Lemma C.37.

P (ĵ ≥ jw +K + 1) = E(1{ĵ ≥ jw +K + 1}1{jw < ∞})
≤ E(1{∀jw + 1 ≤ j ≤ jw +K,

min{Yj,îj−6,s − Yj,îj−5,s, Yj,îj+6,s − Yj,îj+5,s} > 2γs
√
2σ

√
2J−j}1{jw < ∞})

≤ Φ(−2)KE(1{jw < ∞}) ≤ Φ(−2)K .

(D.85)

The second inequality is by taking conditional expectation on the localiza-
tion copy of the observation (i.e. Yl), and the fact that for the iteration steps
j such that jw + 1 ≤ j ≤ jw +K the target interval is more than 6 blocks
away from the estimated one.

Proof of Lemma C.38. Given the symmetric nature of our procedure,
we only need to prove

(D.86) E(1{E}1{ǰ = ∞}1{F c
1}) ≤ α1.

Note that, when ǰ = ∞, E = {Z(f) ∈ [
(
îĵ − (6 · 2Kα/2+1 − 2)− 1

)
2J−ĵ

n −
1
2n ,
(
îĵ + (6 · 2Kα/2+1 − 2)

)
2J−ĵ

n − 1
2n ]∩[0, 1]} ⊂ { îĵ−(6·2Kα/2+1−2)−2

n < Z(f) <

îĵ+6·2Kα/2+1−2

n }
Let L0 = îĵ − (6 · 2Kα/2+1 − 2)− 2, U0 = îĵ + 6 · 2Kα/2+1 − 2. Hence we

know that when L0 ≥ 1, L = L0 − 1; when U0 ≤ n− 1, U = U0 + 1.
Let im = min{k : f(xk) = min{f(xi) : 0 ≤ i ≤ n}}. Then we know that, on

E, L0 ≤ im ≤ U0. And also im = n implies F1, hence we only needs to consider
the case im ≤ n − 1 to compute F c

1 . And {im ≤ n − 1} ∩ {L0 ≤ im ≤ U0}
implies that im < U .

We also know that {ye,i+
√
3σz3,i : 0 ≤ i ≤ n}, {ye,i−

√
3σz3,i : 0 ≤ i ≤ n},

{ys,i : 0 ≤ i ≤ n}, {yl,i : 0 ≤ i ≤ n} are independent random variables.
Therefore,

E(1{E}1{ǰ = ∞}1{F c
1}) ≤ E

(
E
(
1{E}1{ǰ = ∞}1{im < U}

1{ye,im +
√
3σz3,im − (ye,im+1 +

√
3σz3,im+1) > 2

√
3σzα1}

∣∣∣Ys, Yl)
)

≤ α1.

(D.87)
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Proof of Lemma C.39. The event E∩{ǰ = ∞}∩F1∩F2∩{(il−U)(ir−
L+ 1) = 0} is the union of the following four events.

G1 = E ∩ {ǰ = ∞} ∩ F1 ∩ F2 ∩ {il = U,U ̸= n},
G2 = E ∩ {ǰ = ∞} ∩ F1 ∩ F2 ∩ {il = U,U = n},
G3 = E ∩ {ǰ = ∞} ∩ F1 ∩ F2 ∩ {ir = L− 1, L = 0},
G4 = E ∩ {ǰ = ∞} ∩ F1 ∩ F2 ∩ {ir = L− 1, L ̸= 0}.

(D.88)

Since {U ̸= n} ∩ {ǰ = ∞} means U0 ≤ U − 1 ≤ n− 2; and on E ∩ {ǰ =
∞}∩F1∩F2 we have il ≤ min{k : f(xk) = min{f(xi)}} and min{k : f(xk) =
min{f(xi)}} ≤ U0, we know that G1 = ∅. Similarly, we have G4 = ∅. Also, on
E ∩{ǰ = ∞}∩F1 ∩F2, we know that il ≤ ir +1, hence we have G2 ∩G3 = ∅.

Also, on G2, we know that f(xn) = min{f(xi)} and f(xk) > min{f(xi) :
0 ≤ i ≤ n} for all k ≤ n− 1, which implies that Z(f) ≥ f(xn−1)−f(xn)

n(f(xn−2)−f(xn−1))
+

n−1
n .

Suppose Ye,1 = {ye,i +
√
3σz3,i : (L − 1) ∨ 0 ≤ i ≤ (U + 1) ∧ n}, Ye,2 =

{ye,i −
√
3σz3,i : (L − 1) ∨ 0 ≤ i ≤ (U + 1) ∧ n}. Then we know that

Yl,Ys,Ye,1,Ye,2 are independent.
If we denote κi,1 = ye,i+

√
3σz3,i−f(xi), κi,2 = ye,i−

√
3σz3,i−f(xi), then

we know that on G2 when we further have κn,2 ≥ −
√
6σzα2 , κn−1,2 ≤

√
6σzα2 ,

κn−2,2 ≥ −
√
6σzα2 , then tlo ≤ Z(f). Further, thi ≥ Z(f) trivially holds on

G2.
We have similar analysis for G3. Hence we know that

E
(
1{Z(f) ̸∈ CIz,α(Y )}1{E}1{ǰ = ∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) = 0}

)
= E

(
1{Z(f) ̸∈ CIz,α(Y )}1{G2}

)
+ E

(
1{Z(f) ̸∈ CIz,α(Y )}1{G3}

)
= E

(
E(1{tlo > Z(f)}|Yl, Ys, Ye,1)1{G2}

)
+ E

(
E(1{thi < Z(f)}|Yl, Ys, Ye,1)1{G1}

)
≤ 3α2P (G2) + 3α2P (G3)

≤ 3α2P (1{E}1{ǰ = ∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) = 0}).
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Proof of Lemma C.40.

E
(
1{Z(f) ̸∈ CIz,α(Y )}1{E}1{ǰ = ∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) ̸= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}
)

≤ E
(
1{Z(f) > thi}1{E}1{ǰ = ∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) ̸= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}
)

+ E
(
1{Z(f) < tlo}1{E}1{ǰ = ∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) ̸= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}
)
.

The symmetric nature of the procedure means the bound for the first term
also applied to the second. We show that for the first term.

Suppose Ye,1 = {ye,i +
√
3σz3,i : (L − 1) ∨ 0 ≤ i ≤ (U + 1) ∧ n}, Ye,2 =

{ye,i −
√
3σz3,i : (L − 1) ∨ 0 ≤ i ≤ (U + 1) ∧ n}. Then we know that

Yl,Ys,Ye,1,Ye,2 are independent.
On the event E ∩ {ǰ = ∞} ∩ F1 ∩ F2 ∩ {(il − U)(ir − L + 1) ̸= 0} ∩

{ihi − ilo ≤ 2, 0 < ilo, ihi < n}, we know that |{k : f(xk) = min{f(xi) :
0 ≤ i ≤ n}}| = 1, we denote this unique element to be im. Also, when this
event is not empty, we know that 2 ≤ im ≤ n − 2. Hence we know that

Z(f) ≤ f(xim )−f(xim+1)

(f(xim+2)−f(xim+1))/
1
n

+ im+1
n . If we denote κi,1 = ye,i+

√
3σz3,i−f(xi),

κi,2 = ye,i −
√
3σz3,i − f(xi), then we know that on event E ∩ {ǰ = ∞} ∩

F1 ∩ F2 ∩ {(il − U)(ir − L+ 1) ̸= 0} ∩ {ihi − ilo ≤ 2, 0 < ilo, ihi < n} , if we
further have κim+2,2 ≥ −

√
6σzα2 , κim+1,2 ≤

√
6σzα2 , κim,2 ≥ −

√
6σzα2 , then

Z(f) ≤ thi.

E
(
1{Z(f) > thi}1{E}1{ǰ = ∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) ̸= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}
)

= E
(
E
(
1{Z(f) > thi}|Yl, Ys, Ye,1

)
1{E}1{ǰ = ∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) ̸= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}1{ilo + 1 = ihi − 1 = im}
)

≤ E
(
E
(
1{κim+2,2 < −

√
6σzα2 or κim+1,2 >

√
6σzα2 or κim,2 < −

√
6σzα2}|Yl, Ys, Ye,1

)
1{E}1{ǰ = ∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) ̸= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}1{ilo + 1 = ihi − 1 = im}
)

≤ 3α2E(1{E}1{ǰ = ∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) ̸= 0}
1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}1{ilo + 1 = ihi − 1 = im}).
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Therefore,
(D.89)

E
(
1{Z(f) ̸∈ CIz,α(Y )}1{E}1{ǰ = ∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) ̸= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}
)

≤ 6α2E
(
1{E}1{ǰ = ∞}1{F1 ∩ F2}1{(il − U)(ir − L+ 1) ̸= 0}

1{ihi − ilo ≤ 2, 0 < ilo, ihi < n}1{ilo + 1 = ihi − 1 = im}
)
.

Proof of Lemma C.41.

E((Eǰ,ĩǰ ,e

1

2J−ǰ
)21{ǰ < ∞}) = E(

1

2J−ǰ
σ2γ2

e1{ǰ < ∞})

= σ2γ2
e2

j∗−J(

j∗+2∑
j=1

E(2−j∗+j
1{ǰ = j}) +

∞∑
j=j∗+3

E(2−j∗+j
1{ǰ = j}))

≤ σ2γ2
e2

j∗−J
(
4 +

∞∑
j=j∗+3

2−j∗+jΦ(−2 +

13
16ρm( σ√

n
; f)

√
2J−j∗−2

σγs
√
2

)

Φ(−2 +

13
32ρm( σ√

n
; f)

√
2J−j∗−3

σγs
√
2

)(j−j∗−3)+
)

≤ σ2γ2
e2

j∗−J(4 +

∞∑
j=j∗+3

2−j∗+jΦ(−2 +
13
√
3

γs16
√
2
2

−4
2 )Φ(−2 +

13
√
3

γs32
√
2
2

−5
2 )(j−j∗−3)+

≤ σ2γ2
e2

j∗−J(4 +
8Φ(−2 + 13

√
3

γs16
√
2
2

−4
2 )

1− 2Φ(−2 + 13
√
3

γs32
√
2
2

−5
2 )

)

≤ 2nρm(
σ√
n
; f)2ρz(

σ√
n
; f)γ2

e

8

nρz(
σ√
n
; f)

(4 + 8
Φ(−2 + 13

√
3

γs16
√
2
2

−4
2 )

1− 2Φ(−2 + 13
√
3

γs32
√
2
2

−5
2 )

)

= cm1ρm(
σ√
n
; f)2.

(D.90)



150 T. T. CAI, R. CHEN, AND Y. ZHU

Proof of Lemma C.42.

E((f̂−M(f))21{ǰ < ∞})

= E
(
(f̂−M(f))2

(
1{j̃ > ǰ}+ 1{j̃ ≤ ǰ}

)
1{ǰ < ∞}

)
=

j∗+1∑
j1=2

E((f̂−M(f))21{j̃ > ǰ = j1}) +
∞∑

j1=j∗+2

E((f̂−M(f))21{j̃ > ǰ = j1})

+ E
((

(f̂− avef (ǰ, îǰ))+ + (avef (ǰ, îǰ)−M(f))
)2
1{j̃ ≤ ǰ = j1}1{ǰ < ∞}

)
≤

j∗+1∑
j1=2

E((f̂−M(f))21{j̃ > ǰ = j1}) +
∞∑

j1=j∗+2

E((f̂−M(f))21{j̃ > ǰ = j1})

+ 2E
((

(f̂− avef (ǰ, îǰ))+
)2
1{j̃ ≤ ǰ}1{ǰ < ∞}

)
+

2E
((

avef (ǰ, îǰ)−M(f)
)2
1{j̃ ≤ ǰ}1{ǰ < ∞}

)
.

(D.91)

We have following four lemmas to bound each term respectively.

Lemma D.1.

(D.92)

j∗+1∑
j1=2

E((f̂−M(f))21{j̃ > ǰ = j1}) ≤ cm3ρm(
σ√
n
; f)2.

Lemma D.2.

(D.93)
∞∑

j1=j∗+2

E((f̂−M(f))21{j̃ > ǰ = j1}) ≤ cm4ρm(
σ√
n
; f)2.

Lemma D.3.

(D.94) E(((f̂− avef (ǰ, îǰ))+)
2
1{j̃ ≤ ǰ}1{ǰ < ∞}) ≤ cm5ρm(

σ√
n
; f)2.

Lemma D.4.

(D.95) E((avef (ǰ, îǰ)−M(f))21{j̃ ≤ ǰ}1{ǰ < ∞}) ≤ cm6ρm(
σ√
n
; f)2.

With these four lemmas, we know that
(D.96)
E((f̂−M(f))21{ǰ < ∞}) ≤ (cm3 + cm4 + 2cm5 + 2cm6)ρm( σ√

n
; f)2 = cm2ρm( σ√

n
; f)2.

Now we prove these four lemmas. We assume ǰ < ∞ consistently in the
remaining of the proof of Lemma C.42 to avoid repeatedly writing 1{ǰ < ∞}.
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Proof of Lemma D.1. Similarly to the white noise model, we have

j∗+1∑
j1=2

E((f̂−M(f))21{j̃ > ǰ = j1})

≤
j∗+1∑
j1=2

E
((

(avef (j1, îj1 + 2)−M(f))21{Yj1,îj1+6,s − Yj1,îj1+5,s ≤ 2
√
2γsσ

√
2J−j1}

+ (avef (j1, îj1 − 2)−M(f))21{Yj1,îj1+6,s − Yj1,îj1+5,s ≤ 2
√
2γsσ

√
2J−j1}

)
1{j̃ > j1}

)
≤

j∗+1∑
j1=2

(
(avef (j1, îj1 + 2)−M(f))2Φ(2−

(avef (j1, îj1 + 2)−M(f))2
1
2
(J−j1)

3.5σγs
√
2

)

+ (avef (j1, îj1 − 2)−M(f))2Φ(2−
(avef (j1, îj1 − 2)−M(f))2

1
2
(J−j1)

3.5σγs
√
2

)
)
E(1{j̃ > j1}),

Calculation shows that this is further bounded by

j∗+1∑
j1=2

2 · 2j1−J(3.5
√
2σγs)

2V ≤ 4× 2j
∗+1−Jσ2 49

2
γ2sV

≤ 32× 49× 2γ2sV ρm(
σ√
n
; f)2 = cm3ρm(

σ√
n
; f)2.

V in the inequalities are the same as the V in the white noise model:

V = max
x>0

x2Φ(2− x).

Proof of Lemma D.2.

∞∑
j1=j∗+2

E((f̂−M(f))21{j̃ > ǰ = j1})

≤
∞∑

j1=j∗+2

E
((

(avef (j1, îj1 + 2)−M(f))21{Yj1,îj1+6,s − Yj1,îj1+5,s ≤ 2
√
2γsσ

√
2J−j1}

1{∀j∗ + 1 ≤ j ≤ j1 − 1,min{Yj,îj+6,s − Yj,îj+5,s, Yj,îj−6,s − Yj,îj−5,s} > 2
√
2γsσ

√
2J−j1}

+ (avef (j1, îj1 − 2)−M(f))21{Yj1,îj1+6,s − Yj1,îj1+5,s ≤ 2
√
2γsσ

√
2J−j1}

1{∀j∗ + 1 ≤ j ≤ j1 − 1,min{Yj,îj+6,s − Yj,îj+5,s, Yj,îj−6,s − Yj,îj−5,s} > 2
√
2γsσ

√
2J−j1})

1{j̃ > j1}
)
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≤
∞∑

j1=j∗+2

E

(((
avef (j1, îj1 + 2)−M(f)

)2
Φ(2−

(avef (j1, îj1 + 2)−M(f))2
1
2
(J−j1)

3.5σγs
√
2

)

Φ(−2 +
ρm( σ√

n
; f)2

1
2
(J−j∗−1)

σ
√
2γs

)Φ(−2 +
ρm( σ√

n
; f)2

1
2
(J−j∗−2)

σ2
√
2γs

)(j1−j∗−2)+

+ (avef (j1, îj1 − 2)−M(f))2Φ(2−
(avef (j1, îj1 − 2)−M(f))2

1
2
(J−j1)

3.5σγs
√
2

)

Φ(−2 +
ρm( σ√

n
; f)2

1
2
(J−j∗−1)

σ
√
2γs

)Φ(−2 +
ρm( σ√

n
; f)2

1
2
(J−j∗−2)

σ2
√
2γs

)(j1−j∗−2)+

)
E(1{j̃ > j1})

)
.

Calculation shows that it can be further bounded by

∞∑
j1=j∗+2

2 · 2j1−J(3.5
√
2σγs)

2V · Φ(−2 +

√
3

4γs
)Φ(−2 +

√
3

8
√
2γs

)(j1−j∗−2)+

≤ 2 · 2j
∗+2−J 49

2
σ2γ2

sV Φ(−2 +
1

4
)

1

1− 2Φ(−1.9)
≤ cm4ρm(

σ√
n
; f)2.

(D.97)

Proof of Lemma D.3.

E(((f̂− avef (ǰ, îǰ))+)
2
1{j̃ ≤ ǰ < ∞})

=

J∑
j2=1

J∑
j1=j2

E
(
((f̂− avef (j1, îj1))+)

2
1{j̃ = j2}1{ǰ = j1}

)
≤

J∑
j2=1

J∑
j1=j2

E
(
1{j̃ = j2}((avef (j1, îj1 + 2)− avef (j1, îj1))+)

2

1{Yj1,îj1+6,s − Yj1,îj1+5,s ≤ 2
√
2γsσ

√
2J−j1}

1{∀j∗ + 2 ≤ j ≤ j1 − 1, Yj,îj−6,s − Yj,îj−5,s > 2
√
2γsσ

√
2J−j ,

Yj,îj+6,s − Yj,îj+5,s > 2
√
2γsσ

√
2J−j , if exists}

)
︸ ︷︷ ︸

κ1

+

J∑
j2=1

J∑
j1=j2

E
(
1{j̃ = j2}((avef (j1, îj1 − 2)− avef (j1, îj1))+)

2

1{Yj1,îj1−6,s − Yj1,îj1−5,s ≤ 2
√
2γsσ

√
2J−j1}

1{∀j∗ + 2 ≤ j ≤ j1 − 1, Yj,îj−6,s − Yj,îj−5,s > 2
√
2γsσ

√
2J−j ,

Yj,îj+6,s − Yj,îj+5,s > 2
√
2γsσ

√
2J−j , if exists}

)
︸ ︷︷ ︸

κ2

.

(D.98)
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κ1 and κ2 in Inequality (D.98) are symmetric, we only need to bound κ1
and κ2 shares the same bound. κ1 is upper bounded by

κ1 ≤
J∑

j2=1

J∑
j1=j2

E
(
(avef (j1, îj1 + 2)− avef (j1, îj1))

2
1{avef (j1, îj1 + 2)− avef (j1, îj1) > 0}

Φ(2−
(avef (j1,îj1+2)−avef (j1,îj1 ))

2

√
2J−j1

√
2γsσ

)Φ(−2 +

13
16ρm( σ√

n
; f)

√
2J−j∗−2

σγs
√
2

)(j1−j∗−2)+1{j̃ = j2}
)

≤
J∑

j2=1

J∑
j1=j2

E
(
1{avef (j1, îj1 + 2) > avef (j1, îj1)}23+j1−Jγ2sσ

2V 1{j̃ = j2}

Φ(−2 +
13

√
3

64
√
2γs

)(j1−j∗−2)+

)
≤

J∑
j2=1

E(1{j̃ = j2})γ2sσ2V 25+j∗−J(1 +
1

1− 2Φ(−2 + 13
√
3

64
√
2γs

)
).

Therefore,

(D.99) E(((f̂− avef (ǰ, îǰ))+)
2
1{j̃ ≤ ǰ < ∞}) ≤ cm5ρm(

σ√
n
; f)2.

Proof of Lemma D.4. Although we take ǰ < ∞ by default, it is not
a key condition in this proof. We only need it to establish that j̃ ≤ J and
j̃ ≤ ĵ.

E((avef (ǰ, îǰ)−M(f))21{j̃ ≤ ǰ})

≤ 2E
(((

avef (ǰ, îǰ)− avef (j̃, îj̃)
)
+

)2
1{j̃ ≤ ǰ}

)
+ 2E

(((
avef (j̃, îj̃)−M(f)

)
+

)2
1{j̃ ≤ ǰ}

)
.

(D.100)

Now we introduce two lemmas that we will prove later.

Lemma D.5.

(D.101) E
(((

avef (ǰ, îǰ)− avef (j̃, îj̃)
)
+

)2
1{j̃ ≤ ǰ}

)
≤ cm7ρm(

σ√
n
; f)2.

Lemma D.6.

(D.102) E
(((

avef (j̃, îj̃)−M(f)
)
+

)2
1{j̃ ≤ ǰ}

)
≤ cm8ρm(

σ√
n
; f)2.
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With these two lemmas, we have

E((avef (ǰ, îǰ)−M(f))21{j̃ ≤ ǰ}) ≤ 2(cm7 + cm8)ρm( σ√
n
; f)2 = cm6ρm( σ√

n
; f)2.

Proof of Lemma D.5 . Similar to the white noise model, we will first
define the following events to describe the relative location of one iteration
further compared to the current one at stage j̃+ r:

Ãr ={ω : îj̃+r < i∗
j̃+r

, îj̃+r+1 = 2îj̃+r+1 − 2}

∪ {ω : îj̃+r > i∗
j̃+r

, îj̃+r+1 = 2îj̃+r+1 + 1},

B̃r ={ω : îj̃+r < i∗
j̃+r

, îj̃+r+1 = 2îj̃+r+1 − 1}

∪ {ω : îj̃+r > i∗
j̃+r

, îj̃+r+1 = 2îj̃+r+1},

C̃r ={ω : îj̃+r < i∗
j̃+r

, îj̃+r+1 = 2îj̃+r+1}}

∪ {ω : îj̃+r > i∗
j̃+r

, îj̃+r+1 = 2îj̃+r+1 − 1},

D̃r ={ω : îj̃+r < i∗
j̃+r

, îj̃+r+1 = 2îj̃+r+1 + 1}}

∪ {ω : îj̃+r > i∗
j̃+r

, îj̃+r+1 = 2îj̃+r+1 − 2}.

(D.103)

Basically, from Ãr to D̃r, the average of the signal of the chosen interval
are from the highest to the lowest.

Then we have

E
(((

avef (ǰ, îǰ)− avef (j̃, îj̃)
)
+

)2
1{j̃ ≤ ǰ}

)
= E

(((
avef (ǰ, îǰ)− avef (j̃, îj̃)

)
+

)2
1{j̃+ 1 ≤ ǰ}

)
≤ E

(((
avef (ǰ, îǰ)− avef (j̃, îj̃)

)
+

)2
1{j̃+ 1 ≤ ǰ}(1{C̃0 ∩ Ã1}

+ 1{Ã0 ∪ (B̃0 ∩ D̃c
1) ∪ (B̃0 ∩ D̃1 ∩ {ǰ = j̃+ 1})}

+ 1{(B̃0 ∩ D̃1) ∪ (C̃0 ∩ B̃1)}1{ǰ ≥ j̃+ 3})
)
.

(D.104)

We will bound the three terms separately. To simply the presentation for
deriving bounds of these three terms, denote δ = 1{j1 = j2 + 1}, δ0 = 1{j =
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j2}. For the second term, we have
(D.105)

E
(((

avef (ǰ, îǰ)− avef (j̃, îj̃)
)
+

)2
1{j̃+ 1 ≤ ǰ}(1{Ã0 ∪ (B̃0 ∩ D̃c

1) ∪ (B̃0 ∩ D̃1 ∩ {ǰ = j̃+ 1})})
)

≤
∞∑

j2=1

∞∑
j1=j2+1

E
(
2

j1−1∑
j=j2

2j−j2
((

avef (j + 1, îj+1)− avef (j, îj)
)
+

)2
1{ǰ = j1, j̃ = j2}

(
1{Ã0 ∪ (B̃0 ∩ D̃c

1)}+ 1{B̃0 ∩ D̃1}1{j1 = j2 + 1}
))

≤
∞∑

j2=1

∞∑
j1=j2+1

j1−1∑
j=j2

2j+1−j2E
(
1{ǰ = j1}1{j̃ = j2}

(
avef (j + 1, îj+1)− avef (j, îj)

)2
1{avef (j + 1, îj+1) > avef (j, îj)}

(
1{Ã0 ∪ (B̃0 ∩ D̃c

1)}+ 1{B̃0 ∩ D̃1}1{j = j2, j1 = j + 1}
))

≤
∞∑

j2=1

∞∑
j=j2

2j+1−j2E
((

avef (j + 1, îj+1)− avef (j, îj)
)2
1{avef (j + 1, îj+1) > avef (j, îj)}

1{j̃ = j2}
∞∑

j1=j+1

Φ(−2)(j1−j2−2)+Φ(−2 +

13
16ρm( σ√

n
; f)

√
2J−j∗−2

γsσ
√
2

)(j2−j∗−δ)+

(
1{Ã0 ∪ (B̃0 ∩ D̃c

1)}+ 1{B̃0 ∩ D̃1}1{j = j2, j1 = j + 1}
))

≤
∞∑

j2=1

∞∑
j=j2

2j+1−j2E
((

avef (j + 1, îj+1)− avef (j, îj)
)2
1{avef (j + 1, îj+1) > avef (j, îj)}

1{j̃ = j2, Ã0 ∪ B̃0}
(
1{j = j2}(1 +

1

1− Φ(−2)
) + 1{j ≥ j2 + 1}Φ(−2)j−j2−1

1− Φ(−2)

)
Φ(−2 +

13
16ρm( σ√

n
; f)

√
2J−j∗−2

γsσ
√
2

)(j2−j∗−δ0)+

)
≤

∞∑
j2=1

∞∑
j=j2

2j+1−j2
(
1{j = j2}(1 +

1

1− Φ(−2)
) + 1{j ≥ j2 + 1}Φ(−2)j−j2−1

1− Φ(−2)

)
Φ(−2 +

13
√
3

64
√
2γs

)(j2−j∗−δ0)+

E
((

avef (j + 1, îj+1)− avef (j, îj)
)2
1{avef (j + 1, îj+1) > avef (j, îj)}1{j̃ = j2, Ã0 ∪ B̃0}

)
Denote C(j, k) as the set of pairs (i1, i2) such that P (îk+1 = i2, îk = i1|j̃ =

j) > 0 and avef (j + 1, i2) > avef (j, i1). Clearly,
∣∣C(j, k)∣∣ ≤ min{10 · 2k−j ·

2, 3 · 4k+1−j}.
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Then we have

E
((

avef (j + 1, îj+1)− avef (j, îj)
)2
1{avef (j + 1, îj+1) > avef (j, îj)}1{j̃ = j2, Ã0 ∪ B̃0}

)
≤

∑
(i1,i2)∈C(j2,j)

E
((

avef (j + 1, i2)− avef (j, i1)
)2
1{j̃ = j2, Ã0 ∪ B̃0}1{îj+1 = i2, îj = i1}

)
≤

∑
(i1,i2)∈C(j2,j)

E
((

avef (j + 1, i2)− avef (j, i1)
)2
1{îj+1 = i2, îj = i1}

)

≤
∑

(i1,i2)∈C(j2,j)

(
avef (j + 1, i2)− avef (j, i1)

)2
Φ(−

(
avef (j + 1, i2)− avef (j, i1)

)√
2J−j−1

γlσ
√
2

)

≤
∑

(i1,i2)∈C(j2,j)

2j+1−J · 2σ2γ2l Q

≤ min{10 · 2j−j2 · 2, 3 · 4j+1−j2}2j+1−J · 2σ2γ2l Q.

Still, Q = supx>0 x
2Φ(−x).

Continue with Inequality (D.105), we have
(D.106)

E
((

avef (ǰ, îǰ)− avef (j̃, îj̃)
)
+
1{j̃+ 1 ≤ ǰ}1{Ã0 ∪ B̃0}

)
≤

∞∑
j2=1

∞∑
j=j2

2j+1−j2
(
1{j = j2}(1 +

1

1− Φ(−2)
) + 1{j ≥ j2 + 1}Φ(−2)j−j2−1

1− Φ(−2)

)
Φ(−2 +

13
√
3

64
√
2γs

)(j2−j∗−δ0)+ min{10 · 2j−j2 · 2, 3 · 4j+1−j2}2j+1−J · 2σ2γ2l Q

≤
∞∑

j2=1

(
24
(
1 +

1

1− Φ(−2)

)
+

4

1− Φ(−2)

80

1− 8Φ(−2)

)
Φ(−2 +

13
√
3

64
√
2γs

)(j2−j∗−1)+2j2+2−Jσ2γ2l Q

≤ 2j
∗−Jσ2γ2l Q

∞∑
j2=1

(
24
(
1 +

1

1− Φ(−2)

)
+

80 4
1−Φ(−2)

1− 8Φ(−2)

)
Φ(−2 +

13
√
3

64
√
2γs

)(j2−j∗−1)+2j2−j∗+2

≤
8σ2γ2l Q

nρz(
σ√
n
; f)

c̃m9 ≤ ρm(
σ√
n
; f)2 · 16γ2l Qc̃m9 = cm9ρm(

σ√
n
; f)2
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Now let us turn to the third term.

E
((

avef (ǰ, îǰ)− avef (j̃, îj̃)
)
+
1{j̃+ 3 ≤ ǰ}1{(B̃0 ∩ D̃1) ∪ (C̃0 ∩ B̃1)}

)
≤

∞∑
j2=1

∞∑
j1=j2+3

2

j1−1∑
j=j2+2

E
(
2j−j2−2

((
avef (j + 1, îj+1)− avef (j, îj)

)
+

)2
1{ǰ = j1, j̃ = j2}1{(B̃0 ∩ D̃1) ∪ (C̃0 ∩ B̃1)}

)
≤

∞∑
j2=1

∞∑
j=j2+2

2j−j2−1
∞∑

j1=j+1

∑
(i1,i2)∈C(j2,j)

E
((

avef (j + 1, i2)− avef (j, i1)
)2

1{ǰ = j1}1{j̃ = j2}1{îj+1 = i2, îj = i1}1{(B̃0 ∩ D̃1) ∪ (C̃0 ∩ B̃1)}
)

≤
∞∑

j2=1

∞∑
j=j2+2

2j−j2−1
∑

(i1,i2)∈C(j2,j)

∞∑
j1=j+1

E
((

avef (j + 1, i2)− avef (j, i1)
)2

1{j̃ = j2}1{îj+1 = i2, îj = i1}1{(B̃0 ∩ D̃1) ∪ (C̃0 ∩ B̃1)}
)

Φ(−2)j1−j2−3Φ(−2 +

13
16ρm( σ√

n
; f)

√
2J−j∗−2

γsσ
√
2

)(j2−j∗)+

≤
∞∑

j2=1

∞∑
j=j2+2

2j−j2−1min{20 · 2j−j2 , 3 · 4j+1−j2}2j+2−Jσ2γ2l Q

Φ(−2)j−j2−2

1− Φ(−2)
Φ(−2 +

13
√
3

64
√
2γs

)(j2−j∗)+

= 2j
∗−Jσ2

∞∑
j2=1

2j2−j∗Φ(−2 +
13
√
3

64
√
2γs

)(j2−j∗)+ c̃m10 ≤ cm10ρm(
σ√
n
; f)2.
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Finally, let us look at the first term.

E
((

avef (ǰ, îǰ)− avef (j̃, îj̃)
)
+
1{j̃+ 1 ≤ ǰ}1{C̃0 ∩ Ã1}

)
≤

∞∑
j2=1

∞∑
j=j2+1

2j−j2

∞∑
j1=j+1

∑
(i1,i2)∈C(j2,j)

E
((

avef (j + 1, i2)− avef (j, i1)
)2

1{ǰ = j1}1{j̃ = j2}1{îj+1 = i2, îj = i1}1{(C̃0 ∩ Ã1)}
)

≤
∞∑

j2=1

∞∑
j=j2+1

2j−j2 min{20 · 2j−j2 , 3 · 4j+1−j2}2j+2−Jσ2γ2l Q

Φ(−2)j−j2−2

1− Φ(−2)
Φ(−2 +

13
√
3

64
√
2γs

)(j2−j∗)+

≤ 2j
∗−Jσ2c̃m11 ≤ cm11ρm(

σ√
n
; f)2.

Therefore,

E
(((

avef (ǰ, îǰ)− avef (j̃, îj̃)
)
+

)2
1{j̃ ≤ ǰ}

)
≤ (cm9 + cm10 + cm11)ρm(

σ√
n
; f)2 = cm7ρm(

σ√
n
; f)2.

(D.107)

Proof of Lemma D.6. First, we introduce the following set:

IH(j) = {i∗j − 4, i∗j − 3, i∗j − 2, i∗j + 2, i∗j + 3, i∗j + 4},

which denotes the possible values of îj if j = j̃.
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E
((

avef (j̃, îj̃ −M(f))
)2
1{j̃ ≤ ǰ}

)
=

J∑
j2=1

J∑
j1=j2

∑
i∈IH(j2)

E
((

avef (j2, i)−M(f)
)2
1{j̃ = j2, ǰ = j1, îj2 = i}

)

≤
J∑

j2=1

∑
i∈IH(j2)

J∑
j1=j2

E

((
avef (j2, i)−M(f)

)2
1{j̃ = j2, îj2 = i}

(
E(1{ǰ = j1}

∣∣Yl)1{j1 ≤ j∗ + 2}+ 1{j1 ≥ j∗ + 3}
[

Πj1−1
j=j∗+2max{Φ(−2),Φ(−2 + (

7

16
+

6mj

ρz(
σ√
n
; f)

)ρm(
σ√
n
; f)

√
2J−j

√
2γsσ

)}
]))

≤
J∑

j2=1

∑
i∈IH(j2)

E
((

avef (j2, i)−M(f)
)2
1{j̃ = j2, îj2 = i}

(
1{j2 ≤ j∗ + 2}+ 1{j2 ≥ j∗ + 3}

Φ(−2 + 13
16

√
3

4
√
2γs

)j2−j∗−2

1− Φ(−2 + 13
16

√
3

4
√
2γs

)

))

≤
J∑

j2=1

∑
i∈IH(j2)

(
1{j2 ≤ j∗ + 2}+ 1{j2 ≥ j∗ + 3}

Φ(−2 + 1
6)

j2−j∗−2

1− Φ(−2 + 1
6)

)
(
avef (j2, i)−M(f)

)2
Φ(−

(
avef (j2, i)− avef (j2, i

∗
j2
+ sign(i− i∗j2))

)√
2J−j2

√
2γlσ

)

≤
J∑

j2=1

(23
1

8
)2γ2l σ

22j2−JQ
Φ(−2 + 1

6)
(j2−j∗−2)+

1− Φ(−2 + 1
6)

≤ 2j
∗+2−Jσ2c̃m8

≤ cm8ρm(
σ√
n
; f)2.

Proof of Lemma C.43.

E
(
(fi −M(f))21{ǰ = ∞}

)
= (min{f(xi) : 0 ≤ i ≤ n} −M(f))2

+ E
(
(fi −M(f))21{ǰ = ∞}1{

∣∣îJ − i∗J
∣∣ ≥ 2}

)
≤ (min{f(xi) : 0 ≤ i ≤ n} −M(f))2

+ E
(
(fîJ −M(f))21{ǰ = ∞}1{

∣∣îJ − i∗J
∣∣ ≥ 2}

)
(D.108)
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In the proof of Lemma D.4, all the argument using properties of ǰ only
uses that Tj > 2σ̃j for j < ǰ, so for the second term, all the argument can
also go through here in the case ǰ = ∞. So we have

E
(
(fi −M(f))21{ǰ = ∞}

)
≤ cm6ρm(

σ√
n
; f)2 + (min{f(xi) : 0 ≤ i ≤ n} −M(f))2

Proof of Lemma C.44.

σ2E(1{ǰ = ∞})
≤ σ2

1{J ≤ j∗ + 1}+ σ2E(1{ǰ = ∞})1{J ≥ j∗ + 2}

< σ2 16

nρz(
σ√
n
; f)

1{J ≤ j∗ + 1}+ σ2Φ(−2 +
1

6
)J−j∗−1

≤ 32ρm(
σ√
n
; f)21{J ≤ j∗ + 1}+ σ2

1
n

2J−j∗−1

n

(2Φ(−2 +
1

6
)
)J−j∗−1

1{J ≥ j∗ + 2}

≤ 32ρm(
σ√
n
; f)21{J ≤ j∗ + 1}+ 32ρm(

σ√
n
; f)2 · 2Φ(−2 +

1

6
)1{J ≥ j∗ + 2}

≤ 32ρm(
σ√
n
; f)2

Proof of Lemma C.45. Similar to the proof of Lemma C.42, we bound
the expectation by the sum of three terms and further bound those terms
separately.

(D.109) E((f̂−M(f))21{ǰ < ∞}) ≤
J∑

j1=2

E((f̂−M(f))21{j̃ > ǰ = j1})

+ 2E
((

(f̂− avef (ǰ, îǰ))+
)2
1{j̃ ≤ ǰ}1{ǰ < ∞}

)
+ 2E

((
avef (ǰ, îǰ)−M(f)

)2
1{j̃ ≤ ǰ}1{ǰ < ∞}

)
.

Similar to the arguments in the proof of Lemma D.1, we have

J∑
j1=2

E((f̂−M(f))21{j̃ > ǰ = j1}) ≤
J∑

j1=2

2 · 2j1−J(3.5
√
2σγs)

2V

≤ 4 · 49
2
γ2sV σ2 = čm4σ

2,

where V = maxx>0 x
2Φ(2− x).
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Similar to the arguments in the proof of Lemma D.3, we have

2E
((

(f̂− avef (ǰ, îǰ))+
)2
1{j̃ ≤ ǰ}1{ǰ < ∞}

)
≤ 2

J∑
j2=1

J∑
j1=j2

Φ(−2 +
13
√
3

64
√
2γs

)(j1−j∗−2)+

E
(
1{avef (j1, îj1 + 2) > avef (j1, îj1)}23+j1−Jγ2sσ

2V 1{j̃ = j2}

+ 1{avef (j1, îj1 − 2) > avef (j1, îj1)}23+j1−Jγ2sσ
2V 1{j̃ = j2}

)
≤ 4

J∑
j2=1

E(1{j̃ = j2})γ2sV 24σ2 ≤ 4γ2sV 24σ2 = čm5σ
2,

where V = maxx>0 x
2Φ(2− x).

For the third term, we have

2E
((

avef (ǰ, îǰ)−M(f)
)2
1{j̃ ≤ ǰ}1{ǰ < ∞}

)
≤ 4E

(((
avef (ǰ, îǰ)− avef (j̃, îj̃)

)
+

)2
1{j̃ ≤ ǰ < ∞}

)

+ 4E

(((
avef (j̃, îj̃)−M(f)

)
+

)2
1{j̃ ≤ ǰ < ∞}

)
.

Now we have the following lemmas which we will prove later:

Lemma D.7.

(D.110) E

(((
avef (ǰ, îǰ)− avef (j̃, îj̃)

)
+

)2
1{j̃ ≤ ǰ < ∞}

)
≤ čm6σ

2.

Lemma D.8.

(D.111) E

(((
avef (j̃, îj̃)−M(f)

)
+

)2
1{j̃ ≤ ǰ < ∞}

)
≤ čm7σ

2.

Now we can conclude that

(D.112) E((f̂−M(f))21{ǰ < ∞}) ≤ (čm4+ čm5+4čm6+4čm7)σ
2 = č2m2σ

2.

Proof of Lemma D.7. j̃ ≤ ǰ < ∞ implies j̃ ≤ J . Most of the argu-
ments of Lemma D.5 are applicable here. Note that the difference between
this lemma and Lemma D.5 is that we have additional assumption j∗−3 > J
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in this lemma. Also note that the place ǰ appears in Lemma D.5 are for
invoking the followings: Tj > 2σ̃j for j < ǰ and j̃ ≤ ǰ < ∞. These also hold
in this lemma. Therefore, using the arguments in the proof of Lemma D.5
and taking the notation there, we have

E
(((

avef (ǰ, îǰ)−avef (j̃, îj̃)
)
+

)2
1{j̃ ≤ ǰ}

)
≤ E

(((
avef (ǰ, îǰ)−avef (j̃, îj̃)

)
+

)2
1{j̃+ 1 ≤ ǰ}(1{Ã0 ∪ (B̃0 ∩ D̃c

1) ∪ (B̃0 ∩ D̃1 ∩ {ǰ = j̃+ 1})}

+ 1{(B̃0 ∩ D̃1) ∪ (C̃0 ∩ B̃1)}1{ǰ ≥ j̃+ 3}+ 1{C̃0 ∩ Ã1})
)
,

E
(((

avef (ǰ, îǰ)− avef (j̃, îj̃)
)
+

)2
1{j̃+ 1 ≤ ǰ}1{Ã0 ∪ (B̃0 ∩ D̃c

1) ∪ (B̃0 ∩ D̃1 ∩ {ǰ = j̃+ 1})}
)

≤
J∑

j2=1

J∑
j1=j2+1

E
(
2

j1−1∑
j=j2

2j−j2
((

avef (j + 1, îj+1)− avef (j, îj)
)
+

)2)

≤
J∑

j2=1

(
24
(
1 +

1

1− Φ(−2)

)
+

4

1− Φ(−2)

80

1− 8Φ(−2)

)
Φ(−2 +

13
√
3

64
√
2γs

)(j2−j∗−1)+2j2+2−Jσ2γ2l Q

≤
(
24
(
1 +

1

1− Φ(−2)

)
+

4

1− Φ(−2)

80

1− 8Φ(−2)

)
23σ2γ2l Q = čm8σ

2,

E
(((

avef (ǰ, îǰ)− avef (j̃, îj̃)
)
+

)2
1{j̃+ 3 ≤ ǰ}1{(B̃0 ∩ D̃1) ∪ (C̃0 ∩ B̃1)}

)
≤

J−3∑
j2=1

J∑
j1=j2+3

2

j1−1∑
j=j2+2

E
(
2j−j2−2

((
avef (j + 1, îj+1)− avef (j, îj)

)
+

)2
1{ǰ = j1, j̃ = j2}1{(B̃0 ∩ D̃1) ∪ (C̃0 ∩ B̃1)}

)
≤ 2−Jσ2

J−3∑
j2=1

2j2Φ(−2 +
13

√
3

64
√
2γs

)(j2−j∗)+ c̃m10 ≤ čm9σ
2,
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and

E
(((

avef (ǰ, îǰ)− avef (j̃, îj̃)
)
+

)2
1{j̃+ 1 ≤ ǰ}1{C̃0 ∩ Ã1}

)
≤

J−2∑
j2=1

J−1∑
j=j2+1

2j−j2

J∑
j1=j+1

∑
(i1,i2)∈C(j2,j)

E
((

avef (j + 1, i2)− avef (j, i1)
)2

1{ǰ = j1}1{j̃ = j2}1{îj+1 = i2, îj = i1}1{(C̃0 ∩ Ã1)}
)

≤
J−2∑
j2=1

J−1∑
j=j2+1

2j−j2 min{20 · 2j−j2 , 3 · 4j+1−j2}2j+2−Jσ2γ2l Q

Φ(−2)j−j2−2

1− Φ(−2)
Φ(−2 +

13
√
3

64
√
2γs

)(j2−j∗)+ ≤ čm10σ
2.

Therefore,

E
(((

avef (ǰ, îǰ)− avef (j̃, îj̃)
)
+

)2
1{j̃ ≤ ǰ}

)
≤ (čm8 + čm9 + čm10)σ

2.

(D.113)

Proof of Lemma D.8. The arguments in the proof of Lemma D.6 hold,
and we only need to change the last two inequalities to get the statement of
this lemma.

Specifically,

E
((

avef (j̃, îj̃ −M(f))
)2
1{j̃ ≤ ǰ < ∞}

)
≤

J∑
j2=1

(23
1

8
)2γ2l σ

22j2−JQ
Φ(−2 + 1

6)
(j2−j∗−2)+

1− Φ(−2 + 1
6)

≤ čm7σ
2.

(D.114)

Proof of Lemma C.46. Similar to the arguments in Lemma C.43, we
have

E
(
(fi −M(f))21{ǰ = ∞}

)
= (min{f(xi) : 0 ≤ i ≤ n} −M(f))2

+ E
(
(fi −M(f))21{ǰ = ∞}1{

∣∣îJ − i∗J
∣∣ ≥ 2}

)
≤ (min{f(xi) : 0 ≤ i ≤ n} −M(f))2

+ E
(
(fîJ −M(f))21{ǰ = ∞}1{

∣∣îJ − i∗J
∣∣ ≥ 2}

)
.

(D.115)
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In addition, note that in the proof of Lemma D.4, and Lemma D.7, Lemma
D.8, all the argument using properties of ǰ only uses that Tj > 2σ̃j for j < ǰ,
and j̃ ≤ ǰ < ∞. All these holds with ǰ replaced by J for the second term.
Hence all the arguments go through here and we have

E
(
(fîJ −M(f))21{ǰ = ∞}1{

∣∣îJ − i∗J
∣∣ ≥ 2}

)
≤ 2E

((
(avef (J, îJ)− avef (j̃, îj̃))+

)2
1{j̃ ≤ J < ǰ}

)
+ 2E

((
avef (j̃, îj̃)−M(f)

)2
1{j̃ ≤ J}

)
≤ 2(čm6 + čm7)σ

2.

Therefore,
(D.116)
E
(
(fi −M(f))21{ǰ = ∞}

)
≤ (min{f(xi) : 0 ≤ i ≤ n} −M(f))2 + 2(čm6 + čm7)σ

2.

Let čm3 =
√
2(čm6 + čm7) gives the statement of the lemma.
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