
Interplay Between Statistical Accuracy and Running
Time Cost: A Framework and Cases

Ran Chen
Laboratory for Information & Decision Systems,

Massachusetts Institute of Technology, MA 02139,

ran1chen@mit.edu

The popularity of iterative algorithms and the exploding availability of large data sets make the computa-

tional cost, in addition to statistical accuracy, an increasingly important concern in statistics and data science.

In this paper, we propose a constructive framework that includes a theoretically solid fully implementable

optimization method and gives precise quantification of how the running time influences the statistical accu-

racy. Our framework takes a new perspective on optimization-error-induced-statistical-error: we focus on

approximated optimization problem rather than approximated solution. We show that this is more essential

way to characterize optimization-statistical interplay. We apply the framework to three cases: 1-bit matrix

completion, causal inference for panel data, and high-dimensional sparse linear regression. We demonstrate

its power through (a) providing, for the first time, both theoretically guaranteed optimization algorithms

and precise quantification of running-time’s influence on statistical accuracy for the first two cases; and (b)

showing its adaptivity to the special case with simpler settings and stronger assumptions — high-dimensional

sparse linear regression. In addition, we provide a sharper statistical rate for the example of causal inference

for panel data when the computational resource is assumed to be infinite.

Key words : optimization, high-dimensional statistics, computational efficiency, statistical accuracy, convex

optimization

1. Introduction

With the advent of iterative methods and the increasing scale of data, computational cost has

become a great concern in addition to statistical accuracy. Approaches from different angles have

been proposed, including categorizing different methods with the triple of sample size, computation
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time and statistical error (Chandrasekaran and Jordan 2013), computational-theoretical approach

that differentiates between regions of parameters where the problem is polynomial-time computable

or not polynomial-time computable (Wang et al. 2016, Berthet and Rigollet 2013), reducing the

effective sample size (Shender and Lafferty 2013, Horev et al. 2015, Sussman et al. 2015, Kpotufe

and Verma 2017), and separately investigating both optimization running time and statistical accu-

racy, when the problem enjoys good properties like a certain form of strong convexity, smoothness

or isotropic property (Loh and Wainwright 2015, Wang et al. 2017, Chen and Wainwright 2015,

Bottou and Bousquet 2011).

Our approach is to provide theoretically guaranteed iterative optimization algorithm and precise

quantification of how iteration number affects the statistical accuracy for a class of problems that

admits estimators of a certain general form without imposing artificial or hard-to-verify conditions.

Our approach is different from the computational-theoretical approach in that we quantify the

affects of running time on statistical accuracy on a continuous scale rather than a binary answer

of polynomial time computability.

Compared with literature that deals with only statistical problem, only statistically rooted

optimization problem, or both optimization and statistical aspects of a statistical problem, our

approach provide theoretically guaranteed optimization procedure; our approach provides refined

optimization-wise convergence rate that considers the dimension of the statistical problem as a

changing quantity rather than a constant; and our approach combines optimization and statistic in

a more intrinsic way so that we do not need artificial hard-to-verify conditions to give theoretical

guarantee for our optimization procedure in terms of its influence on statistical accuracy.

To further illustrate this, we digress a little into the existing works.

Existing literature usually treats statistical properties and optimization properties separately.

Statistical properties (i.e. statistical convergence rate) are usually established for a perfect solution

of an optimization problem. And optimization convergence rates are established targeting the

perfect solution for a certain method. Literature attempting to consider both aspects jointly also

follow this style.
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But this separation has three undesired consequences. It requires assumptions that facilitates

convergence rate in the sense of conventional optimization. It gives convergence results in the sense

of conventional optimization. It deals with problems that’s considered interesting in the sense of

conventional optimization.

Those assumptions include strongly convex in some form for the objective function and the

uniqueness of the solution, among others. However, for the original statistical problems, these

assumptions are hard to verify or invalid. For example, strong convexity type condition is hard

to verify and always violated in statistical problems, and solutions to the optimization problem

can be multiple in over-parametrized settings like neural network and robust Principle Component

Analysis (RPCA).

One of our key observations is that these assumptions are not necessary for producing statistically

well behaved computed estimators, as we do not need to solve the optimization problem well

in the conventional way to guarantee its statistical performance — there is an alternative way

of characterizing how well the optimization problem is solved in terms of solution’s statistical

performance. Further, solving it well in the conventional way does not give additional help to

statistical analysis.

The convergence results in the sense of conventional optimization are also not enough for sta-

tistical consideration. In high dimensional statistics, we are essentially dealing with a class of

optimization problems with changing dimensions, and we need to know how optimization-induced

statistical error changes in terms of both iteration number and the dimension. Conventional opti-

mization results usually view dimension related quantity as a constant intrinsic to the optimization

problem.

Many statistically rooted optimization problems are not considered general enough or interesting

enough under conventional optimization sense, but the statistical problems are important from

statistical perspective. Therefore, many heuristic optimization methods widely used in statistical

literature are not nearly well understood. Many statistically good estimators also lack optimiza-

tion algorithms. And some optimization results targeting statistically rooted optimization problem

generalize the problem in the way making it no longer useful for the root statistical problem.
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Our approach is free from all these problems. We propose a framework consists of three parts.

We incorporate the consideration of optimization error into the statistical analysis through an

approximate optimization problem rather than an approximate optimization solution. We provide

a template optimization algorithm. We show its convergence in terms of converging to the opti-

mization problem. Our convergence results takes the possibly growing dimension and other chang-

ing geometry quantities into consideration in addition to the iteration number. All three added

together, we have a theoretically guaranteed algorithm and a precise quantification of statistical

accuracy given iteration number.

In two examples, 1-bit matrix completion (Davenport et al. 2014) and causal inference for panel

data (Athey et al. 2021), we apply our framework, which yields novel results for both problems.

And our framework can also be applied to network analysis, robust principle analysis, kernel

ridge regression, SVM, simple neural networks, LASSO, etc. We take LASSO for an example.

LASSO in (high dimensional sparse) linear regression is a simpler and degenerate case for our

framework. Through it, we show that our framework automatically adapt to the setting where

stronger assumptions are satisfied (e.g. restricted strong convexity).

In addition to our framework, our statistical analysis of causal inference for panel data using

matrix completion is also sharper and yields better statistical convergence rate in the special case

that the solution is perfect, which is the case considered in the literature.

1.1. Our framework

Our framework deals with statistical problems where the most promising estimator can be written

as a solution to an optimization problem of the form

min
X

f(X)+ g(X)

s.t. X ∈C1 ∩C2 ∩ · · ·CJ ,

(1)

where X is an m× n parameter matrix, with vector being a special case by taking n = 1, f is

an L(ϵ)-smooth (optimization wise) and Lf (ϵ)-Lipschitz convex function on the constraint set and
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its ϵ neighborhood (with L(ϵ),Lf (ϵ)> 0), g is a possibly non-smooth but Lg(ϵ)-Lipschitz convex

function on the same area (with Lg(ϵ)> 0), C1 to CJ are convex constraint sets that are easy to

project on. Note that f and g here are usually data dependent.

In some cases f is data dependent. Examples include negative log likelihood, sum of least squares

in high-dimensional linear regression, or the objective function in principle component analysis

(PCA). In these cases g can be penalty term or 0. In some cases, g is data-dependent and f is the

regularization term. Examples include soft support vector machine and neural network with Relu

activation function.

So this general form includes a wide range of estimators, including constrained maximum log

likelihood estimators, penalized maximum log likelihood estimator, support vector machine, etc..

This wide range of estimators have proved their power by achieving minimax optimality for many

statistical problems, especially in high dimensional statistics, or by achieving good empirical per-

formances, especially in machine learning.

Note that we do not require strong convexity, restricted strong convexity or strong convexity of

any form for f(X), which is almost a conventional assumption in the literature considering both

optimization and statistical properties. We will see later that the absence of strong convexity is

indeed very common in reality.

A specific example fitting this general form is the 1-bit matrix completion with constrained

maximum log likelihood estimators. It’s helpful to see how this concrete example fits the general

framework.

Example 1 (1-bit matrix completion). The statistical setting for 1-bit matrix completion is

as follows (Davenport et al. 2014). Given the true parameter matrix M ∈Rd1×d2 , a random subset

of indices Ω ⊂ [d1] × [d2] indicating the elements we observe, and a differentiable link function

l :D→ [0,1], where D⊂R, the observation is a matrix Y ∈Rd1×d2 defined as follows. Entries of Y

are independent.
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For (i, j)∈Ω,

Yi,j =


+1 with probability l(Mi,j)

−1 with probability 1− l(Mi,j)

. (2)

For (i, j) /∈ Ω, Yi,j = 0. The assumptions are as follows. M is nuclear norm bounded ( ∥M∥∗ ≤

α
√
rd1d2) and element wise bounded ( ∥M∥∞ ≤ α). The random subset of indices satisfies E|Ω|= n

with each entry being chosen with probability n
d1×d2

independently.

Then the log-likelihood function of this problem is

LΩ,Y (X) =
∑

(i,j)∈Ω

(1{Yi,j = 1} log(l(Xi,j))+1{Yi,j =−1} log(1− l(Xi,j))). (3)

Davenport et al. (2014) show that the minimax optimal estimator M̂ is a solution of the following

optimization problem

min
X

−LΩ,Y (X)

s.t. ∥X∥∗ ≤ α
√
rd1d2 and ∥X∥∞ ≤ α.

(4)

If we further assume twice differentiability of the link function, which is true for all link function

examples in Davenport et al. (2014), this estimator satisfies our general formulation (1), with

f(X) =−LΩ,Y (X), g(X) = 0,

C1 = [−α,α]d1×d2 , C2 = {M ∈Rd1×d2 |∥M∥∗ ≤ α
√

rd1d2},

Lf (ϵ) = sup
|x|≤ϵ+α

|l′(x)|
l(x)(1− l(x))

, Lg(ϵ) = 0, and

L(ϵ) = sup
|x|≤ϵ+α

max{|l
′′(x)l(x)− (l′(x))2|

l(x)2
,
|l′′(x)(1− l(x))+ (l′(x))2|

(1− l(x))2
}.

(5)

Remark 1. Note that in Example 1, −LΩ,Y (X) in most cases is not strongly convex, or restricted

strongly convex (Loh and Wainwright 2015, Wang et al. 2017), hence the approach of establishing

convergence in parameter space (the space of X) for the optimization problem separated from the

statistical problem, which is adopted in the literature, is not a good, if possible, approach.

Remark 2. In the original work by Davenport et al. (2014), where Example 1 arises, they only

have a heuristic algorithm computing the solution of optimization problem (4) with no theoretical

guarantee.
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Remark 3. Causal inference for panel data (Athey et al. 2021) also satisfies the general formula-

tion (1). We discuss it in detail in Section 4, where we not only develop a theoretically guaranteed

optimization algorithm and provide a precise quantification of how iteration number comes in the

statistical accuracy based on our framework, but also give a sharper upper bound on statistical

accuracy than that in Athey et al. (2021) when the solution is exact, all of which are interesting

results on their own.

Remark 4. Lasso for linear regression is another example satisfying our framework. But it is a

severely degenerate case: it is for parameter vector; it does not have constraints; it admits restricted

strong convexity in high dimensional sparse setting. We discuss it in detail in Section 5.

Remark 5. More examples fit into our framework. For the reason of space, we do not give detailed

discussion in this dissertation.

In our framework, to be free from strong convexity of any form or other artificial conditions, we

consider X̃ that has small violations on both constraints and minimum objective function value.

We analyze statistical property of X̃. The analysis of X̃ is independent from any optimization

procedure and it is an interface between statistical property and optimization error, so we call this

step Statistical-Optimization Interplay. Then we develop an optimization algorithm and analyze

its convergence in terms of those small vanishing violations. Therefore, we can give a precise

quantification of how number of iterations in our algorithm translates into statistical accuracy.

Given that the number of iteration is the key bottleneck for running time and can not be reduced

through parallel computing, this shows how running time could buy statistical accuracy until the

statistical limit is reached.

1.1.1. Statistical-Optimization Interplay The first step of our framework is to integrate

the optimization error into statistical analysis before solving the optimization problem.

Given the data, functions f and g in optimization problem (1) are decided. The target estimator

X∗ is a solution to the optimization problem (1). But the exact solution of optimization problem
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(1) can be computationally infeasible and only approximate solutions can be computed. We need

to consider the statistical property of this approximate solution.

Instead of considering the convergence rate of the computed solution X̃ to the target estimator

X∗, we move the consideration of optimization to the start of statistical analysis. We consider an

approximate estimator X̃ satisfying the approximate conditions in (6) and investigate its statistical

properties. Basically, approximate conditions mean both constraints and optimal objective function

can be violated a little (δ, δ0, δ1, · · · , δJ ≥ 0).

f(X̃)+ g(X̃)≤ f(X∗)+ g(X∗)+ δ,

inf
Z∈Ci

∥Z − X̃∥2 ≤ δi, for all 1≤ i≤ J,

inf
Z∈C1∩C2∩···CJ

∥Z − X̃∥2 ≤ δ0.

(6)

Note that the target estimator X∗, the optimizer of Optimization Problem (1), satisfies these

inequalities with δ = δ0 = · · · = δJ = 0. When δ, δ0, · · · , δJ → 0+, the approximate conditions are

infinitely close to the original Optimization Problem (1), and when δ = δ0 = · · · = δJ = 0, the

approximate conditions define an equivalent optimization problem as the original one. So this is

a way of characterizing how close the computed estimator X̃ is to the target estimator X∗. An

interesting observation is that the statistical analysis of, or the tools used in the statistical analysis

of most constrained M−estimators, a kind of estimators satisfying the conditions of our framework,

can be carried to this approximate version estimator relatively easily. We concrete the idea in three

examples, 1-bit matrix completion, causal panel data analysis and LASSO. 1-bit matrix completion

problem is analyzed as a representation for constrained log-likelihood estimator. Causal panel data

is analyzed as a representation for constrained penalized log-likelihood estimator. Lasso is a repre-

sentation of a degenerate case for our framework, where we show that the statistical-optimization

interplay automatically adapt to simpler settings to give strong results in the simpler setting.

For causal panel data, we also sharpened the backbone statistical analysis. And our framework is

applied to the sharpened statistical analysis.
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Note that in this step, we do not yet have an optimization procedure and the analysis is entirely

irrelevant to the optimization procedure. Yet the slightly violated conditions fully characterize

the statistical property of computed solution X̃ in the sense that non-violated version conditions

are the starting point for any statistical analysis for the exact solution. So we do not need the

optimization procedure to have a traditional optimization convergence.

Existing work on considering both optimization error and statistical error (e.g. Bottou and

Bousquet (2011), Loh and Wainwright (2015)) usually considers the optimization error after the

statistical problem is fully analyzed. They consider the optimization wise convergence rate of the

computed solution to the true solution. But this approach does not work when the true solution is

hard or unable to computed well. One of such setting is when the optimization problem has multi-

ple solutions. Examples include neural network, which is usually over-parametrized, and principal

component analysis (PCA). People deals with the problem of multiple solution in PCA through

defining a distance that implicitly equalize the solutions, partly leading to a huge volume of litera-

ture on non-convex optimization, see Chi et al. (2019) for a review. Another situation that the true

solution is hard to be computed well is when the objective function does not enjoy good properties

in the sense of optimization, e.g. strong convexity of some form.

1.1.2. Optimization Algorithm and Convergence Analysis The second step is to

develop an optimization procedure with theoretical guarantees in terms of convergence to an esti-

mator satisfying inequalities (6).

We adopt a double-loop optimization procedure where the outer loop is proximal gradient descent

and the inner loop is 3-block ADMM.

We give convergence rate of the optimization procedure that considers both iteration number and

statistically important quantity (e.g. dimension). This includes the convergence rate for inexact

proximal gradient descent, convergence rate for our inner loop (3-block ADMM), and a bound for

a dimension-related geometric quantity involved in the convergence rate.

There can be variants to our optimization procedure ( e.g. using accelerated proximal gradient

descent for outer loop, using 2-block ADMM for inner loop when reducible). But our analysis for
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outer loop can be easily carried to accelerated version. And our analysis of the geometric quantity

can also be easily carried to 2-block ADMM. Another reason for taking 3-block ADMM is that

in addition to fitting our two examples, the 3-block ADMM can serve as a building block for a

general number of constraints, as is in our general framework.

1.2. Related Literature

In addition to the literature mentioned at the beginning of this sections. The problems considered

in this paper is also connected to the following problems and literature.

Computational issue for low-rank matrix completion has been studied through a matrix factor-

ization approach which leads to nonconvex optimization problem. See, for example, Wang et al.

(2017), Jain et al. (2013), Chen and Wainwright (2015), and the overview paper, Chi et al. (2019).

In this line of research, 1-bit matrix completion problem is also correctly studied by Chen and

Wainwright (2015). However, this approach requires the exact low rank assumption, the knowledge

of the rank, and also at least one other conditions like RIP condition (Jain et al. 2013), restricted

convexity (Wang et al. 2017), and incoherence Chen and Wainwright (2015), which are strong and

hard-to-verify condition in many settings. Further, the convergence rate for 1-bit matrix problem

in Chen and Wainwright (2015) depends on the mostly unknown incoherence, which varies greatly,

and the worst case different from the best by order.

Computational issue for M−estimator is also considered in Loh and Wainwright (2015), where

they consider Lasso type estimator. Their work deal with vectors (instead of matrices) with

restricted strong convexity (RSC) requirement. Our framework is designed for the more general

case: matrix without RSC condition. This includes the simpler setting (vector with RSC condition).

And as shown in our third example, our framework automatically adapts to the simpler setting

and provides stronger results under stronger conditions.

Schmidt et al. (2011) studied convergence rate for inexact proximal gradient and inexact accel-

erated proximal gradient when the non-smooth part is finite. But in our setting, the existence
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of constraints dictates the infinity of the non-smooth part. Jiang et al. (2012) studied inexact

accelerated proximal gradient descent, but it is for linearly constrained convex SDP.

Literature on the convergence of 3-block ADMM includes, for example, Cai et al. (2017), Lin et al.

(2018), Hong and Luo (2017), Lin et al. (2016). But they either are not applicable to our setting

(Hong and Luo 2017, Lin et al. 2018), or establishes convergence rate on Lagrange Functions (Cai

et al. 2017), or establishes convergence rate on objective function with results weaker than ours

in its applicable setting (Lin et al. 2016). Tibshirani (2017) considers projection on intersection of

convex sets, but it is for coordinate descent and for vectors instead of matrices, thus not applicable

to our setting.

1.3. Organization of the Chapter

In Section 2 we introduce our general framework and give general results. In Section 3 we discuss

the results of applying our framework to 1 bit matrix completion example, where we get interesting

new results. In section 4 we discuss the results for causal panel data example, where in addition to

applying our framework we provide tighter back-bone statistical analysis. In Section 5, we discuss

applying our framework to (high dimensional) linear regression and compare with the results in

literature for this degenerated setting. In section 6, we discuss some directions for future work. For

the reason of space, the proofs are given in the appendix Section ??.

1.4. Notation and Definition

Both ∥ · ∥ and ∥ · ∥F stand for Frobeneous norm. ∥ · ∥F is to give special emphasis for matrices

when there might be confusion. ∥ · ∥∗ stands for nuclear norm. We use |O| to denote the number

of elements in O when O is a set. We use D(A∥B) = 1
d1d2

∑
i,j D(Ai,j∥Bi,j) to denote average

KL divergence between d1 by d2 probability matrix A and B for 1-bit matrix completion, where

D(a∥b) = a log(a
b
) + (1− a) log( 1−a

1−b
). We use T{A} to denote the function where it takes 0 if A

holds and ∞ if A does not hold. We use R(ε,C) to denote the ε neighborhood of convex set C:

R(ε,C) = {X : infZ∈C ∥X − Z∥ ≤ ε}. We use Bd(x) to denote a ball centered at x with radius d
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under Frobeneous norm. We use ∨ to denote taking max: a∨ b=max{a, b}. We use ProjC(P ) to

denote the projection point of P on convex set C, the projection is in terms of Euclidean distance.

Now we introduce the definition of smoothness in optimization sense.

Definition 1 (Optimization-wise Smoothness). A convex function f(X) is said to be L-

smooth if for any X in the domain, there is a subgradient ∂f(X) at X such that for all Y in the

domain,

f(Y )≤ f(X)+ ∂f(X)(Y −X)+
L

2
∥X −Y ∥2. (7)

2. General Framework

In this section, we introduce the general framework. The general framework has three parts:

statistical-optimization interplay, optimization-template algorithm, and optimization convergence

analysis.

2.1. Statistical-Optimization Interplay

In statistical-optimization interplay, we integrate the optimization consideration into the statisti-

cal analysis by considering the statistical accuracy of an estimator coming from an approximate

optimization problem instead of just an approximate solution.

Recall that the target estimator X∗ is the solution in (1). To consider the optimization-induced

statistical error, we consider the statistical property of approximate estimator X̃ satisfying Inequal-

ities (6). The measurements for how well the optimization problem is eventually solved are

δ, δ0, δ1, · · · , δJ .

Suppose one of the true parameters of the statistical model is Xt.

The key ingredient for statistical-optimization interplay is an interesting but natural observation

on statistical analysis of estimator of the form (1). The statistical analysis for X∗ usually starts

with the inequality

f(X∗)+ g(X∗)≤ f(Xt)+ g(Xt). (8)

This inequality is usually reduced to simpler form with or without using the constraint conditions.

And then the simpler form becomes a solvable inequality for the statistical error or the simpler
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form is further reduced. Typical tools for further reducing the inequality includes empirical process,

which is also where the constraints in (1) usually comes in.

A reflection on this whole procedure gives that the additive nature of (8) is untouched, so are

the constraints in (1).

These characteristics of the analysis mean that similar analysis can go through for approximate

solution X̃, as it adds in the optimization errors (e.g.δ, δ0, · · · , δj) in an additive way. Specifically,

the analysis for X̃ starts with

f(X̃)+ g(X̃)≤ f(Xt)+ g(Xt)+ δ. (9)

Constraints also enter the analysis with an additional error term.

In this way, the focus is shifted from the final approximate solution X̃ to the approximate

optimization problem (6). We do not need strong convexity or uniqueness of the solution or other

conditions to ensure the fast proximity of the solutions. We only need proximity of the problems,

which is the only thing relevant to the statistical accuracy while being much relaxed in terms of

optimization.

As statistical analysis varies from problem to problem. We will concrete the idea of analyzing

solution satisfying the approximate optimization problem through examples in Section 3, Section

4 and Section 5.

Remark 6. In our framework, we consider problems with constraints, but it is also applicable to

the setting where there is no constraints. The problem with no constraints is a degenerated case

where we do not need to consider projection in optimization part. We show in Section 5 that in a

degenerate case, (high dimensional) linear regression, our framework automatically adapts to the

simpler setting and stronger conditions to give stronger results.

Remark 7. Statistical-Optimization Interplay, the interface building optimization error into sta-

tistical analysis before solving the optimization problem, can work alone. That is, the optimiza-

tion procedures and analysis can be replaced when needed. Further, the statistical-optimization

interplay can also be extended to Z-estimators and other type of estimators coming from equa-

tion/inequality system, which is in my future work.
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2.2. Template Algorithm

The second step of the framework is to have an algorithm finding X̃ satisfying (6). Our template

algorithm is a double-loop algorithm, where the outer loop is inexact proximal gradient descent

and inner loop is a 3-block ADMM to approximately compute quantities in the outer loop. Our

inner loop algorithm can be replaced and generalized to fit arbitrary number of constraints, but

to avoid unnecessary complexity while being sufficient for our examples, we elaborate on 3-block

ADMM and remark on generalized algorithm.

2.2.1. Outer Loop Note that optimization problem (1) is equivalent to minimizing the fol-

lowing function.

F (X) = f(X)+ (g(X)+T{X ∈C1}+T{X ∈C2}+ · · ·+T{X ∈CJ}) . (10)

To minimize F (X), we do proximal gradient descent but with an “approximate” proximal step,

as shown in algorithm 2.1.

Outer Loop: Inexact Proximal Gradient Descent Starting point is X0 ∈ C1 ∩ C2 ∩ · · · ∩

CJ . Step size is η > 0. For k≥ 0,

Xk+0.5 =Xk − η∇f(Xk), Xk+1 = P̃roxη(g(X)+T{C1∩C2∩···∩CJ})(Xk+0.5), (11)

where P̃roxη(g(X)+T{X∈C1∩C2∩···∩CJ})(Xk+0.5) is a close approximation of

Proxη(g(X)+T{X∈C1∩C2∩···∩CJ})(Xk+0.5) =

argmin
X

(
1

2
∥X −Xk+0.5∥2F + η

(
g(X)+T{X ∈C1 ∩C2 ∩ · · · ∩CJ}

))
.

(12)

Proxη(g(X)+T{X∈C1∩C2∩···∩CJ})(·) is called a proximal operator. However, we do not have an exact

solution to (12) to give Proxη(g(X)+T{X∈C1∩C2∩···∩CJ})(Xk+0.5). We only have an approximate proxi-

mal P̃roxη(g(X)+T{C1∩C2∩···∩CJ})(Xk+0.5) in the outer loop by approximately solving the optimization

problem corresponding to it, which is our inner loop.

Before we proceed to inner loop, we conclude with a remark that the approximate proximal

gradient can be replaced by its accelerated version for outer loop. But given the commonly seen



R. Chen: Statistical Computational Tradeoff
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 15

phenomenon that accelerated version of algorithms are usually less robust to errors along the

computation, we do not discuss the accelerated version for our setting. Similar discussion can be

given for accelerated version.

2.2.2. Inner Loop The optimization problem that inner loop aims to solve is

min
X

(
1

2
∥X −Xk+0.5∥2F + η

(
g(X)+T{X ∈C1 ∩C2 ∩ · · · ∩CJ}

))
. (13)

We can write it as

min
P

(
∥P −P0∥2F +

(
h1(P )+h2(P )+ · · ·+hm(P )

))
, (14)

where P0 equals to Xk+0.5 in (13), and hi(·) are convex functions not necessarily smooth and

potentially take infinity value. In the case J ≥ 1, at least one hi(·) takes infinity value.

We first consider the case that m= 2. In this case, Optimization Problem (14) is equivalent to

the following problem:

min
W,Z,P

∥P −P0∥2F +h1(W )+h2(Z),

s.t.W = P,Z = P.

(15)

We take 3-block ADMM to solve this problem. The Augmented Lagrange Function for this

3-block ADMM is

Lβ(W,Z,P,Λ1,Λ2) = ∥P −P0∥2F +h1(W )+h2(Z)+
β

2
(∥W −P +

Λ1

β
∥2F + ∥Z −P +

Λ2

β
∥2F ), (16)

where β > 0 is the dual step size and Λ= (Λ1,Λ2) is the dual variable.

The optimization procedure for this 3 block ADMM is in algorithm 2.2.
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Inner loop: 3 block ADMM The starting points are P 0 = P0, Λ
0
1 = 0, Λ0

2 = 0. The dual step

size is β > 0. For k≥ 0, the iteration steps are

W k+1 = argmin
W

Lβ(W,Zk, P k,Λk
1 ,Λ

k
2) = argmin

W

h1(W )+
β

2
∥W −P k +

Λk
1

β
∥2F ,

Zk+1 = argmin
Z

Lβ(W
k,Z,P k,Λk

1 ,Λ
k
2) = argmin

Z

h2(Z)+
β

2
∥Z −P k +

Λk
2

β
∥2F ,

P k+1 = argmin
P

Lβ(W
k,Zk, P,Λk

1 ,Λ
k
2)

= argmin
P

∥P −P0∥2F +
β

2
(∥W k+1 −P +

Λk
1

β
∥2F + ∥Zk+1 −P +

Λk
2

β
∥2F ),

Λk+1
1 =Λk

1 +β(W k+1 −P k+1),

Λk+1
2 =Λk

2 +β(Zk+1 −P k+1).

(17)

Note that when h1(·) comes from a constraint function, the update step for W is a projection step.

Analogous result holds for h2(·).

Usually, 3-block ADMM is enough for solving most of the problems encountered in statistics,

including our two examples, as m in (14) is usually not very large. In the case that 3-block ADMM

is not enough (i.e. m≥ 2), the reason for m≥ 2 is that the number of constraints is large. Then a

natural way is to do recursive ADMM. For example, if we have g= 0 and four constraints C1, C2,

C3, C4, we can do a 3-block ADMM for argminP ∥P −P0∥2F +T{P ∈C1 ∩C2}+T{P ∈C3 ∩C4},

where in each projection step, say on C1 ∩C2, we can do another 3-block ADMM. This could be

costly, but do-able.

Another remark is that in some cases, Optimization Problem (14) can be reduced to 2-block

ADMM. But less blocks sometimes may lead to worse performance (Lin et al. 2018) and it’s not

generalizable to more blocks, we rest with 3-block ADMM.

2.3. Optimization Convergence Analysis

In this section we give theoretical analysis for the algorithm-template we introduced in Section 2.2.

For outer loop, we have the convergence result for inexact proximal gradient descent in Theorem

1.
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Theorem 1 (Inexact Proximal Gradient Descent). We take the inexact proximal gradient

descent algorithm 2.1. Suppose the inner loop (approximation of the proximal) satisfies

∣∣P̃roxη(g(x)+T{x∈C1∩C2∩···∩CJ})(X)−Proxη(g(x)+T{x∈C1∩C2∩···∩CJ})(X)
∣∣≤ δ0 (18)

for all X ∈ R(δ0,C1 ∩C2 ∩ · · · ∩CJ). Suppose on R(δ0,C1 ∩C2 ∩ · · · ∩CJ), f is L smooth and Lf

Lipschitz,and g is Lg Lipschitz. We let step size η ≤ 1
L
. Suppose X̃ has the smallest f(X) + g(X)

value among X0,X1, · · · ,XK, the starting point and the results of first K iterations. Then we have

f(X̃)+ g(X̃)− f(X∗)− g(X∗)≤ 1

2Kη
∥X0 −X∗∥2+

(Lf +Lg)δ0 +
L

2
δ20 +

δ0D

η
+

δ20
2η

,

(19)

where D is the diameter of C1 ∩C2 ∩ · · · ∩CJ .

Remark 8. Schmidt et al. (2011) studied the convergence of inexact proximal gradient descent

when the non-smooth part is finite. But in the presence of constraints, although function g is finite,

the optimization problem (14) in our setting is always infinite.

Remark 9. The Lipschitz conditions needed for f and g are natural conditions satisfied in most

setting. For most non-smooth penalties, g satisfies Lipschitz condition on the entire space. For most

problems, the constraint set is compact (or contained in a compact set), thus the smoothness and

convexity of f dictates Lipschitz condition.

Now we turn to the convergence of the inner loop, 3-block ADMM.

Let W ∗,Z∗, P ∗ be true primal variables and Λ∗ = (Λ1,Λ2) be the true dual variable, i.e. solution

to the optimization problem

max
Λ1,Λ2

min
W,Z,P

Lβ(W,Z,P,Λ1,Λ2).

We have Proposition 2.1 for the convergence rate of the 3-block ADMM.

3 block ADMM convergence rate Suppose we take algorithm 2.2 with dual step size β ≤ 6
17
,

suppose P
t
= 1

t

∑t

j=1P
j, then we have

∥P t −P ∗∥2 ≤ 1

2βt

(
β2∥Z1 −P ∗∥2 +2β2∥P 1 −P ∗∥2 + ∥Λ1 −Λ∗∥2 + 20

3
β2∥P 1 −P0∥2

)
. (20)
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Remark 10. In general, convergence for multi-block ADMM with more than two blocks does

not hold (Chen et al. 2016). Convergence in some specific settings has been studied. But to our

knowledge, no convergence rate has been established for direct 3-block ADMM applied to our

setting. In the most closely related literature, Cai et al. (2017) does not have convergence rate; the

requirement on constraints in Lin et al. (2018) or Hong and Luo (2017) does not fit our setting; Lin

et al. (2016) has strict requirement on dual step size and slower rate based on their requirement.

Note that ∥Λ1 −Λ∗∥ is involved in the convergence rate. Λ1 depends explicitly on β, P0, h1(·)

and h2(·), which can usually be easily studied and bounded, and it’s usually relatively small in our

setting. Λ∗, however, can be very large (in terms of norm) and depends implicitly on the geometry

of h1(·) and h2(·), which is dimension-dependent. But optimization literature does not deal with

it, as it is considered as a constant for a single optimization problem. This issue is not particular

to 3-block ADMM. 2-block ADMM also involves true dual variable in the convergence rate, which

is treated as constant in the literature.

We bound ∥Λ∗∥, a geometry related quantity, by easy-to-compute geometry quantities.

To understand the involvement of geometry intuitively, figure 1 takes the projection on the

intersection of two convex sets as an example for illustration. If the point to be taken projection

on, say P0, satisfies ProjC1∩C2
(P0) = A, the number of iterations needed to get enough close to

C1 ∩C2 would be relatively large, as Pk can stay far from C1 ∩C2 while it’s already close to both

C1 and C2 separately. On the other hand, when ProjC1∩C2
(P0) =B, it would take less iterations to

get enough close to B. Simple calculation show that −Λ∗
1 and −Λ∗

2 are subgradients for T{X ∈C1}

and T{X ∈C2} at ProjC1∩C2
(P0), satisfying −Λ∗

1 −Λ∗
2 = 2(P0 −P ∗). In figure 1, the purple cones

at A and B show the region Λ∗
1 and Λ∗

2 can take value in at A and B respectively. We find bound

for ∥Λ∗
1∥2 + ∥Λ∗

2∥2 by finding bound for “the maximum angle” the purple cones. The purple cone

(smaller cone) at A can be considered as polar cone (Chandrasekaran and Jordan 2013) of the

smallest cone containing C1∩C2 with A considered as origin, which at least contains the ball Bd(x).

Thus we can bound the purple cone by red cone. Same logic applies to purple cone (smaller cone)

at B. Lemma 1 gives the precise description of this intuition.
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Figure 1 Illustration of geometry of dual variable

Lemma 1 (Geometry Bound). We define the generalized polar cone of convex set C at point P

to be NC(P ) = {a : ⟨a, P − x⟩ ≥ 0 for all x ∈C}. Define the maximum angle of two convex sets C1

and C2 to be

θ(C1,C2) = sup
P∈∂(C1∩C2)

sup
λ1∈NC1

(P ),λ2∈NC2
(P )

arccos (⟨λ1, λ2⟩),

where ∂(C1 ∩C2) is the boundary of C1 ∩C2. We define a quantity based on maximum angle of C1

and C2 to be C(C1,C2) =
1

2 cos2(
θ(C1,C2)

2 )
, then we have

C(C1,C2)≤
D2

2d2
,

where D = supx,y∈C1∩C2
∥x − y∥22, d = sup{d : ∃x ∈ C1 ∩ C2 such that Bd(x) ⊂ C1 ∩ C2}. Further,

suppose Λ∗ and P ∗ are the true dual variable and primal variable of the Augmented Lagrange

function (16). Then when h1(W ) =T{W ∈C1} and h2(Z) =T{Z ∈C2}, we have

∥Λ∗∥22 ≤max{4,4C(C1,C2)}∥P0 −P ∗∥2.
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2.4. Remark

With the statistical-optimization interplay, algorithm-template, and optimization analysis, we are

ready to provide theoretically guaranteed algorithm for a large class of estimator for a wide class

of problems, and produce a precise analysis of how running time affects statistical accuracy.

3. Application to 1 Bit Matrix Completion

In this section we apply the framework introduced in Section 2 to the 1 bit matrix completion

example we introduced in Section 1.1, which yields novel results and also further illustrates our

framework.

3.1. Statistical-Optimization Interplay

Suppose a solution to optimization problem (4) is X∗. The approximation optimization conditions

(6) of the computed estimator X̃ in 1 bit matrix completion setting becomes

−LΩ,Y (X̃)≤−LΩ,Y (X
∗)+ δ,

∥X̃∥∞ ≤ α+ δ1,∥X̃∥∗ ≤ α
√

rd1d2 + δ2, inf
Z∈C1∩C2

∥Z − X̃∥2 ≤ δ0,

(21)

where C1 = [−α,α]d1×d2 and C2 = {M ∈Rd1×d2 |∥M∥∗ ≤ α
√
rd1d2}.

Our goal is to understand the statistical behavior of X̃. Applying statistical-optimization inter-

play step of our framework to the statistical analysis in Davenport et al. (2014), where X∗ is M̂ and

X̃ is M̃ , gives Theorem 2, which describes how optimization-induced error affects the statistical

accuracy before solving the optimization problem.

Theorem 2. Consider 1 bit matrix completion problem introduced in Example 1. Let M̂ be a

solution to optimization problem (4). Suppose M̃ satisfies −LΩ,Y (M̃) ≤ −LΩ,Y (M̂) + δ, ∥M̃∥∗ ≤

α
√
rd1d2 + δ2, ∥M̃∥∞ ≤ α+ δ1. Recall that D(A∥B) is the average KL divergence between matrix

A and B. Denote

Lγ = sup
|x|≤γ

|l′(x)|
l(x)(1− l(x))

(22)

for γ > 0 such that l(x)∈ (0,1) for |x| ≤ γ. Then we have, with probability at least 1− c1
d1+d2

,

D(l(M)∥l(M̃))≤ c0Lα+δ1(α
√
rd1d2 + δ2)

√
d1 + d2
nd1d2

√
1+

(d1 + d2) logd1d2
n

+
δ

n
, (23)
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c0, c1 are absolute constants that can be explicitly written out.

Remark 11. Note that in the formulation of example 1 we require link function l to be twice

differentiable in addition to mere differentiability in the original work (Davenport et al. 2014) for

fitting into our framework. But for statistical-optimization interplay, twice differentiability is not

necessary, as Theorem 2 still holds with only differentiability.

Remark 12. Note that when δ = 0, δ1 = 0 and δ2 = 0, M̃ in Theorem 2 is exactly the target

estimator and the rate is of the same order with that in Davenport et al. (2014). In the view of

approximate optimization, the target exact solution is a special case.

Remark 13. 1 bit matrix completion is a representative example for constrained M-estimator, or

more precisely, constrained maximum likelihood estimator with no penalty term or optimization-

wise smooth penalty term. Other constrained M-estimator includes constrained kernel ridge regres-

sion and constrained version of sparse principle component analysis.

3.2. Optimization Algorithm

Note that in Davenport et al. (2014), they use a heuristic method without theoretical guarantee.

Here we apply our optimization template algorithm to 1 bit matrix completion and give results on

its convergence in terms of the approximate optimization conditions.

Note that the proximal operator Proxη(g(X)+T{X∈C1∩C2∩···∩CJ})(·) in optimization template algo-

rithm becomes projection operator ProjC1∩C2
(·) for 1 bit matrix completion, which gives the outer

loop in Algorithm 3.1.

1-bit Matrix Completion Outer Loop: Inexact Projected Gradient Descent

Starting point is X0 = 0. Step size η > 0. For k≥ 0, the iteration steps are

Xk+0.5 =Xk − η∇(−LΩ,Y (Xk)), Xk+1 = P̃rojC1∩C2
(Xk+0.5), (24)

where P̃rojC1∩C2
(Xk+0.5) is a close approximation of projection point

ProjC1∩C2
(Xk+0.5) =

argmin
X

(
∥X −Xk+0.5∥2F +T{X ∈C1 ∩C2}

)
.

(25)
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To compute approximate projection point P̃rojC1∩C2
(P0)), we apply the template algorithm inner

loop. We know that the Augmented Lagrange Function for this 3-block ADMM is:

Lβ(W,Z,P,Λ1,Λ2) =T{W ∈C1}+T{Z ∈C2}+ ∥P −P0∥2F+

β

2
(∥W −P +

Λ1

β
∥22 + ∥Z −P +

Λ2

β
∥22),

(26)

where Λ1 and Λ2 are dual variables and β is the dual update step size.

Applying the inner loop template algorithm, Algorithm 2.2, to 1 bit matrix completion, gives

the inner loop steps for 1 bit matrix completion in Algorithm 3.2.

1-bit Matrix Completion Inner Loop: 3-block ADMM The starting points are P 0 =

P0,Λ
0
1 = 0,Λ0

2 = 0. For k≥ 0, the iterative steps are

W k+1 =ProjC1
(P k − 1

β
Λk

1),Z
k+1 =ProjC2

(P k − 1

β
Λk

2),

P k+1 =
1

β+1

(
P0 +Λk

1 +Λk
2 +

β

2
(W k+1 +Zk+1)

)
,

Λk+1
1 =Λk

1 +β
(
W k+1 −P k+1

)
,

Λk+1
2 =Λk

2 +β
(
Zk+1 −P k+1

)
.

(27)

Take the average P
k
= 1

k

∑k

i=1P
i for the output if we end it at k-th iteration.

3.3. Optimization Convergence

In this section, we establish convergence rate for optimization algorithm introduced in Section 3.2

in terms of the approximate optimization conditions. We apply results in Section 2.3 to 1 bit matrix

completion setting with appropriate modifications.

In this section, we need the assumption that the link function l for 1-bit matrix completion is

twice differentiable, as introduced in section 1.1. So in addition to Lipschitz constant defined in

(22), we have well defined smoothness constant for 1 bit matrix completion example, defined as

L̃γ = sup
|x|≤γ

{|l
′′(x)l(x)− (l′(x))2|

l(x)2
,
|l′′(x)(1− l(x))+ (l′(x))2|

(1− l(x))2
}, (28)

for γ > 0 such that l(x)∈ (0,1) for |x| ≤ γ.

For the convergence of the outer loop, we apply Theorem 1 to 1 bit matrix completion setting,

which gives Proposition 3.1.
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Outer loop for 1 bit matrix completion Suppose we take projected gradient descent, Algo-

rithm 3.1, for outer loop, and the projection error in all steps satisfies

∥P̃rojC1∩C2
(X)−ProjC1∩C2

(X)∥ ≤ δ0

. Suppose the link function l(x) is twice differentiable. Let L̃γ be defined in (28). Suppose L̃α+δ0 ≤L.

Let Lγ be defined in (22). Let X∗ be a solution of optimization problem (4). Take step size η= 1
L
,

we have

min
0≤k≤K

−LΩ,Y (Xk)≤−LΩ,Y (X
∗)+

α2Ld1d2
2K

+ δ0(2αL
√
d1d2 +Lα+δ0 +Lδ0). (29)

To investigate the convergence for inner loop, we apply Proposition 2.1 and Lemma 1 in the

general framework to 1 bit matrix completion example. Proposition 3.2 gives the convergence for

inner loop for 1 bit matrix completion.

Convergence of inner loop for 1 bit matrix completion Suppose P ∗ = ProjC1∩C2
(P0).

Taking Algorithm 3.2, with dual step size β ≤ 6
17
, we have

∥P t −P ∗∥2 ≤ 1

2βt

(
7β2 +max{4,8C(C1,C2)}+

20

3

β4

(β+1)2

)
∥P0 −P ∗∥2, (30)

where C(C1,C2)≤ d1d2
2

.

Combing the inner loop result, Proposition 3.2, and outer loop result, Proposition 3.1, we have

that Theorem 3 showing the overall optimization convergence in terms of approximate conditions.

Theorem 3 (Optimization: 1 bit matrix completion). Suppose we take projected gradient

descent, Algorithm 3.1, for outer loop, and 3-block ADMM, Algorithm 3.2, for inner loop, where

P0 in the inner loop is Xk+0.5 in the outer loop. Let Lα be defined in (22). Let L̃α be defined in

(28). If we take step size η = 1
2L̃α

, dual step size β ≤ 6
17
, the number of iterations of inner loop

t≥ t0, and take T iterations for outer loop, then X̃ = argminX∈{X0,X1,··· ,XT }−LΩ(X) satisfies the

approximate conditions (21) with

δ≤ α2L̃αd1d2
T

+(4αL̃α

√
d1d2 +2Lα)

√
1

t

√
q(β)+

2d1d2
β

+2L̃α

1

t

(
q(β)+

2d1d2
β

)
,

max{δ1, δ2, δ0} ≤
√

1

t

√
q(β)+

2d1d2
β

,

(31)
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where q(β) = 7β
2

+ 10
3

β3

(β+1)2
, u0 = max{u : Lα+u ≤ 2Lα, L̃α+u ≤ 2L̃α}, and t0 =

1
2β

(
7β2 +4d1d2 +

20
3

β4

(β+1)2

)
(1+ Lα

u0L̃α
+ Lα

L̃α
)2.

3.4. Overall Result

In this section, we are ready to show how the running time affects the statistical accuracy, as shown

in Theorem 4.

Theorem 4. For 1 bit matrix completion introduced in Section 1.1, suppose the link function l(x)

is twice differentiable. Let L̃α be define in (28). Let Lα be defined in (22). Suppose we take projected

gradient descent, Algorithm 3.1, for outer loop with step size η= 1
2L̃α

and T iterations, and 3-block

ADMM, Algorithm 3.2, for inner loop, where P0 in the inner loop is Xk+0.5 in the outer loop. For

inner loop, Algorithm 3.1, we take dual step size β ≤ 6
17

and iteration number t≥ t0, where t0 is

specified later. Let M̃ be among the starting point and resulting points in first T iterations of the

outer loop, {X0,X1, · · · ,XT}, such that it has the smallest −LΩ,Y (·) value. Then with probability

at least 1− c1
d1+d2

, we have

D(l(M)∥l(M̃))

≤ 2c0Lα

(
α
√

rd1d2 +

√
1

t

√
q(β)+

2d1d2
β

)√
d1 + d2
nd1d2

√
1+

(d1 + d2) log (d1d2)

n

+
α2L̃αd1d2

Tn
+

4αL̃α

√
d1d2 +2Lα

n

√
1

t

√
q(β)+

2d1d2
β

+
2L̃α

n

1

t

(
q(β)+

2d1d2
β

)
.

(32)

where c0, c1 are absolute constants, and q(β), t0 is defined as follows.

q(β) =
7β

2
+

10

3

β3

(β+1)2
, u0 =max{u :Lα+u ≤ 2Lα, L̃α+u ≤ 2L̃α},

t0 =
1

2β

(
7β2 +4d1d2 +

20

3

β4

(β+1)2

)
(1+

Lα

u0L̃α

+
Lα

L̃α

)2.

Note that, when the computing resource in terms of running time is unlimited, meaning t→∞

and T → ∞, the rate is the same with that established in Davenport et al. (2014). Also note

that Theorem 4 gives better understanding of the roles the iteration number T and t play. The

running-time-induced statistical error is of the order O

(√
1
t
·
(

Lα√
min{d1,d2}

+αL̃α

))
+O(α

2L̃α
T

).
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The running time for inner loop plays a crucial role, which is reasonable as the inner-loop-error

propagates down the outer loop.

There are flexibility in the choice of step sizes η, similar results can be given for other legitimate

choices of step sizes. The heuristic algorithm in Davenport et al. (2014) is a 2-block ADMM. Our

framework can also be adapted to 2-block ADMM, the change in the down-stream-convergence-

analysis is to replace the 3-block convergence rate with 2-block convergence rate and analyze the

dimension-dependent geometric quantity involved there with the insights provided by Lemma 1.

4. Application to Causal Inference for Panel Data

In this section, we apply our framework to the causal inference for panel data. Athey et al. (2021)

proposed an estimator of the general form (1) for causal inference for panel data. Their statistical

analysis, however, is not tight, and they do not have an optimization procedure targeting their

estimator. We provide an improved statistical analysis and apply our framework based on our

improved analysis, resulting in a theoretically guaranteed algorithm with precise quantification of

the statistical accuracy after certain running time of user’s choice.

We take the statistical model in the work by Athey et al. (2021). The model is for panel data.

There are N items, which can stand for companies. The time period is T. For each item i, there

is an adoption time ti, after which item i is treated all the way to time T, and this adoption time

is set to T if never treated. They take Rubin’s potential outcome framework. And the complete

potential outcome matrix when all are assigned to the control group is Y full,

Y full =L∗ + ε, where E(ε|L∗) = 0. (33)

The assumptions on ε are as follows. ε is independent from L∗ and the elements of ε are σ-sub-

Gaussian and independent of each other.

O is the observation-pair set indicating whether a unit (an item at a certain time) is treated. If

we let W to be defined as

Wit =


1, for (i, t) /∈O

0, for (i, t)∈O
. (34)
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The assumptions for O and thus W are as follows. For each row, suppose row i, there is an adoption

time ti, such that Wit = 1 for all ti < t≤ T , ti = T if the unit never adopt the treatment. The rows

of W are independent. Condition on L∗, the adoption time ti are independent of each other and

ε. Also, |L∗|∞ ≤Lmax, where Lmax is a positive real number.

Then under this model, the observed controls are Yit = Y full
it , (i, t)∈O. For treated elements, i.e.

(i, t) /∈O , Y full
it is missing and we let Yit = 0. The goal is to estimate L∗.

We introduce some quantities here. For item i, the probability that it’s not treated through

out is π
(i)
T = E(T{ti = T}). The minimum of this “probability of control” over N items is pc =

min1≤i≤N π
(i)
T . We use PO to denote an operator mapping N by T matrix to N by T matrix, with

each elements defined as PO(B)(i,t) =B(i,t) if (i, t)∈O, and 0 if (i, t) /∈O.

Note that in this setting, the matrix W do not have independence for columns, which renders

RIP condition and restricted strong convexity invalid. The targeted estimator (Athey et al. 2021)

is

L̂= argmin
|L|∞≤Lmax

{ 1

|O|
∥PO(Y −L)∥2F +λ∥L∥∗} (35)

So causal inference for panel data example fits our general framework (1). The smooth convex

function f , the convex-but-not-necessarily-smooth function g and the constraint set in the general

framework become follows in causal panel data setting.

f(L) =
1

|O|
∥PO(Y −L)∥2F , g(L) = λ∥L∥∗,C1 = [−Lmax,Lmax]

N∗T . (36)

Applying our framework to it are two sub-problem as follows.

The first sub-problem is to investigating the statistical behavior of an estimator L̃ satisfying

conditions (37).

1

|O|
∥PO(Y − L̃)∥2F +λ∥L̃∥∗ ≤

1

|O|
∥PO(Y − L̂)∥2F +λ∥L̂∥∗ + δ,

|L̃|∞ ≤Lmax + δ1,

(37)

where L̂ is defined in (35).
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The second sub-problem is developing theoretically guaranteed algorithm finding an L̃ satisfying

(37) and analyzing its convergence rate in terms of δ and δ1 in (37). Athey et al. (2021) does

not have an algorithm for L̂ in (35) and the heuristic algorithm used there is for another target

estimator.

4.1. Statistical-Optimization Interplay

We start with the first sub-problem.

The statistical property of the approximate estimator L̃ satisfying (37) is shown in Theorem

5, which describes how optimization induced error affects statistical error before solving the opti-

mization problem.

Theorem 5. Consider statistical model for causal inference of panel data. Suppose the true param-

eter matrix L∗ has rank at most R, and the penalty parameter

λ=
13σmax{

√
N log (N +T ),8

√
T log

3
2 (N +T )}

|O|

. Let L̂ be defined in (35). Suppose the computed estimator L̃ satisfies f(L̃)+g(L̃)≤ f(L̂)+g(L̂)+δ

and |L̃|∞ ≤Lmax + δ1. Then with probability at least 1− 2
(N+T )2

, we have

∥L̃−L∗∥2F
NT

≤max

{
q0
Rσ2

p2c

(N +T ) log3 (N +T )

NT
+

72

pc
δ+ q1

δ(Lmax + δ1)

σpc

1

NT

+ q2
R(Lmax + δ1)

2

p2c

N +T

NT
,

132(Lmax + δ1)
2

pc

log (N +T )

N

}
,

(38)

where q0, q1, q2 are constants that can be explicitly written out.

Remark 14. Note that when δ= 0 and δ1 = 0, the estimator becomes the original exact estimator

(i.e. L̂ in (35)), and our rate becomes of order

max{σ2R(
N +T

NT
)log3(N +T )

1

pc
,Lmax

log(N +T )

N
}.

This is a faster rate than that in Athey et al. (2021), which is because we sharpen the statistical

analysis of the original estimator and we apply our framework to our own analysis of the statistical
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performance of the original exact estimator. If we apply our framework directly to the analysis in

Athey et al. (2021), we expect the same rate when δ and δ1 are set to 0.

Remark 15. causal inference for panel data is a representation for constrained penalized M-

estimator, or more precisely, constrained penalized maximum likelihood estimator, where the

penalty term is not smooth (optimization wise). Other constrained non-smoothly-penalized M-

estimator includes Lasso with constraints, Danzig selector, elastic net, SVM, sparse principle com-

ponent analysis in the penalized form, neural network with Relu activation function.

4.2. Optimization Algorithm

In this Section, we apply our algorithm template to causal inference of panel data, which gives

theoretically guaranteed optimization algorithm for causal inference of panel data.

To standardize the optimization problem for fitting into our optimization template better, the

target optimization problem can be written as

min
L

1

2
∥PO(Y −L)∥2F +

1

2
λ|O|∥L∥∗ +T{|L|∞ ≤Lmax}. (39)

Applying general outer loop, Algorithm 2.1, to causal inference for panel data gives Algorithm

4.1.

Causal Inference for Panel Data Outer Loop: Inexact Proximal Gradient Descent

Start from point L0 = 0. Step size is η > 0. For k≥ 0,

Lk+0.5 =Lk − η∇(∥PO(Y −Lk)∥2F ),

Lk+1 = P̃roxη( 12λ|O|∥L∥∗+T{|L|∞≤Lmax})(Lk+0.5),

(40)

where P̃rox is an approximate proximal algorithm aiming at finding the proximal of Lk+0.5,

Proxη( 12λ|O|∥L∥∗+T{|L|∞≤Lmax})(Lk+0.5) =

argmin
L

(
1

2
∥L−Lk+0.5∥2 + η

(
λ|O|∥L∥∗

2
+T{|L|∞ ≤Lmax}

))
.

(41)
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We abbreviate the approximate proximal and proximal in equation (40) and (41) as P̃roxη(Lk+0.5)

and Proxη(Lk+0.5), respectively, when there is no confusion.

For the inner loop (i.e. computing approximate proximal point P̃roxη(Lk+0.5)), we apply the

template-algorithm, Algorithm 2.2.

In this setting, the Augmented Lagrange Function for 3-block ADMM with dual step size β and

Lk+0.5 replaced by P0 is

Lβ(W,Z,P ) =T{W ∈C1}+ ∥Z∥∗λ|O|+ ∥P −P0∥2F +
β

2
(∥W −P +

Λ1

β
∥22 + ∥Z −P +

Λ2

β
∥22), (42)

where Λ1 and Λ2 are dual variables.

The template inner loop, Algorithm 2.2, in this setting becomes Algorithm 4.2.

3 block ADMM for causal inference for panel data The starting points are P 0 = P0,

Λ0
1 = 0, Λ0

2 = 0. Dual step size is β > 0. For k≥ 0, the iterative steps are

W k+1 =ProjC1
(P k − 1

β
Λk

1),Z
k+1 = thresh(P k − 1

β
Λk

2 ,
λ|O|
β

),

P k+1 =
1

β+1

(
P0 +Λk

1 +Λk
2 +

β

2
(W k+1 +Zk+1)

)
,

Λk+1
1 =Λk

1 +β
(
W k+1 −P k+1

)
,

Λk+1
2 =Λk

2 +β
(
Zk+1 −P k+1

)
,

(43)

where thresh(P, b) is defined as follows. Suppose the Singular value decomposition of P is P =

UDV , then thresh(P, b) =U(D−diag(b))+V . We take the average P
k
= 1

k

∑k

i=1P
k for the output

if we end it at k-th iteration.

4.3. Optimization Convergence

In this section, we establish convergence rate for our optimization algorithm introduced in Section

4.2 in terms of approximate optimization conditions. We apply results in Section 2.3 to our causal

inference for panel data setting with appropriate modifications.

Applying theorem 1 to causal inference for panel data, we have Proposition 4.1.
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outer loop for causal inference for panel data Suppose we take the gradient proximal

algorithm, Algorithm 4.1, for outer loop with η= 1. Suppose the proximal error satisfies

|P̃roxλ|O|
2 ∥L∥∗+T{L∈C1}

(X)−Proxλ|O|
2 +T{L∈C1}

(X)| ≤ δ0

for all X ∈R(δ0,C1). C1 is defined in (36) and δ0 is a positive real number. Let L̂ be the target

estimator define in (35). Then we have

min
0≤k≤K

1

2
∥PO(Y −Lk)∥2F +

λ|O|
2

∥Lk∥∗ ≤
1

2
∥PO(Y − L̂)∥2F +

λ|O|
2

∥L̂∥∗

+
1

2K
∥L0 − L̂∥2 + δ20 +2δ0Lmax

√
NT +C(Y )δ0 +min{

√
N,

√
T}λ|O|

2
δ0,

(44)

where C(Y ) = supL∈C1
∥PO(Y −L)∥.

For the inner loop, we have the convergence result in Proposition 4.2.

Convergence of inner loop for causal inference for panel data Taking algorithm

4.2, with dual step size β ≤ 6
17
, after k iterations, we have

∥P k −P ∗∥2 ≤ 1

βk

(
(3β2 +8)∥P0 −P ∗∥2 +

(
5+

8

3
(

β

1+β
)2
)
(λ|O|)2min{N,T}

+

(
β2 +

8

3
(

β2

1+β
)2
)
∥P0 −ProjC1

(P0)∥2
)
.

(45)

Combing the inner loop result, Proposition 4.2, and outer loop result, Proposition 4.1, we have

Theorem 6 showing the overall convergence in terms of approximate conditions.

Theorem 6 (optimization : causal inference for panel data). Suppose we take proximal

gradient descent, Algorithm 4.1 with η = 1, for outer loop, and 3-block ADMM algorithm 4.2 with

dual step size β ≤ 6
17

for inner loop, where P0 in the inner loop is Lk+0.5 in the outer loop. Define

four constants depending on β only, q0(β), q1(β), q2(β), q3(β), which we will explicitly write out

later. Suppose the number of iterations for inner loop k≥ q0(β). Suppose we take K iterations for

outer loop and L̃= argmin0≤i≤K{ 1
|O|∥PO(Y −Li)∥2F +λ∥Li∥∗}. Define a quantity δ(k) as

δ(k) =√
q1(β)(λ|O|)2min{N,T}+ q2(β)C(Y )2 + q3(β) (∥Y ∥2 +2(NT − |O|)L2

max)

k− q0(β)
.

(46)
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Then we have L̃ satisfies the polluted conditions (37) with

δ1 ≤ δ(k),

δ≤ NTL2
max

|O|K
+

2δ(k)2

|O|
+ δ(k)

(
4Lmax

√
NT

|O|
+

2C(Y )

|O|
+min{

√
N,

√
T}λ

)
,

(47)

where C(Y ) = supL∈C1
∥PO(Y −L)∥. The β dependent constants are

q0(β) =

(
1

β

(
6β2 +16+2β2 +

16

3
(

β2

1+β
)2
))

, q3(β) =
1

β
(3β2 +8),

q1(β) =
1

β

(
5+

8

3
(

β

1+β
)2
)
, q2(β) = β

(
2+

16

3
(

β

1+β
)2
)
.

4.4. Overall Results

In this section, we are ready to show how the running time influences the statistical accuracy, as

shown in Theorem 7.

Theorem 7. Suppose L∗ has rank at most R, and the penalty parameter

λ=
13σmax{

√
N log (N +T ),8

√
T log

3
2 (N +T )}

|O|
.

Suppose we take proximal gradient descent, Algorithm (4.1) with η= 1, for outer loop and 3-block

ADMM, Algorithm 4.2, with dual step size β ≤ 6
17
, for inner loop, where P0 in the inner loop is

Lk+0.5 in the outer loop. There are constants depending on β only, namely, q0(β), q̃1(β), q̃2(β),

q̃3(β) such that for iteration number of inner loop k > q0(β), the error for inner loop is upper

bounded by

δ(k) =

√
q̃1(β)σ2NT log3 (N +T )+ q̃2(β)∥Y ∥2 + q̃3(β)NTL2

max

k− q0(β)
. (48)
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Denote L̃ to be the outcome in K iterations in outer loop that has the minimum f(L̃)+g(L̃). There

are absolute constants q0, q1, q2 such that with probability at least 1− 2
(N+T )2

,

∥L̃−L∗∥2F
NT

≤max

{
q0
σ2R

p2c
(
N +T

NT
) log3(N +T )+

[
NTL2

max

|O|K
+

2δ(k)2

|O|
+

δ(k)

(
8Lmax

√
NT +2∥Y ∥
|O|

+min{
√
N,

√
T}λ

)]
(
72

pc
+ q1

(
Lmax + δ(k)

)
σpcNT

)

+ q2(
N +T

NT
)

√
R
(
Lmax + δ(k)

)2
p2c

,

132
(
Lmax + δ(k)

)2 log(N +T )

Npc

}
.

(49)

Note that the optimization error induced statistical error increase is of the order O(L
2
max
K

) +

O(Lmax+σ√
k

), meaning that inner loop can be the bottle neck in terms of convergence rate to the limit

statistical accuracy. Also, note that when the computing resource is infinity, i.e. k→∞ andK →∞,

our results is stronger than that in the work by Athey et al. (2021). This is because our statistical

analysis is stricter and we apply our framework based on our analysis. Our framework can also

be applied directly to the problem in terms of the part of statistical analysis of the approximate

estimator (i.e. statistical-optimization interplay) based on their original work (Athey et al. 2021),

then it would lead to the same rate in the case of infinity computing resource as that in Athey

et al. (2021).

5. Application to Linear Regression (LASSO)

Our framework is designed for problems considering general matrices with constraints, but it is

also applicable to vector setting without constraints, which can be considered as a degenerate case.

In this section, we show that linear regression with LASSO is such a setting.

We show that analysis and template optimization algorithm in our framework are applicable to

(high dimensional sparse) linear regression with LASSO. The optimization algorithm converges to

the target LASSO estimator and we give a quantification of how iteration number affects the sta-

tistical accuracy of the computed estimator. Further, under restricted strong convexity condition,
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which holds with high probability and is considered by Loh and Wainwright (2015), our template

algorithm applied to LASSO actually has linear convergence rate in a certain range, which matches

the optimization rate in Loh and Wainwright (2015). Compared with Loh and Wainwright (2015),

we pose less conditions, our optimization algorithm is fully convergent to the target estimator

(theirs is not), and in the range that their optimization method performs well, ours is equally well.

Consider the linear model

y=Xθ∗ +w, (50)

where we observe the vector-matrix pair (y,X) ∈ Rn × R
n×d. d-dimensional vector θ∗ is the

unknown true parameter and w is the noise vector. Each row of X, xi, is i.i.d. drawn from N(0,Σ).

Noise w is independent of X. Each element of w, wi, is i.i.d drawn from N(0, σ2). The goal is to

estimate θ∗. LASSO estimator is given by

θ̂= argmin
θ

1

2n
∥y−Xθ∥22 +λn∥θ∥1, (51)

for a chosen λn.

Under our framework (1), the smooth convex function f(·) is f(θ) = ∥y−Xθ∥22, the convex-not-

necessarily-smooth function g(·) is g(θ) = λn∥θ∥1. And we do not have constraints.

The first sub-problem becomes investigating the statistical behavior of θ̃ satisfying

1

2n
∥y−Xθ̃∥22 +λn∥θ̃∥1 ≤

1

2n
∥y−Xθ̂∥22 +λn∥θ̂∥1 + δ. (52)

And the second sub-problem is the optimization problem shown in (51). Our optimization tem-

plate algorithm in Section 2.2 degenerates into the ordinary proximal gradient descent algorithm.

5.1. Statistical-Optimization Interplay

LASSO has been intensively analyzed in the literature and the statistical behavior of θ̂ in Equation

(51) is well understood. The analysis procedures of θ̂ is consistent with our observation of the

analysis of estimators following the general form (1), specifically summarized as follows. Those

analysis start with

1

2n
∥y−Xθ̂∥22 +λn∥θ̂∥1 ≤

1

2n
∥y−Xθ∗∥22 +λn∥θ∗∥1. (53)
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Then with proper conditions on λn, this inequality can be easily reduced to

0≤ 1

2n
∥X
(
θ̂− θ∗

)
∥22 ≤

λn

2

(
∥θ̂− θ∗∥1 +2∥θ∗∥1 − 1∥θ̂∥1

)
. (54)

Given that the middle part is essentially a quadratic form of θ̂ − θ∗ and the right hand side is

essentially of linear order for θ̂ − θ∗, Inequality (54) implies ∥θ̂ − θ∗∥ is upper bounded. This is

the key idea in the analysis of LASSO estimator. A careful reflection on this procedure gives the

key observation that the additive nature of the inequality (53) is never touched throughout the

analysis, which is in align with the mechanism of our framework, meaning that analysis of LASSO

estimator can be relatively easily carried to its approximate version solution, i.e. θ̃ satisfying (52).

Theorem 8 describes the statistical behavior of θ̃, where we can see how the optimization-induced

error affects statistical error before solving the optimization problem.

Theorem 8. Let ρ2(Σ) be the maximum diagonal entry of the covariance matrix Σ. Under the

linear regression model (50), for any sparse index set S such that the cardinal of S, |S|= s, denote

θ∗Sc to be the vector keeping elements not in S the same and setting those in S to be 0. Suppose

c1κ≥ 64s · c2ρ2(Σ) logdn
, where c1, c2 are constants and can be taken as c1 = 1/8, c2 = 50, and κ is

the smallest singular value of Σ. For λn ≥ 4σρ(Σ)
√
1+ logd

n

√
log 2(n+d)

n
, θ̃ satisfying (52) satisfies

the following inequality with probability at least 1− exp (−n/32)

1−exp (−n/32)
− exp(−n

2
)− 1

2(n+d)
.

∥θ̃− θ∗∥2 <
δ

2λn

√
s
+

∥θ∗Sc∥1√
s

+(2+4
√
s+

1√
s
)
λn

c1κ
. (55)

Remark 16. The error bound in Theorem 8 has three terms. The first corresponds to optimization

error. The second corresponds to approximation error (how different from an s sparse vector). The

third term corresponds to estimation error associated with s unknown coefficients. Till now, we do

not need an optimization algorithm that guarantee ∥θ̃ − θ∗∥ or δ in Inequality (52) to be small.

All we need is Inequality (52) for some δ. So the optimization convergence rate for δ in Inequality

(52) is possibly faster than general optimization convergence with additional strong convexity or

restricted strong convexity conditions. We will show that this is indeed the case, which shows

that the first two parts of our framework (i.e. statistical-optimization interplay and optimization

template algorithm) automatically adapts to additional stronger conditions.
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5.2. Optimization Algorithm and Convergence

In the absence of the constraints, our template optimization method degenerates into the ordinary

proximal gradient descent as shown in Algorithm 5.1.

Algorithm 5.1. Starting point is θ0 = 0. Step size is η > 0. For k≥ 0,

θk+0.5 = θk − η∇θ

(
1

2n
∥y−Xθ∥22

)
,

θk+1 = argmin
θ

(
1

2
∥θ− θk+0.5∥2 + ηλn∥θ∥1

)
.

(56)

Note that θk+1 = argminθ

(
1
2
∥θ− θk+0.5∥2 + ηλn∥θ∥1

)
has explicit expression: the i-th element of

θk+1 is (θk+1)i = sign((θk+0.5)i) · (|(θk+0.5)i| − ηλn)+, where sign(x) =−1 for x< 0, sign(x) = 0 for

x= 0 and sign(x) = 1 for x> 0.

From the convergence results of our template optimization method, i.e. Theorem 1, we have the

optimization convergence rate for Algorithm 5.1 in Theorem 9.

Theorem 9 (Optimization Convergence Rate). Let ∥XTX
n

∥s be the spectral norm of XTX
n

. Let

step size η ≤ ∥ n
XTX

∥s for Algorithm 5.1. Suppose θ̃ is among θ0, θ1, · · · , θT and has the smallest

1
2n
∥y−Xθ∥22 +λn∥θ∥1 value. Then we have that

1

2n
∥y−Xθ̃∥22 +λn∥θ̃∥1 ≤

1

2n
∥y−Xθ̂∥22 +λn∥θ̂∥1 +

1

2Tη
∥θ̂∥2, (57)

where θ̂ is defined in (51).

Theorem 9 gives fully converging sub-linear convergence rate, which does not require strong

convexity of any form.

Loh and Wainwright (2015) exploits restricted strong convexity, which holds with high probabil-

ity in high dimensional sparse linear regression, and gives an algorithm with linear convergence rate

in certain region. But their convergence result is not fully converging, i.e. optimization error does

not converge to 0. We show that, under restricted strong convexity condition, our fully converging

optimization algorithm also has linear convergence rate in certain region. Theorem 10 shows how

our optimization algorithm performs under different conditions.
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Theorem 10. Under the linear regression model (50), let S be an index set with s elements.

Suppose λn ≥ 2∥XTw
n

∥∞, and

∥Xθ∥22
n

≥ a1∥θ∥22 − a2∥θ∥21, for all θ ∈Rd, (58)

with a2 ≤ 1
64s

a1. Set the step size η = n
∥XTX∥s

in Algorithm 5.1. Denote F (θ) = 1
2n
∥Xθ∥22 + λn∥θ∥1.

Suppose, F (θK)−F (θ̂)≤ εK, where θ̂ is defined in Equation (51). Then we have for k≥K,

F (θk)−F (θ̂)≤

(
1− a1

8∥XTX∥s
n

)k−K

+

εK +128a2s ·
(
2∥θ∗Sc∥1√

s
+(2+4

√
s+

1√
s
)
λn

c1κ

)2

+8a2

ε2K
λ2
n

,

(59)

where ∥·∥s is spectral norm, κ is the smallest singular value of Σ, and θ∗Sc is θ∗ taking only elements

in Sc to be the same and setting others to 0.

Without above conditions except for step size η = n
∥XTX∥s

in Algorithm 5.1 and using the same

notation, we have for k≥ 1,

εk ≤
∥XTX∥s

n

2k
∥θ̂∥22. (60)

Inequality (59) in Theorem 10 has similar form with Theorem 3 in Loh and Wainwright (2015),

but our optimization procedure is unconstrained and does not require a pre-specified bound for

∥θ∗∥1. We explain the results in details in remarks. In addition to Inequality (59), we have Inequality

(60), a fully converging convergence result without restricted strong convexity requirement, which

parallels Theorem (9).

Remark 17. Note that Inequality (59) is only meaningful for εK < λ2
n

8a2
. This means the algorithm

needs to start with a close enough initial point or the algorithm can get into this region after

some iterations. Similar issue exists for that considered in Loh and Wainwright (2015). Loh and

Wainwright (2015) dealt with it by posing hard constraints on ∥θ∥1, which leads to a constrained

optimization. However, this constraint is not necessary for Lasso. As shown in Inequality (60) in

Theorem 10, εK goes to zero with a rate at least 1
K
, so the algorithm will get into the region

εK < λ2
n

8a2
after some iterations. Also, without the knowledge of ∥θ∗∥1, hand-choosing constraint will

likely miss the target.
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Remark 18. Note that the right hand side Inequality (59) is larger than or equal to 128a2s ·(
2∥θ∗Sc∥1√

s
+(2+4

√
s+ 1√

s
) λn
c1κ

)2

. Hence this convergence result has a limit and does not go to 0

with iteration number going to ∞. It also implies another requirement for Inequality (59) to be

meaningful: εK > 128a2s ·
(

2∥θ∗Sc∥1√
s

+(2+4
√
s+ 1√

s
) λn
c1κ

)2

. So Inequality (59) does not show fully

convergence of the algorithm. Result in Loh and Wainwright (2015) has similar issue, and they

established that this optimization limit is smaller than the statistical limit as n is relatively large.

Similar logic applies to our case. This optimization limit highly depends on a2. In fact, condition

(58) holds with high probability for a1 = c1κ and a2 = c2ρ
2(Σ) logd

n
. The optimization limit in our

case is also a shrinking quantity (with respect to n) times the statistical accuracy. We will see this

more clearly in Theorem 11. We now examine how large a region Inequality (59) applies to. We

need εK to satisfy

128a2s ·
(
2∥θ∗Sc∥1√

s
+(2+4

√
s+

1√
s
)
λn

c1κ

)2

≤ εK ≤ λ2
n

8a2

. (61)

Note that λn in Theorem 10 needs to satisfy a lower bound condition (i.e. λn ≥ 2∥XTw
n

∥∞). In fact,

for λn ∼ ρ(Σ)σ
√

log(n+d)

n
, the lower bound holds with high probability. As λn ∼ ρ(Σ)σ

√
log(n+d)

n
,

a2 ∼ ρ2(Σ) logd
n

, we have (62), which shows that the left hand side of Inequality (61) is significantly

smaller than the right hand side of Inequality (61) when the dimension is not extremely high.

128a2s ·
(
2∥θ∗Sc∥1√

s
+(2+4

√
s+

1√
s
)
λn

c1κ

)2

∼max{ logd
n

∥θ∗Sc∥1,
s2(logd)2

n2

ρ2(Σ)

κ
} λ2

n

8a2

. (62)

Remark 19. Inequality (59) in Theorem 10 implies the block-wise linear convergence rate within

range [k0, k1], where

εk0 ≤
λ2
n

48a2

and εk1 ≥ 6 · 128a2s ·
(
2∥θ∗Sc∥1√

s
+(2+4

√
s+

1√
s
)
λn

c1κ

)2

.

If a1 < 8∥XTX/n∥s, for k ≥ k0, let Tk = ⌊(k − k0)/⌈ log 1/6

log (1− a1
8∥XTX/n∥s

)
⌉⌋. If a1 ≥ 8∥XTX/n∥s, for

k≥ k0, let Tk = k− k0. We have

F (θk)−F (θ̂)≤max{2−Tkεk0 ,6 · 128a2s ·
(
2∥θ∗Sc∥1√

s
+(2+4

√
s+

1√
s
)
λn

c1κ

)2

}. (63)
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A more detailed proof of this statement is given in the proof of Theorem 11. In fact, Theorem 10

implies the conventional linear convergence within the range discussed in (61) with properly chosen

decay factor. But that involves much more tedious details without giving additional insight, so we

do not make that a formal assertion here.

5.3. Overall Results

With Theorem 8 and optimization convergence results in Theorem 10, we have Theorem 11 describ-

ing how iteration number affects the statistical accuracy.

Theorem 11. Let ρ2(Σ) be the maximum diagonal entry of the covariance matrix Σ. Under the

linear regression model (50), for any sparse index set S such that the cardinal of S, |S|= s, denote

θ∗Sc to be the vector keeping elements not in S the same and setting those in S to be 0. Suppose

c1κ≥ 64s · c2ρ2(Σ) logdn
, where c1, c2 are constants and can be taken as c1 = 1/8, c2 = 50, and κ is

the smallest singular value of Σ. Suppose λn ≥ 4ρ(Σ)
√
1+ logd

n

√
log 2(n+d)

n
. Use Algorithm 5.1 with

step size η= ∥XTX∥s
n

. Let

K0 = ⌈
48c2ρ

2(Σ) logd
n

(
∥θ∗∥2 +

∥θ∗Sc∥1√
s

+(2+4
√
s+ 1√

s
) λn
c1κ

)2

∥XTX/n∥s
2λ2

n

⌉. (64)

Let

Tk =


⌊(k− k0)/⌈

log 1/6

log (1− c1κ

8∥XTX/n∥s
)
⌉⌋, when c1κ< 8∥XTX/n∥s

k− k0, otherwise

. (65)

Let

δk =

min

{
∥XTX/n∥s

2k

(
∥θ∗Sc∥1√

s
+(2+4

√
s+

1√
s
)
λn

c1κ
+ ∥θ∗∥2

)2

,

max

{
2−Tk

λ2
n

48c2ρ2(Σ)
logd
n

, ρ2(Σ)
logd

n
s ·
(
2∥θ∗Sc∥1√

s
+(2+4

√
s+

1√
s
)
λn

c1κ

)2

· 768c2
}

+1{k≤K0}
∥y∥22
2n

}
.

(66)

Then with probability at least 1− exp (−n/32)

1−exp (−n/32)
− exp(−n

2
)− 1

2(n+d)
, the following statements holds.

∥θk − θ∗∥2 <
δk

2λn

√
s
+

∥θ∗Sc∥1√
s

+(2+4
√
s+

1√
s
)
λn

c1κ
. (67)
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Remark 20. Theorem 11 shows how the number of iteration affects the statistical accuracy of

the computed estimator. It shows that the error caused by optimization goes to zero with the

iteration number goes to infinity. Recall that λn ∼
√

log (n+d)

n
when n≥ logd, which is satisfied as

we do not consider extreme high dimensional case. Note that when the computation resource is

infinity, ∥θk−θ∗∥2 ∼
∥θ∗Sc∥1√

s
+
√
s
√

log (n+d)

n
. When the true vector θ∗ is indeed s−sparse, ∥θk−θ∗∥2 ∼

√
s
√

log (n+d)

n
, which is the optimal rate for high dimensional linear regression.

Remark 21. From the expression of δk in Inequality (66) and the role of δk on statistical accuracy

shown in Inequality (67), the convergence rate of error caused by optimization, F (θk)−F (θ̂)

2λn
√
s

, has

convergence rate ∼ 1
k
when

F (θk)−F (θ̂)

2λn

√
s

≥ λn√
s · 96c2ρ2(Σ) logdn

∼ σ

ρ(Σ)

√
n log(n+ d)√

s logd
,

or when

F (θk)−F (θ̂)

2λn

√
s

≤
768c2ρ

2(Σ) logd
n

s

2λn

√
s

(
2∥θ∗Sc∥1√

s
+(2+4

√
s+

1√
s
)
λn

c1κ

)2

∼ρ2(Σ)
logd

n
s

(
∥θ∗Sc∥21
s
√
sλn

+
√
s
λn

κ2

)
.

Otherwise, the optimization algorithm has linear convergence rate. Considering the case where

θ∗Sc = 0, which is the conventional setting in high dimensional sparse linear regression, we have

that the upper and lower bound for the range where F (θk)−F (θ̂)

2λn
√
s

has linear convergence are of the

order n
s logd

κ
ρ2(Σ)

∆stat and
s logd

n

ρ2(Σ)

κ
∆stat respectively, where ∆stat = (2+4

√
s+ 1√

s
) λn
c1κ

is the limit

statistical accuracy. Therefore, our algorithm performs as well as that in literature (e.g. Loh and

Wainwright (2015)) under the classical setting, and is fully convergent in general or in special

cases (i.e. sparsity and RSC conditions), which is not shown in Loh and Wainwright (2015) for any

cases. This shows that our framework, including statistical-optimization interplay and the template

algorithm, automatically adapts to the special cases that has simpler setting admitting stronger

assumptions. The optimization convergence results for the general framework, however, need to be

further crafted when additional conditions are satisfied.
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Remark 22. Note that the results has X, y, and θ∗ involved. X and y are observable, so we

can adjust iteration number accordingly to guarantee the desired accuracy in terms of θ∗. For θ∗,

usually we can have a conservative upper bound for ∥θ∗∥2, hence we adjust our iteration number

accordingly for the guaranteed accuracy.

6. Discussion

In the present work, we proposed a framework for considering the influence of the running time

on the statistical accuracy and applied the framework to three examples: 1-bit matrix completion

and causal inference for panel data and high dimensional sparse linear regression. We get novel

interesting novel results for the first two examples and show that our framework adapts to the

degenerate case in the third example. Our backbone statistical analysis for causal panel data is

also sharper than that in the literature. It would be interesting to see what results can be derived

when our framework is applied to other applicable problems, like kernel ridge regression, SVM,

network analysis, neural network, and more intensively studied problems like Danzig selector and

elastic net to see how the results compare.

Our framework focuses on estimators that are matrices (and vectors as a special case), but our

way of integrating optimization consideration into statistical accuracy before solving the optimiza-

tion problem can be easily carried to tensors. It would be interesting to see how a parallel tensor

version framework performs.

Our framework provides a new perspective of the relationship between computational cost and

statistical accuracy, where we quantify the value of computing resource in terms of how much

statistical accuracy it can buy, precisely and on a continuous scale. This perspective makes it

possible to be used in equilibrium in economic problems, e.g. the computing resource invested is

the cost and statistical accuracy generates revenue. It would be interesting to see how it works in

those equilibrium and it would also be interesting to further investigate the interplay along this

perspective.
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Our optimization template algorithm can fill in the blank of theoretically guaranteed optimiza-

tion algorithm for estimators in a large class of statistical problems that fit in the general form of

our framework.

The optimization convergence analysis in our framework provides a pipeline for analyzing an

optimization problem to the level meeting statistical needs. It would be interesting to investigate

the unanalyzed heuristic algorithms or finer the analysis of other statistic-induced optimization

problem to make the constants free from dimension or other statistically important quantities.

Also, for our inner loop, we exploited and analyzed the convergence rate of 3-block ADMM, which

usually meets the need for statistical problems encountered and can serve as building stone for

more blocks, but it would be interesting to investigate the convergence rate for direct multi-block

ADMM or its variant under reasonable assumptions.
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Proofs of Statements

This supplement gives all the proofs of the results in Chapter ??. We start with proving three

overall results for our examples using statistical-optimization-interplay results and optimization

results, which are proved later. Next we prove the statistical-optimization interplay results for our

examples. Then we prove optimization results for our general optimization template. In the end,

we prove the optimization results for our examples.

EC.1. Proof of Theorem 4

Recall Theorem 2, Theorem 3.

According to Theorem 3, we have

δ≤ α2L̃αd1d2
T

+(4αL̃α

√
d1d2 +2Lα)

√
1

t

√
q(β)+

2d1d2
β

+2L̃α

1

t

(
q(β)+

2d1d2
β

)
,

max{δ1, δ2, δ0} ≤
√

1

t

√
q(β)+

2d1d2
β

≤ u0,

(EC.1)

Therefore, Lα+δ1 ≤ 2Lα.

Combing with Theorem 2 through plugging in the bounds of δ, δ1, δ2, we have the following holds

with probability at least 1− c1
d1+d2

.

D(l(M)∥l(M̃))

≤ 2c0Lα

(
α
√

rd1d2 +
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nd1d2
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2d1d2
β

+
2L̃α

n

1

t

(
q(β)+

2d1d2
β

)
.

(EC.2)

EC.2. Proof of Theorem 7

Note that according to Theorem 6, we have

δ1 ≤√
q1(β)(λ|O|)2min{N,T}+ q2(β)C(Y )2 + q3(β) (∥Y ∥2 +2(NT − |O|)L2

max)

k− q0(β)
,

(EC.3)

where q0(β), q1(β), q2(β), q3(β) are defined in Theorem 6.
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Noting that

C(Y ) = sup
L∈C1

∥PO(Y −L)∥ ≤ ∥Y ∥+Lmax

√
|O| ≤

√
2∥Y ∥2 +2L2

max|O|, (EC.4)

we have

δ1 ≤√
q1(β)(λ|O|)2min{N,T}+(2q2(β)+ q3(β))∥Y ∥2 +(2|O|(q2(β)− q3(β))+ 2NTq3(β))L2

max

k− q0(β)

≤

√
q1(β)(λ|O|)2min{N,T}+(2q2(β)+ q3(β))∥Y ∥2 +2NT max{q2(β), q3(β)}L2

max

k− q0(β)
.

(EC.5)

Note that we have λ|O| ≤ 13× 8σmax{
√
N,

√
T} log

3
2 (N +T ), we have

δ1 ≤√
1042q1(β)σ2NT log3 (N +T )+ (2q2(β)+ q3(β))∥Y ∥2 +2NT max{q2(β), q3(β)}L2

max

k− q0(β)
.

(EC.6)

Let q̃1(β) = 1042q1(β), q̃2(β) = 2q2(β)+ q3(β), q̃3(β) = 2max{q2(β), q3(β)}, then we have

δ1 ≤

√
q̃1(β)σ2NT log3 (N +T )+ q̃2(β)∥Y ∥2 + q̃3(β)NTL2

max

k− q0(β)
. (EC.7)

In the proof of Theorem 6, we derive the bound for δ1 through that of δ0, the L2 distance between

the resulting approximate solution of inner loop and the target exact solution of the inner loop.

So the bound in Inequality (EC.7) also holds for δ0. We set the upper bound for inner loop error

δ0 at iteration number k as

δ(k) =

√
q̃1(β)σ2NT log3 (N +T )+ q̃2(β)∥Y ∥2 + q̃3(β)NTL2

max

k− q0(β)
.

Invoking outer loop convergence rate, Proposition 4.1, similarly to the proof in Theorem 6, we

have the optimization error for objective function as defined in (37) is upper bounded as follows.

δ≤ NTL2
max

|O|K
+

2δ(k)2

|O|
+ δ(k)

(
4Lmax

√
NT

|O|
+

2C(Y )

|O|
+min{

√
N,

√
T}λ

)
. (EC.8)

Using

C(Y )≤ ∥Y ∥+Lmax

√
|O| ≤ ∥Y ∥+Lmax

√
NT (EC.9)

and invoking Theorem 5 we get the statement of Theorem 4.
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EC.3. Proof of Theorem 11

Denote F (θ) =
∥Xθ∥22

2n
−λn∥θ∥21.

From Inequality (EC.145), Lemma (EC.7), Theorem (8), we know that with probability at least

1− exp (−n/32)

1−exp (−n/32)
− exp(−n

2
)− 1

2(n+d)
the following holds.

∥XTw∥∞ < 4ρ(Σ)
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logd

n

√
log 2(n+ d)

n
, (EC.10)

∥Xθ∥22
n

≥ c1κ∥θ∥22 − c2ρ
2(Σ)

logd

n
∥θ∥21, (EC.11)

∥θ− θ∗∥ ≤ F (θ)−F (θ̂)

2λn

√
s

+
∥θ∗Sc∥1√

s
+(2+4

√
s+

1√
s
)
λn

c1κ
, (EC.12)

where c1, c2 are constants and can be taken as c1 = 1/8, c2 = 50.

Therefore, the condition in Theorem 10 is satisfied with

a1 = c1κ,a2 = c2ρ
2(Σ)

logd

n
. (EC.13)

We only need to prove that under these conditions F (θk)−F (θ̂)≤ δk holds.

By Inequality (60) in Theorem 10 and Inequality (EC.12) we have

F (θk)−F (θ̂)≤ ∥XTX/n∥s
2k
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. (EC.14)

According to Inequality (EC.160) we know that

F (θk)−F (θ̂)≤ F (θ0)−F (θ̂)≤ ∥y∥22
2n

. (EC.15)

For k≥K0, Inequality (60) and Inequality (EC.160) gives
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. (EC.16)

Now we are only left to prove for k≥K0,
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(EC.17)

which is also Inequality (63) in Remark 19.
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To prove this, we only need to prove that for k1 ≥ k0 and k satisfying
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the following holds
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If

F (θk)−F (θ̂)≥ ρ2(Σ)
logd

n
s ·
(
2∥θ∗Sc∥1√

s
+(2+4

√
s+

1√
s
)
λn

c1κ

)2

· 768c2, (EC.20)

then F (θk1)−F (θ̂)≥ ρ2(Σ) logd
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Also, since k1 ≥K0, we have
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By Inequality (59), we have
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(EC.22)

Thus we concludes the proof.

EC.4. Proof of Theorem 2

The structure of the proof is similar to the proof of Theorem 2 in Davenport et al. (2014), but to

show how the statistical-optimization interface work, we will show in details how the optimization

error terms get into the statistical accuracy.

Let

L̄Ω,Y (X) =LΩ,Y (X)−LΩ,Y (0). (EC.23)
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Then we know that

−L̄Ω,Y (M̃)≤−L̄Ω,Y (M̂)+ δ≤−L̄Ω,Y (M)+ δ. (EC.24)

We also know that

∥M̃∥∗ ≤ α
√

rd1d2 + δ2,∥M̃∥∞ ≤ α+ δ1. (EC.25)

We have the following lemma, which we will proof later in this section.

Lemma EC.1. Let G∈Rd1×d2 be

G= {X ∈Rd1×d2 : ∥X∥∗ ≤ α
√
rd1d2 + δ2,∥M̃∥∞ ≤ α+ δ1} (EC.26)

for some r≤min{d1, d2} and α≥ 0. Then

P

sup
X∈G

|L̄Ω,Y (X)−EL̄Ω,Y (X)| ≥ c̃0Lα+δ1

(
α
√

rd1d2 + δ2

)√n(d1 + d2)

d1d2
+ log (d1d2)


≤ c1

d1 + d2
,

(EC.27)

where c̃0, c1 are absolute constants and the probability and the expectation are both over the choice

of Ω and draw of Y .

Note that for any X we have

E
(
L̄Ω,Y (X)−L̄Ω,Y (M)

)
=

n

d1d2

∑
i,j

(
l(Mi,j) log

(
l(Xi,j)

l(Mi,j)

)
+ log

(
1− l(Xi,j)

1− l(Mi,j)

))

=−nD (l(M)∥l(X)) .

(EC.28)

Therefore, we have

− δ

≤ L̄Ω,Y (M̃)−L̄Ω,Y (M)

=E
(
L̄Ω,Y (M̃)−L̄Ω,Y (M)

)
+
(
L̄Ω,Y (M̃)−E

(
L̄Ω,Y (M̃)

))
−
(
L̄Ω,Y (M)−E

(
L̄Ω,Y (M)

))
≤E

(
L̄Ω,Y (M̃)−L̄Ω,Y (M)

)
+2 sup

X∈G

∣∣L̄Ω,Y (X)−E
(
L̄Ω,Y (X)

)∣∣
=−nD

(
l(M)∥l(M̃)

)
+2 sup

X∈G

∣∣L̄Ω,Y (X)−E
(
L̄Ω,Y (X)

)∣∣ ,

(EC.29)
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where G is defined in (EC.26).

Applying Lemma EC.1, we have that with probability at least 1− c1
d1+d2

D
(
l(M)∥l(M̃)

)
≤ 2

n
c̃0Lα+δ1

(
α
√

rd1d2 + δ2

)√n(d1 + d2)

d1d2
+ log (d1d2)+

δ

n

≤ 2c̃0Lα+δ1

(
α
√
rd1d2 + δ2

)√d1 + d2
nd1d2

√
1+

(d1 + d2) log (d1d2)

n
+

δ

n
.

(EC.30)

Let c0 = 2c̃0 we have the theorem.

EC.4.1. Proof of Lemma EC.1

Noting that

L̄Ω,Y (X) =∑
(i,j)

1{(i, j)∈Ω}
(
1{Yi,j = 1} log

(
l(Xi,j)

l(0)

)
+1{Yi,j =−1} log

(
1− l(Xi,j)

1− l(0)

))
,

(EC.31)

by symmetrization (i.e Lemma 6.3 in Ledoux and Talagrand (1991)) we have

E
(
sup
X∈G

|L̄Ω,Y (X)−EL̄Ω,Y (X)|h
)
≤ 2hE

(
sup
X∈G

∣∣∣∣∣∑
(i,j)

ζi,j1{(i, j)∈Ω}

(
1{Yi,j = 1} log

(
l(Xi,j)

l(0)

)
+1{Yi,j =−1} log

(
1− l(Xi,j)

1− l(0)

))∣∣∣∣∣
h)

,

(EC.32)

where ζi,j are i.i.d. Rademacher random variables and the expectation is with respect to Ω, Y and

ζi,j. Next is to apply the contraction principle (i.e. Theorem 4.12 in Ledoux and Talagrand (1991)).

By the definition of Lα+δ1 and definition of G, we know that

1

Lα+δ1

log

(
l(x)

l(0)

)
and

1

Lα+δ1

log

(
1− l(x)

1− l(0)

)
are contractions that vanish at 0 within the domain of any Xi,j such that X ∈G. Invoking con-

traction principle gives

E
(
sup
X∈G

|L̄Ω,Y (X)−EL̄Ω,Y (X)|h
)

≤ 2h(2Lα+δ1)
hE

sup
X∈G

∣∣∣∣∣∑
(i,j)

ζi,j1{(i, j)∈Ω} (1{Yi,j = 1}Xi,j −1{Yi,j =−1}Xi,j)

∣∣∣∣∣
h


≤ (4Lα+δ1)
hE
(
sup
X∈G

|⟨∆Ω ◦Z ◦Y,X⟩|h
)
,

(EC.33)
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where Z denotes the matrix with (i, j)th element being ζi,j, ∆Ω denotes the indicator matrix for

Ω such that elements are zero when not in Ω and 1 when in Ω, and ◦ denotes Hadamard product.

Observing that Z ◦ Y has the same distribution with Z, (Z,Z ◦ Y )⊥⊥Ω and ⟨A,B⟩ ≤ ∥A∥op∥B∥∗,

we have

E
(
sup
X∈G

|⟨∆Ω ◦Z ◦Y,X⟩|h
)
=E

(
sup
X∈G

|⟨∆Ω ◦Z,X⟩|h
)

≤E
(
sup
X∈G

∥∆Ω ◦Z∥hop∥X∥h∗
)
=
(
α
√

rd1d2 + δ2

)h

E
(
∥∆Ω ◦Z∥hop

)
.

(EC.34)

Observe that Z ◦∆Ω is a matrix with i.i.d. symmetric random variables, so according to Theorem

1.1 in Seginer (2000) there is absolute constant C such that for h≤ 2 log (max{d1, d2}) we have

E
(
∥Z ◦∆Ω∥h

)
≤C

E

 max
1≤i≤d1

(
d2∑
j=1

∆i,j

)h/2
+E

(
max

1≤j≤d2

d1∑
i=1

∆i,j

)h/2
 . (EC.35)

Note that
(
E(|f |h/2)

)2/h
is a norm for h≥ 2 and (a+ b)1/h ≤ a1/h + b1/h, so we have(

∥Z ◦∆Ω∥hop
)1/h

≤C1/h


E

( max
1≤j≤d1

d2∑
i=1

∆i,j

)h/2
1/h

+

E

( max
1≤j≤d2

d1∑
i=1

∆i,j

)h/2
1/h


≤C1/h

E

( max
1≤j≤d1

∣∣∣∣∣
d2∑
i=1

(
∆i,j −

n

d1d2

)∣∣∣∣∣+ n

d1

)h/2
1/h

+

C1/h

E

( max
1≤j≤d2

∣∣∣∣∣
d1∑
i=1

(
∆i,j −

n

d1d2

)∣∣∣∣∣+ n

d2

)h/2
1/h

≤C1/h

(√
n

d1
+

√
n

d2

)
+C1/h

E

( max
1≤j≤d1

∣∣∣∣∣
d2∑
i=1

(
∆i,j −

n

d1d2

)∣∣∣∣∣
)h/2

1/h

+

C1/h

E

( max
1≤j≤d2

∣∣∣∣∣
d1∑
i=1

(
∆i,j −

n

d1d2

)∣∣∣∣∣
)h/2

1/h

.

(EC.36)

Using Bernstein’s inequality, we have for t > 0

P

(∣∣∣∣∣
d2∑
j=1

(
∆i,j −

n

d1d2

)∣∣∣∣∣> t

)
≤ 2exp

(
− t2

2
n
d1

+ t
3

)
. (EC.37)

For t≥ 6n
d1
, for each i, we have

P

(∣∣∣∣∣
d2∑
j=1

(
∆i,j −

n

d1d2

)∣∣∣∣∣> t

)
≤ 2exp (−t) = 2P(Wi > t), (EC.38)
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where W1, . . . ,Wd1 are i.i.d. exponential random variables.

Therefore,

E

( max
1≤j≤d2

∣∣∣∣∣
d1∑
i=1

(
∆i,j −

n

d1d2

)∣∣∣∣∣
)h/2


=

∫ ∞

0

P

 max
1≤i≤d1

∣∣∣∣∣
d2∑
j=1

(
∆i,j −

n

d1d2

)∣∣∣∣∣
h
dt

≤
(
6n

d1

)h

+2

∫ ∞

(
6n
d1

)h
P
(

max
1≤i≤d1

W h
i ≥ t

)
dt

≤
(
6n

d1

)h

+2E

[(
max

1≤i≤d1
Wi

)h
]
.

(EC.39)

Note that for i.i.d. exponential random variables W1, . . . ,Wd1 we have

E

[(
max

1≤i≤d1
Wi

)h
]
≤E

[(
max

1≤i≤d1
W h

i − logd1

)h

+

]
+ log (d1)

h

≤ 2h! + logh (d1).

(EC.40)

Therefore, we have E

( max
1≤j≤d2

∣∣∣∣∣
d1∑
i=1

(
∆i,j −

n

d1d2

)∣∣∣∣∣
)h/2

1/h

≤ (1+
√
6)

√
n

d1
+21/2h

(√
d1 +21/2h

√
h
)

≤ (1+
√
6)

√
n

d1
+
(
2+

√
2
)√

log (d1 + d2),

(EC.41)

where in the last inequality we use h = log (d1 + d2) ≥ 1. It’s easy to check that this choice of h

satisfies the condition required for getting Inequality (EC.35).

Using similar argument to bound the third term in the right hand side of the last inequality in

Inequality (EC.36), we have

(
E
[
∥∆Ω ◦Z∥hop

])1/h ≤C1/h

(
(1+

√
6)

(√
n

d1
+

√
n

d2

)
+(4+2

√
2)
√
log (d1 + d2)

)
≤C1/h

√
n

d1
+

n

d2
+ log (d1 + d2)

√
(1+

√
6)2 +4+2

√
2

< 9C1/h

√
n

d1
+

n

d2
+ log (d1 + d2)

(EC.42)



e-companion to R. Chen: Statistical Computational Tradeoff ec9

Combing Inequality (EC.33),(EC.34),(EC.42), we have(
E
(
sup
X∈G

|L̄Ω,Y (X)−EL̄Ω,Y (X)|h
))1/h

≤ 4Lα+δ1

(
α
√

rd1d2 + δ2

)
× 9C1/h

√
n

d1
+

n

d2
+ log (d1 + d2).

(EC.43)

Let t= 4Lα+δ1

(
α
√
rd1d2 + δ2

)
× 9
√

n
d1

+ n
d2

+ log (d1 + d2)× e. Then we know that

P
(
sup
X∈G

|L̄Ω,Y (X)−EL̄Ω,Y (X)| ≥ t

)
≤C exp (−h) =

C

d1 + d2
.

(EC.44)

Set c̃0 = 4× 9× e, c1 =C, we have the lemma.

EC.5. Proof of Theorem 5

Denote Ait to be the matrix with element (i, t) being 1 and others being 0. Denote εit to the

(i, t)-th element of ε. Let E=
∑

(i,t)∈O εitAit. And ∥ · ∥op denotes the operator norm (i.e. the largest

singular value).

The overall structure of the proof is similar to that in Athey et al. (2021), we have three main

lemmas, which we will prove later. The first two lemmas primarily show how the optimization error

comes in, and for the third lemma, we do the statistical analysis differently and have improved

rate than that in Athey et al. (2021). The three lemmas are as follows.

Lemma EC.2. For all λ≥ 3∥E∥op/|O|,

∑
(i,t)∈O

⟨Ait,L
∗ − L̃⟩2

|O|
≤ 10

√
2Rλ∥L∗ − L̃∥F +6δ. (EC.45)

Lemma EC.3. With probability at least 1− 1
(N+T )2

, we have

∥E∥op ≤ 4σmax{
√
N log (N +T ),8

√
T log

3
2 (N +T )}+σ. (EC.46)

Lemma EC.4. Suppose λ≥ 3∥E∥op/|O|.

Then when ∥L̃−L∗∥2F ≥ 132(Lmax + δ1)
2 ×T log (N +T ) 1

pc
,

Pπ

(
∥L̃−L∗∥2Fpc

6
>
∑

(i,t)∈O

⟨Ait, L̃−L∗⟩2 +3648
72R

pc
(
√
N +

√
T )2(4(Lmax + δ1)

2)

+
432δ(Lmax + δ1)

λ
(
√
N +

√
T )

)
≤ 1

(N +T )3

(EC.47)
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Therefore, when λ ≥ 12σmax{
√

N log (N+T ),8
√
T log

3
2 (N+T )}+3σ

|O| , if ∥L̃ − L∗∥2F ≥ 132(Lmax + δ1)
2 ×

T log (N +T ) 1
pc
, then with probability at least 1− 2

(N+T )2
,

∥L̃−L∗∥2Fpc
6

≤
∑

(i,t)∈O

⟨Ait, L̃−L∗⟩2 +3648
72R

pc
(
√
N +

√
T )2(4(Lmax + δ1)

2)

+
432δ(Lmax + δ1)

λ
(
√
N +

√
T )

≤ 10
√
2R(λ|O|)∥L̃−L∗∥F +6δ|O|+3648

72R

pc
(
√
N +

√
T )2(4(Lmax + δ1)

2)

+
432δ(Lmax + δ1)

λ
(
√
N +

√
T ).

(EC.48)

Note that

10
√
2R(λ|O|)∥L∗ − L̃∥F ≤ 12× 200R (λ|O|)2

pc
+

∥L̃−L∗∥2Fpc
12

, (EC.49)

and |O| ≤NT .

We take λ=
13σmax{

√
N log (N+T ),8

√
T log

3
2 (N+T )}

|O| .

Move the
∥L̃−L∗∥2F pc

12
term from the right hand side to the left hand side and then divide both

sides with pcNT
12

, we have there are constants q0, q1, q2, such that

∥L̃−L∗∥2F
NT

≤q0
Rσ2

p2c

(N +T ) log3 (N +T )

NT
+

72

pc
δ+ q1

δ(Lmax + δ1)

σpc

1

NT

+ q2
R(Lmax + δ1)

2

p2c

N +T

NT
.

(EC.50)

EC.5.1. Proof of Lemma EC.2

By the definition of L̃, L̂, L∗, we have

∑
(i,t)∈O

⟨Yit − L̃⟩2

|O|
+λ|L̃|∗

≤
∑

(i,t)∈O

⟨Yit − L̂⟩2

|O|
+λ|L̂|∗ + δ

≤
∑

(i,t)∈O

⟨Yit −L∗⟩2

|O|
+λ|L∗|∗ + δ.

(EC.51)

Therefore, we have

∑
(i,t)∈O

⟨L∗ − L̃,Ait⟩2

|O|
+2

∑
(i,t)∈O

εit⟨L∗ − L̃,Ait⟩
|O|

≤ λ∥L∗∥∗ −λ∥L̃∥∗ + δ. (EC.52)
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Denoting ∆=L∗ − L̃, Inequality (EC.52) becomes∑
(i,t)∈O

⟨∆,Ait⟩2

|O|
≤− 2

|O|
⟨∆,E⟩+λ∥L∗∥∗ −λ∥L̃∥∗ + δ

≤ 2

|O|
∥∆∥∗∥E∥op +λ∥L∗∥∗ −λ∥L̃∥∗ + δ

≤ 5

3
λ∥∆∥∗ + δ,

(EC.53)

the inequalities in which are due to the duality of operator norm and nuclear norm, and the range

of λ.

Now we state the following lemma, which is proved later in this section.

Lemma EC.5. Let ∆=L∗− L̃ for λ≥ 3∥E∥op/|O| Then there exist a decomposition ∆=∆1+∆2

such that

1. ⟨∆1,∆2⟩= 0,

2. rank(∆1)≤ 2R,

3. ∥∆2∥∗ ≤ 5∥∆1∥∗ + 3δ
λ
.

Now, invoking the decomposition ∆=∆1 +∆2, we have

∥∆∥∗ ≤ 6∥∆1∥∗ +
3δ

λ
≤ 6

√
2R∥∆1∥F +

3δ

λ
≤ 6

√
2R∥∆∥F +

3δ

λ
. (EC.54)

Plugging Inequality (EC.54) back to Inequality (EC.53), we have∑
(i,t)∈O

⟨∆,Ait⟩2

|O|
≤ 10

√
2Rλ∥∆∥F +6δ. (EC.55)

Proof of Lemma EC.5. Let L∗ =UN×RSR×R (VT×R)
T
be the singular value decomposition for

the at most rank R matrix L∗. Let PU =UUT , PU⊥ =U⊥(U⊥)T , PV =VVT , PV⊥ =V⊥(V⊥)T .

Let ∆2 =PU⊥∆PV⊥ , ∆1 =∆−∆2.

It’s easy to see that PU +PU⊥ = IN and PV +PV⊥ = IT.

Now we check the three claims for Lemma EC.5.

⟨∆1,∆2⟩= ⟨∆−PU⊥∆PV⊥ ,PU⊥∆PV⊥⟩

= ⟨PU∆+PU⊥∆PV,PU⊥∆PV⊥⟩

= 0.

(EC.56)
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rank(∆1) = rank(PU∆+PU⊥∆PV)≤ rank(PU∆)+ rank(PU⊥∆PV)≤ 2R. (EC.57)

For the third one, note that

⟨∆2,L
∗⟩= ⟨PU⊥∆PV⊥ ,UN×RSR×R (VT×R)

T ⟩

= 0.

(EC.58)

And Inequality (EC.53) implies that

λ
(
∥L̃∥∗ −∥L∗∥∗

)
≤ 2

|O|
∥∆∥∗∥E∥op + δ

≤ 2

3
λ∥∆∥∗ + δ≤ 2

3
λ (∥∆1∥∗ + ∥∆2∥∗)+ δ.

(EC.59)

The main part of the left hand sided is lower bound by

∥L̃∥∗ −∥L∗∥∗ = ∥L∗ −∆1 −∆2∥∗ −∥L∗∥∗ ≥ ∥L∗ −∆1∥∗ −∥∆2∥∗ −∥L∗∥∗

= ∥L∗∥∗ + ∥∆1∥∗ −∥∆2∥∗ −∥L∗∥∗ = ∥∆1∥∗ −∥∆2∥∗.
(EC.60)

Combining Inequality (EC.59) and (EC.60), we have

∥∆2∥∗ ≤ 5∥∆1∥∗ +
3δ

λ
. (EC.61)

EC.5.1.1. Proof of Lemma EC.3 The proof is very similar to that of lemma 2 in Athey

et al. (2021), but our task is to write out the constants explicitly and have the bound as tight as

possible.

Although the major parts are very similar, we still write out all the steps for completeness.

The goal is to invoke matrix version Bernstein inequality, a proof of which is in Tropp (2012).

Proposition EC.5.1 states the matrix version Bernstein inequality.

Matrix Bernstein Inequality Let Z1, . . . ,ZN be independent matrices in Rd1×d2 such that

E[Zi] = 0 and ∥Zi∥op ≤D almost surely for all i∈ [N ]. Let σZ be such that

σ2
Z ≥max

{∥∥∥∥∥
N∑
i=1

E[ZiZ
T
i ]∥op,

∥∥∥∥∥
N∑
i=1

E[ZT
i Zi]

∥∥∥∥∥
op

}
.

Then, for any α≥ 0,

P

{∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

≥ α

}
≤ (d1 + d2) exp

[ −α2

2σ2
Z +(2Dα)/3

]
. (EC.62)
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Same as the notations in Athey et al. (2021), define in dependent random matrices B1, . . . ,BN

as follows. For 1≤ i≤N , define

Bi =

ti∑
t=1

εitAit.

Then, E=
∑N

i=1Bi and E[Bi] = 0. Define the bound D=C2σ
√
log(N +T ) for a constant C2 that

we will specify later. For each (i, t)∈O, let ε̄it = εit1{|εit| ≤D}. For 1≤ i≤N , let Bi =
∑ti

t=1 ε̄itAit.

The σ-sub-Gaussian implies

P(|εit ≥ t|) = 2
1√
2π

∫ ∞

t

1

σ
exp (− x2

2σ2
)dx

≤ 2σ√
2π

∫ ∞

t2

2σ2

exp (−x)dx=
2σ√
2πt

exp (− t2

2σ2
).

(EC.63)

Therefore, for α> 0,

P{∥E∥op ≥ α} ≤P


∥∥∥∥∥

B∑
i=1

Bi

∥∥∥∥∥
op

≥ α

+
∑

(i,t)∈O

P(|εit| ≥D)

≤P


∥∥∥∥∥

B∑
i=1

Bi

∥∥∥∥∥
op

≥ α

+ |O|× 2σ√
2πD

exp (−D2

2σ2
)

≤P


∥∥∥∥∥

B∑
i=1

Bi

∥∥∥∥∥
op

≥ α

+

√
2

π

NT

C2

√
log (N +T )

(N +T )−
C2
2
2 .

(EC.64)

For 1≤ i≤N , define Zi =Bi −E[Bi]. Then,∥∥∥∥∥
N∑
i=1

Bi

∥∥∥∥∥
op

≤

∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

+

∥∥∥∥∥E
[

N∑
i=1

Bi

]∥∥∥∥∥
op

≤

∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

+

∥∥∥∥∥E
[

N∑
i=1

Bi

]∥∥∥∥∥
F

≤

∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

+
√
NT

∣∣∣∣∣E
[

N∑
i=1

Bi

]∣∣∣∣∣
∞

.

(EC.65)

Further,

|E [ε̄it]|= |E [εit1{|εit| ≤D}]|= |E [εit1{|εit| ≥D}]| ≤
√

E[ε2it]P(|εit| ≥D)

≤ σ

√√
2

π

1

C2

√
log (N +T )

(N +T )−
C2
2
2 .

(EC.66)

Therefore,

√
NT

∣∣∣∣∣E
[

N∑
i=1

Bi

]∣∣∣∣∣
∞

≤ σ

√√
2

π

NT

C2

√
log (N +T )

(N +T )−
C2
2
2 . (EC.67)
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Note that ∥Zi∥op ≤ 2D
√
T for all 1≤ i≤N . The only step left for invoking Proposition EC.5.1

is to calculation σZ in there.

Recall that E[(ε̄it −E[ε̄it])2]≤ σ2.

We have ∥∥∥∥∥
N∑
i=1

E[ZiZ
T
i ]

∥∥∥∥∥
op

≤ max
1≤i≤N

E

 ∑
t:(i,t)∈O

E[(ε̄it −E[ε̄it])2]


≤ σ2T,

(EC.68)

and ∥∥∥∥∥
N∑
i=1

E[ZT
i Zi]

∥∥∥∥∥
op

≤ σ2 max
1≤i≤T

N∑
j=1

P((j, i)∈O)

≤ σ2N.

(EC.69)

The first inequality in Inequality (EC.69) is due to E

{
(ε̄it −E[ε̄it])(ε̄js −E[ε̄js])

∣∣∣∣∣O
}

= 0 for

(i, t) ̸= (j, s).

Therefore σ2
Z = σ2max{N,T} is a possible choice. Invoking Proposition EC.5.1, we have

P


∥∥∥∥∥

N∑
i=1

Zi

∥∥∥∥∥
op

≥ α

≤ (N +T ) exp

[
−α2

2σ2max{N,T}+(4C2σ
√
log (N +T )Tα)/3

]
. (EC.70)

Taking C2 = 3, α=max{4σ
√

max{N,T}
√
log (N +T ),32T

1
2 (log (N +T ))

3
2σ}.

Combing Inequalities (EC.64), (EC.65), (EC.67), (EC.70), we have with probability at least

1− 1
2(N+T )2

− 1
2(N+T )3

∥E∥op ≤ 4σmax{
√
max{N,T}

√
logN +T ,8T

1
2 (log (N +T ))

3
2 }+σ. (EC.71)

EC.5.1.2. Proof of Lemma EC.4 We define some additional notation here, which are sim-

ilar to the additional notation in Athey et al. (2021). Given observation set O, for every N by T

matrix M, define XO(M) and X (i)
O (M) as follows.

X (i)
O (M) = [⟨Ai1,M⟩, · · · , ⟨Ait,M⟩]T , (EC.72)
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XO(M) =



X (1)
O (M)

·

·

·

X (N)
O (M)


. (EC.73)

Define a L2
(Π) norm of M as

∥M∥L2
(Π)

=
√

Eπ (∥XO(M)∥22), (EC.74)

where Eπ is taking expectation with respect to the distribution of O.

Define the constraint set as

C(θ, η) =
{
M∈RN×T

∣∣∥M∥∞ ≤ 1,∥M∥2
L2
(Π)

≥ θ,∥M∥∗ ≤
√
η∥M∥F +

3δ

2λ(Lmax + δ1)

}
. (EC.75)

Then according to Lemma EC.3, we know that either

L̃−L∗

2(Lmax + δ1)
∈ C(θ,

(
6
√
2R
)2

)

or

∥ L̃−L∗

2(Lmax + δ1)
∥2
L2
(Π)

≤ θ.

Observe that ∥ L̃−L∗

2(Lmax+δ1)
∥2
L2
(Π)

≤ θ implies ∥L̃−L∗∥2F ≤ 4(Lmax+δ1)
2θ

pc
.

We set θ= 33T log (N +T ).

Let ξ > 1 be a number that we will specify later. Define

C(θ, η, ρ) =
{
M∈ C(θ, η)

∣∣∣ρ≤ ∥M∥2
L2
(Π)

≤ ρξ

}
. (EC.76)

We state a lemma that we will prove later in this section.

Lemma EC.6. Suppose ξ > 1. Let

Zρ =
1

T
sup

M∈C(θ,η,ρ)
{∥M∥2

L2
(Π)

−∥XO(M)∥2}, (EC.77)
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then for t > 0,

P

(
Zρ ≥

48

T

(√
ηρξ

pc
+

3δ

2λ(Lmax + δ1)

)
(
√
N +

√
T )+ t

)
≤

exp

− t

4
log (1+2 log (1+

t

96
T

(√
ηρξ
pc

+ 3δ
2λ(Lmax+δ1)

)
(
√
N +

√
T )+ ρξ

T

))

.

(EC.78)

According to Lemma EC.6, if we set

t0 =
1

4T

(
96

(√
ηρξ

pc
+

3δ

2λ(Lmax + δ1)

)
(
√
N +

√
T )+ ρξ

)
,

t=
1

T

(
ρξ

4
+

ρ

4
+

4 ∗ 144ηξ
pc

(
√
N +

√
T )2 +

72δ

2λ(Lmax + δ1)
(
√
N +

√
T )

)
,

(EC.79)

then we know that t0 ≤ t, so we have

P
(
M∈ C(θ, η, ρ),∥M∥2

L2
(Π)

≥ ∥XO(M)∥2 +48∥M∥L2
(Π)

√
ηξ

pc
(
√
N +

√
T )

+
144δ

2λ(Lmax + δ1)
(
√
N +

√
T )+

∥M∥2
L2
(Π)

4
+

∥M∥2
L2
(Π)

ξ

4
+

576ξη

pc
(
√
N +

√
T )2 +

72δ

2λ(Lmax + δ1)
(
√
N +

√
T )
)

≤ exp

(
− 1

22T
ρ(ξ+1)− 10ηξ

pc

)
.

(EC.80)

Given that

∞⋃
i=0

C(θ, η, θξi) = C(θ, η) (EC.81)

we have

P
(
M∈ C(θ, η),∥M∥2

L2
(Π)

≥ ∥XO(M)∥2 +48∥M∥L2
(Π)

√
ηξ

pc
(
√
N +

√
T )

+
144δ

2λ(Lmax + δ1)
(
√
N +

√
T )+

∥M∥2
L2
(Π)

4
+

∥M∥2
L2
(Π)

ξ

4
+

576ξη

pc
(
√
N +

√
T )2 +

72δ

2λ(Lmax + δ1)
(
√
N +

√
T )
)

≤ exp

(
− θ

11T
− 10ηξ

)
1

1− exp (−θ(ξ−1)

22T
)
.

(EC.82)
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Note that 48∥M∥L2
(Π)

√
ηξ
pc
(
√
N +

√
T )≤

∥M∥2
L2
(Π)

4
+2304 η

pc
(
√
N +

√
T )2, and ∥M∥2

L2
(Π)

≥ pc∥M∥2F ,

if we set ξ = 4
3
, we have

P
(pc∥M∥2F

6
≥ ∥XO(M)∥2 +3648

η

pc
(
√
N +

√
T )2 +

216δ

2λ(Lmax + δ1)
(
√
N +

√
T )
)

≤ P
(∥M∥2

L2
(Π)

6
≥ ∥XO(M)∥2 +3648

η

pc
(
√
N +

√
T )2 +

216δ

2λ(Lmax + δ1)
(
√
N +

√
T )
)

≤ exp

(
− θ

11T

)
exp (−10η)

1− exp (− θ
66T

)
.

(EC.83)

Note that we set θ = 33T log (N +T ) and we have L̃−L∗

2(Lmax+δ1)
∈ C(θ, η) for η = 72R according to

Lemma EC.2, so we have the Lemma EC.4.

Proof of Lemma EC.6 The goal here is to invoke theorem 12.9 of Boucheron et al. (2013).

Note that ∥M∥2
L2
(Π)

−∥XO(M)∥2 has its rows independent and

Eπ

(
Eπ(∥X (i)

O (M)∥2)−∥X (i)
O (M)∥2

)
= 0

for all 1≤ i≤N . Although theorem 12.9 in Boucheron et al. (2013) requires countability of the index

set, given that C(θ, η, ρ) is bounded, compact, and ∥M∥2
L2
(Π)

−∥XO(M)∥2 is uniformly continuous

for all O, theorem 12.9 is applicable to our setting. The next steps are to find a bound for E(Zρ)

and

σ2 =
1

T 2
sup

M∈C(θ,η,ρ)

N∑
i=1

V ar(∥X (i)
O (M)∥2).

For σ2, we have

σ2 ≤ 1

T 2
sup

M∈C(θ,η,ρ)

N∑
i=1

E(∥X (i)
O (M)∥42)

≤ 1

T
sup

M∈C(θ,η,ρ)

N∑
i=1

E(∥X (i)
O (M)∥22)≤

ρξ

T
.

(EC.84)
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For E(Zρ), suppose ζi (i= 1, · · · ,N) are i.i.d. Rademacher variable, then we have, for any τ

E(Zρ)
(i)

≤ 1

T
sup

M∈C(θ,η,ρ)

{∣∣∣∣∥M∥2
L2
(Π)

−∥XO(M)∥2
∣∣∣∣}

(ii)

≤ 2

T
E

[
sup

M∈C(θ,η,ρ)

∣∣∣ N∑
i=1

ζi∥X (i)
O (M)∥22

∣∣∣]
(iii)

≤ 4

T
E

[
sup

M∈C(θ,η,ρ)

N∑
i=1

ζi∥X (i)
O (M)∥22

]
(iv)

≤ 4

T

(
2τ 2 +2 logN(τ, θ, η, ρ)+ 2 sup

M∈C(θ,η,ρ)
E(

N∑
i=1

ζi∥X (i)
O (M)∥22)

)

=
8

T

(
τ 2 + logN(τ, θ, η, ρ)

)
,

(EC.85)

where Inequality ii is due to lemma 6.3 of Ledoux and Talagrand (1991), Inequality iii is due to

sup
M∈C(θ,η,ρ)

N∑
i=1

ζi∥X (i)
O (M)∥22 ≥ 0 (EC.86)

and

sup
M∈C(θ,η,ρ)

∣∣∣∣∣
N∑
i=1

ζi∥X (i)
O (M)∥22

∣∣∣∣∣= sup
M∈C(θ,η,ρ)

∣∣∣∣∣
N∑
i=1

−ζi∥X (i)
O (M)∥22

∣∣∣∣∣
N∑
i=1

ζi∥X (i)
O (M)∥22 =−

N∑
i=1

−ζi∥X (i)
O (M)∥22.

(EC.87)

N(τ, θ, η, ρ) in Inequality iv is the τ covering number (Wainwright 2019) of C(θ, η, ρ), and Inequal-

ity iv is due to typical arguments bounding empirical process that we list as follows. Let N =

N(τ, θ, η, ρ). Suppose M1, . . . ,MN is the τ− cover. Then we have

E

(
sup

M∈C(θ,η,ρ)

N∑
i=1

ζi∥X (i)
O (M)∥22

)

≤E

(
2 sup

1≤j≤N

N∑
i=1

ζi∥X (i)
O (Mj)∥22 +2 sup

1≤j≤N

inf
M∈C(θ,η,ρ)

∥Mj −M∥22

)

= 2 log

(
exp

(
E

(
sup

1≤j≤N

N∑
i=1

ζi∥X (i)
O (Mj)∥22

)))
+2τ 2

≤ 2 log

(
N∑

j=1

exp

{
E

(
N∑
i=1

ζi∥X (i)
O (Mj)∥22

)})
+2τ 2

= 2 logN+2τ 2.

(EC.88)

Readers interested in more details on covering number can take Wainwright (2019) as a reference.
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Now we proceed with Inequality (EC.85) with bounding logN(τ, θ, η, ρ).

Suppose G is a RN×T matrix with i.i.d. N(0,1) entries. Let B1(R) = {∆ ∈RN×T
∣∣∥∆∥∗ ≤ R}.

Then C(θ, η, ρ) ⊂ B1(
√

ηρξ
pc

+ 3δ
2λ(Lmax+δ1)

). Let Ñ(τ,R) be the τ -covering number of B1(R). By

Sudakov minoration (Theorem 5.20 in Wainwright (2019)), and the fact that packing number is

no smaller than covering number, we have

√
logN(τ, θ, η, ρ)≤

√√√√Ñ(τ,

√
ηρξ

pc
+

3δ

2λ(Lmax + δ1)
)

≤ 3

τ
E

 sup
∥∆∥∗≤

√
ηρξ
pc

+ 3δ
2λ(Lmax+δ1)

⟨G,∆⟩


≤

3(
√

ηρξ
pc

+ 3δ
2λ(Lmax+δ1)

)

τ
E(∥G∥op).

(EC.89)

By (4.2.5) in Tropp (2015), we have

E(∥G∥op)≤
√
N +

√
T . (EC.90)

Therefore, taking τ =

√
3(

√
ηρξ
pc

+ 3δ
2λ(Lmax+δ1)

)

τ
(
√
N +

√
T ), we have

E(Zρ)≤
48

T

(√
ηρξ

pc
+

3δ

2λ(Lmax + δ1)

)
(
√
N +

√
T ). (EC.91)

Now invoking theorem 12.9 of Boucheron et al. (2013) with Inequalities (EC.91) and (EC.84),

we have, for t > 0,

P

(
Zρ ≥

48

T

(√
ηρξ

pc
+

3δ

2λ(Lmax + δ1)

)
(
√
N +

√
T )+ t

)
≤

exp

− t

4
log (1+2 log (1+

t

96
T

(√
ηρξ
pc

+ 3δ
2λ(Lmax+δ1)

)
(
√
N +

√
T )+ ρξ

T

))

.

(EC.92)

EC.6. Proof of Theorem 1

Write the F in Equation (10) in the following form

F (X) = f(X)+ g(X)+T{X ∈C1 ∩C2 ∩ · · · ∩CJ}. (EC.93)

For ease of notation, denote C =C1 ∩C2 ∩ · · · ∩CJ .
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Recalling that

Xk+0.5 =Xk − η∇f(Xk)

Xk+1 = P̃roxη(g(X)+T{C})(Xk+0.5),

(EC.94)

we denote

G(Xk) =
Xk −Proxη(g(X)+T{C})(Xk+0.5)

η

G̃(Xk) =
Xk − P̃roxη(g(X)+T{C})(Xk+0.5)

η
.

(EC.95)

Then it’s clear that

Xk+1 =Xk − ηG̃(Xk)

Proxη(g(X)+T{C})(Xk+0.5) =Xk − ηG(Xk).

(EC.96)

Recalling the definition of Proxη(g(X)+T{C})(Xk+0.5),

Proxη(g(X)+T{C})(Xk+0.5) = argmin
X

{
1

2η
∥X −Xk+0.5∥2 + g(X)+T{X ∈ C}

}
, (EC.97)

we know that

0∈X −Xk+0.5 + η∂g(X)+ η∂T{X ∈ C}

∣∣∣∣∣
X=Xk−ηG(Xk)

. (EC.98)

In the later part of this proof, we choose ∂g(Xk −ηG(Xk)) and ∂T{Xk −ηG(Xk)∈ C} such that

∂g(Xk − ηG(Xk))+ ∂T{Xk − ηG(Xk)∈ C}+∇f(Xk)−G(Xk) = 0.

We have

f(Xk − ηG̃(Xk))+ g(Xk − ηG̃(Xk))

≤ f(Xk − ηG(Xk))+ ⟨∇f(Xk − ηG(Xk)), (Xk − ηG̃(Xk))− (Xk − ηG(Xk))⟩+

L

2
∥ηG̃(Xk)− ηG(Xk)∥2 + g(Xk − ηG(Xk))+ ⟨∂g(Xk − ηG̃(Xk)), ηG(Xk)− ηG̃(Xk)⟩

≤ f(Xk − ηG(Xk))+ g(Xk − ηG(Xk))+Lfδ0 +Lgδ0 +
L

2
δ20.

(EC.99)
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To further bound the first two terms in the right hand side, we have for any y ∈Rn×m,

f(Xk − ηG(Xk))+ g(Xk − ηG(Xk))+T{Xk − ηG(Xk)∈ C}

≤ f(Xk)+ ⟨∇f(Xk),−ηG(Xk)⟩+
L

2
∥ηG(Xk)∥2+

g(y)+ ⟨∂g(Xk − ηG(Xk)),Xk − ηG(Xk)− y⟩

+T{y ∈ C}+ ⟨∂IXk − ηG(Xk),Xk − ηG(Xk)− y⟩

≤ f(y)+ ⟨∇f(Xk),Xk − y− ηG(Xk)⟩+
L

2
∥ηG(Xk)∥2 + g(y)+T{y ∈ C}+

⟨∂g(Xk − ηG(Xk))+ ∂T{Xk − ηG(Xk)∈ C},Xk − ηG(Xk)− y⟩

= f(y)+ ⟨G(Xk),Xk − y− ηG(Xk)⟩+
L

2
∥ηG(Xk)∥2 + g(y)+ I(y),

(EC.100)

where the last equality is due to (EC.98).

If we further let y=X∗, we have

f(Xk − ηG(Xk))+ g(Xk − ηG(Xk))+T{Xk − ηG(Xk)∈ C}

≤ f(X∗)+ g(X∗)+T{X∗ ∈ C}+ ⟨G(Xk),Xk −X∗ − ηG(Xk)

2
⟩

+

(
L

2
η2 − η

2

)
∥G(Xk)∥2

= f(X∗)+ g(X∗)+T{X∗ ∈ C}+ 1

2η

(
∥Xk −X∗|2 −∥Xk − ηG(Xk)−X∗∥2

)
+

η

2
(Lη− 1)∥G(Xk)∥2

≤ f(X∗)+ g(X∗)+T{X∗ ∈ C}+ 1

2η

(
∥Xk −X∗|2 −∥Xk − ηG̃(Xk)−X∗∥2

)
+

δ20
2η

+
δ0D

η
+

η

2
(Lη− 1)∥G(Xk)∥2,

(EC.101)

where D is the diameter of C, and the last Inequality is due to

∥Xk − ηG̃(Xk)−X∗∥2 −∥Xk − ηG(Xk)−X∗∥2

= ∥Xk − ηG̃(Xk)−X∗ − (Xk − ηG(Xk)−X∗)∥2+

2⟨
(
Xk − ηG̃(Xk)

)
− (Xk − ηG(Xk)) ,Xk − ηG(Xk)−X∗⟩

≤ δ20 +2δ0D.

(EC.102)
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If we further let η≤ 1
L
in Inequality (EC.101), combing with Inequality (EC.99), and noting that

Xk − ηG(Xk),X
∗ ∈ C, we have

f(Xk+1)+ g(Xk+1)≤f(X∗)+ g(X∗)+
1

2η

(
∥Xk −X∗∥2 −∥Xk+1 −X∗∥2

)
+

δ20
2η

+
δ0D

η
+

L

2
δ20 +(Lf +Lg)δ0.

(EC.103)

Adding up k= 0 · · ·K − 1 for Inequality (EC.103), we have

1

K

K∑
j=1

(f(Xj)+ g(Xj))≤ f(X∗)+ g(X∗)+
1

2η
∥X0 −X∗∥2 + δ20

2η
+

δ0D

η
+

L

2
δ20 +(Lf +Lg)δ0.

(EC.104)

This proves the theorem. But now, we also give a variant of the theorem. Suppose X̄K =

1
K

∑K

j=1Xj, then the convexity of f and g implies that the left hand side of Inequality (EC.104) is

larger equal to f(X̄K)+ g(X̄K).

EC.7. Proof of Proposition 2.1

Define the following averages:

W
t
=

1

t− 1

t∑
i=1

W i,Z
t
=

1

t− 1

t∑
i=1

Zi, P
t
=

1

t− 1

t∑
i=1

P i. (EC.105)

Writing the constraints of optimization problem (15) in matrix form, we have

 0 −Inm Inm

− Inm 0 Inm



vec(W )

vec(Z)

vec(P )

= 0. (EC.106)

Note that the coefficient matrix blocks corresponding to vec(Z) and vec(P ) in the linear con-

straint (EC.106) are full column rank matrices. It suffices the conditions of Theorem 4.1 in Cai

et al. (2017). Applying Inequality (4.3) in Cai et al. (2017) to our setting with θ1(x) = h1(x),

θ2(x) = h2(x), θ3(x) = ∥x−P0∥2, x′
1 =W ∗, x′

2 =Z∗, x′
3 = P ∗, we have, for β ≤ 6

17
,
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2βt

{[
h1(W

t
)+h2(Z

t
)+ ∥P t −P0∥2 + ⟨Λ∗

1, (W
t −P

t
)⟩+ ⟨Λ∗

2, (Z
t −P

t
)⟩

]

−

[
h1(W

∗)+h2(Z
∗)+ ∥P ∗ −P0∥2 + ⟨Λ∗

1, (W
∗ −P ∗)⟩+ ⟨Λ∗

2, (Z
∗ −P ∗)⟩

]}

≤ β2∥Z1 −Z∗∥2 +2β2∥P 1 −P ∗∥2 + ∥Λ1 −Λ∗∥2 + 10

3
β2 ∗ 2∥P 1 −P 0∥2.

(EC.107)

For the left hand side, we define a function

U(W,Z,P ) = h1(W )+h2(Z)+ ∥P −P0∥2F + ⟨Λ∗
1,W ⟩+ ⟨Λ∗

2,Z⟩− ⟨(Λ∗
1 +Λ∗

2), P ⟩. (EC.108)

Given that (W ∗,Z∗, P ∗), (Λ∗
1,Λ

∗
2) is a solution to

max
Λ1,Λ2

min
W,Z,P

h1(W )+h2(Z)+ ∥P −P0∥2F + ⟨Λ1,W ⟩+ ⟨Λ2,Z⟩− ⟨(Λ1 +Λ2), P ⟩,

we have

0 =
∂U(W,Z,P )

∂P

∣∣∣∣
W=W∗,Z=Z∗,P=P∗

= 2(P ∗ −P0)− (Λ∗
1 +Λ∗

2). (EC.109)

Further, since U(W,Z,P ) is separable with respect to W , Z, P , we have

U(W,Z,P )−U(W ∗,Z∗, P ∗)

≥U(W ∗,Z∗, P )−U(W ∗,Z∗, P ∗)

= ∥P −P0∥2 −∥P ∗ −P0∥2 − (Λ∗
1
T +Λ∗

2
T )(P −P ∗)

= ∥P −P ∗∥2 + ⟨P −P ∗,2(P ∗ −P0)−Λ∗
1 −Λ∗

2⟩

= ∥P −P ∗∥2.

(EC.110)

Combining Equation (EC.109) and (EC.110), we have

∥P t −P ∗∥2 ≤ 1

2βt

(
β2∥Z1 −Z∗∥2 +2β2∥P 1 −P ∗∥2 + ∥Λ1 −Λ∗∥2 + 20

3
β2∥P 1 −P 0∥2

)
. (EC.111)

EC.8. Proof of Lemma 1

We begin with bounding C(C1,C2).

C(C1,C2) =
1

2cos2( θ(C1,C2)

2
)
=

1

cos(θ(C1,C2))+ 1
. (EC.112)
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Observe that Bd(x)⊂C1 ∩C2, we have

cos(θ(C1,C2)) = inf
P∈∂(C1∩C2)

cos( sup
λ1∈NC1

(P ),λ2∈NC2
(P )

arccos (⟨λ1, λ2⟩))

≥ inf
P∈∂(C1∩C2)

cos( sup
λ1∈NBd(x)

(P ),λ2∈NBd(x)
(P )

arccos (⟨λ1, λ2⟩))

= inf
P∈∂(C1∩C2)

−(2
∥P −x∥2 − d2

∥P −x∥2
− 1)

≥−1+
2d2

D̃2
,

(EC.113)

where D̃= supP∈∂(C1∩C2)
∥P −x∥F .

Therefore,

C(C1,C2)≤
D̃2

2d2
≤ D2

2d2
, (EC.114)

where D= supP1,P2∈∂(C1∩C2)
∥P1 −P2∥F .

Now we continue with bounding dual variable Λ∗ in the case that h1(X) =T{X ∈C1}, h2(X) =

T{X ∈C2}.

From Equation (EC.109), we know that

4∥P ∗ −P0∥2 = ∥Λ∗
1∥2 + ∥Λ∗

2∥2 +2⟨Λ∗
1,Λ

∗
2⟩

≥ ∥Λ∗
1∥2 + ∥Λ∗

2∥2 +2cos(θ(C1,C2))∥Λ∗
1∥∥Λ∗

2∥

≥ ∥Λ∗
1∥2 + ∥Λ∗

2∥2 +min{0,2cos(θ(C1,C2))}
∥Λ∗

1∥2 + ∥Λ∗
2∥2

2

≥min{1, 1

C(C1,C2)
}(∥Λ∗

1∥2 + ∥Λ∗
2∥2).

(EC.115)

Therefore, we have

∥Λ∗∥2F ≤max{4,4C(C1,C2)}∥P ∗ −P0∥2. (EC.116)

EC.9. Proof of Proposition 3.1

To apply Proposition 1 to 1 bit completion matrix problem, we only need to find the L,Lf ,Lg,D

and a bound for ∥X0 −X∗∥ in Proposition 1 in 1 bit matrix completion setting and bound.

Since g= 0 in this case, we have Lg = 0. Since C1 = [−α,α]d1×d2 , we have D≤ 2α
√
d1d2.

Easy calculation also shows sup|x|≤α+δ0

|l′(x)|
l(x)(1−l(x))

is the Lipschitz constant for the smooth objec-

tive function −LΩ,Y (X).
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Easy calculation also show that

sup
|x|≤α+δ0

{|l
′′(x)l(x)− (l′(x))2|

l(x)2
,
|l′′(x)(1− l(x))+ (l′(x))2|

(1− l(x))2
}

is the smoothness parameter for the smooth objective function −LΩ,Y (X).

Also, given that X0 = 0 and X∗ ∈ [−α,α]d1×d2 , we have ∥X0 −X∗∥2 ≤ α2d1d2.

With the step size set to be the inverse of smoothness parameter, we completes the proof of the

Proposition.

EC.10. Proof of Proposition 3.2

Note that when X ∈ R
d1×d2 satisfies ∥X∥F ≤ α, we have ∥X∥∗ ≤

√
rank(X)∥X∥F ≤

√
min{d1, d2}α≤ α

√
rd1d2, and ∥X∥∞ ≤ α. Therefore, we have d≥ α.

Note that when X ∈ [−α,α]d1×d2 , we have ∥X∥F ≤ α
√
d1d2. Therefore, D̃≤ α

√
d1d2, where D̃ is

defined after Inequality (EC.113).

According to the proof of Lemma 1, when we take x in the Bd(x) there to be 0, we have

C(C1,C2)≤ d1d2
2

.

We continue with bounding the terms in right hand side of Inequality (20) in Proposition 2.1.

Recall the steps we take in Algorithm 3.2, then we have
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∥Z1 −Z∗∥= ∥ProjC2
(P0)−P ∗)∥ ≤ ∥P0 −P ∗∥,

∥P 1 −P ∗∥= ∥ β

2(β+1)
(ProjC1

(P0)−P ∗ +ProjC2
(P0)−P ∗)

+
1

β+1
(P0 −P ∗)∥ ≤ ∥P0 −P ∗∥,

∥Λ1 −Λ∗∥2 ≤ 2∥Λ1∥2 +2∥Λ∗∥2

≤ 2β2

∥∥∥∥∥ 1

β+1

(
P0 +

β

2
ProjC2

(P0)− (1+
β

2
)ProjC1

(P0)

)∥∥∥∥∥
2

+2β2

∥∥∥∥∥ 1

β+1

(
P0 +

β

2
ProjC1

(P0)− (1+
β

2
)ProjC2

(P0)

)∥∥∥∥∥
2

+max{4,8C(C1,C2)}∥P0 −P ∗∥2

≤ 4β2∥P0 −P ∗∥2 +max{4,8C(C1,C2)}∥P0 −P ∗∥2,

∥P 1 −P0∥ ≤
β

2(β+1)
∥ProjC1

(P0)−P0 +ProjC2
(P0)−P0∥ ≤

β

β+1
∥P0 −P ∗∥.

(EC.117)

Some of the inequalities in Inequality (EC.117) are due to ∥P0 − ProjCi
(P0)∥ ≤ ∥P0 − P ∗∥,

∥ProjC1
(P0)−ProjC2

(P0)∥ ≤
∑2

i=1 ∥P0 −ProjCi
(P0)∥.

Plugging Inequality EC.117 back to Proposition 2.1, we have

∥P t −P ∗∥2 ≤ 1

2βt
(7β2 +max{4,8C(C1,C2)}+

20

3

β4

(β+1)2
)∥P0 −P ∗∥2

≤ 1

2βt
(7β2 +4d1d2 +

20

3

β4

(β+1)2
)∥P0 −P ∗∥2.

(EC.118)

EC.11. Proof of Theorem 3

First, we will show that for t≥ t0, δ0 ≤min{u0,1}.

We prove this by mathematical induction. For X0, X0 ∈ C1 ∩ C2, therefore δ0 ≤ u0 holds for

k=0. One thing to note is that Lα+u0
≤ 2Lα, L̃α+u0

≤ 2L̃α. Also, recall that η = 1
2L̃α

. Suppose

delta0 ≤min{u0,1} holds for k≤H, then for k=H +1, we have

∥Xk − η∇f(Xk)−ProxC1∩C2
(Xk)∥ ≤ ∥Xk −ProxC1∩C2

(Xk)∥+ |η∇f(Xk)|

≤ u0 +
1

2L̃α

2Lα.

(EC.119)



e-companion to R. Chen: Statistical Computational Tradeoff ec27

Therefore,

∥Xk − η∇f(Xk)−ProxC1∩C2
(Xk − η∇f(Xk))∥ ≤ u0 +

Lα

L̃α

. (EC.120)

According to Proposition 3.2, for

t≥ 1

2β

(
7β2 +4d1d2 +

20

3

β4

(β+1)2

)
(1+

Lα

u0L̃α

+
Lα

L̃α

)2,

we have

∥Xk+1 −ProxC1∩C2
(Xk+0.5)∥2 ≤min{u2

0,1}. (EC.121)

So δ0 ≤ {u0,1} also holds for k=H +1.

Therefore, δ0 ≤ {u0,1} for all k. So the Lipschitz constant Lf ≤ 2Lα, and the smooth parameter

L≤ 2L̃α for the objective function on u0 neighbor of C1 ∩C2.

Further, we have,

δ0 ≤
√

1

t

√
1

2β

(
7β2 +4d1d2 +

20

3

β4

(β+1)2

)
. (EC.122)

According to Proposition 3.1, we have

δ≤ α2L̃αd1d2
T

+4αL̃α

√
d1d2

√
1

t

√
1

2β

(
7β2 +4d1d2 +

20

3

β4

(β+1)2

)

+2Lα

√
1

t

√
1

2β

(
7β2 +4d1d2 +

20

3

β4

(β+1)2

)
+2L̃α

1

t

1

2β

(
7β2 +4d1d2 +

20

3

β4

(β+1)2

)
.

(EC.123)

EC.12. Proof of Proposition 4.1

To apply Proposition 1 to causal inference for panel data, we only need to find the L,Lf ,Lg,D

and a bound for ∥X0 −X∗∥ in Proposition 1 in causal inference for panel data.

Since C1 = [−Lmax,Lmax]
N×T , we have D= 2Lmax

√
NT .

Since g(L) = λ|O|
2

|L|, we have ∥∂g∥ ≤ λ|O|
2

√
min{N,T}.

Since f(L) = 1
2
∥PO(YL)∥2F , we have the smooth parameter L≤ 1, the Lipschitz constant Lf ≤

maxL∈C1
∥Y −L∥F .

Also, we have ∥L0 − L̂∥ ≤Lmax

√
NT . Recall that η= 1.
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Plugging in the quantities into Proposition 1, we have

min
0≤k≤K

1

2
∥PO(Y −Lk)∥2F +

λ|O|
2

∥Lk∥∗ ≤
1

2
∥PO(Y − L̂)∥2F +

λ|O|
2

∥L̂∥∗

+
1

2K
∥L0 − L̂∥2 +

(
λ|O|
2

√
min{N,T}+max

L∈C1

∥PO(Y −L)∥F
)
δ0

+ δ20 +2Lmax

√
NTδ0.

(EC.124)

EC.13. Proof of Proposition 4.2

We continue with bounding the terms in right hand side of Inequality (20) in Proposition 2.1.

Recall the steps we take in Algorithm 43, we have

∥Z1 −Z∗∥= ∥thresh(P0,
λ|O|
β

)−P ∗∥ ≤ ∥P0 −P ∗∥+ λ|O|
β

√
min{N,T},

∥P 1 −P ∗∥ ≤ ∥P0 −P ∗∥+ ∥P 1 −P0∥,

∥Λ1 −Λ∗∥2 ≤ 2
(
∥Λ1

1∥2 + ∥Λ1
2∥2 + ∥Λ∗

1∥2 + ∥Λ∗
2∥2
)

≤ 2(
β

1+β
)2

(∥∥∥∥P0 −ProjC1
(P0)+

β

2

(
thresh(P0,

λ|O|
β

)−ProjC1
(P0)

)∥∥∥∥2
+

∥∥∥∥P0 − thresh(P0,
λ|O|
β

)− β

2

(
thresh(P0,

λ|O|
β

)−ProjC1
(P0)

)∥∥∥∥2
)

+2∥Λ∗
1∥+2∥Λ∗

2∥,

∥P 1 −P0∥=
∥∥∥∥ β

2(β+1)

(
ProjC1

(P0)−P0 + thresh(P0,
λ|O|
β

)−P0

)∥∥∥∥
≤ β

2(β+1)
∥ProjC1

(P0)−P0∥+
β

2(β+1)

λ|O|
β

√
min{N,T}.

(EC.125)

We continue with bounding the two terms in the right hand side for ∥Λ1 −Λ∗∥2. We start with

the first term.
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∥∥∥∥P0 −ProjC1
(P0)+

β

2

(
thresh(P0,

λ|O|
β

)−ProjC1
(P0)

)∥∥∥∥2
+

∥∥∥∥P0 − thresh(P0,
λ|O|
β

)− β

2

(
thresh(P0,

λ|O|
β

)−ProjC1
(P0)

)∥∥∥∥2
= ∥P0 −ProjC1

(P0)∥2 + ∥P0 − thresh(P0,
λ|O|
β

)∥2

+(β+
β2

2
)∥thresh(P0,

λ|O|
β

)−ProjC1
(P0)∥2

≤ (1+β)2
(
∥P0 −ProjC1

(P0)∥2 + ∥P0 − thresh(P0,
λ|O|
β

)∥2
)

≤ (1+β)2
(
∥P0 −ProjC1

(P0)∥2 +min{N,T}(λ|O|
β

)2
)
.

(EC.126)

We proceed with bounding ∥Λ∗
1∥2 + ∥Λ∗

2∥2.

According to Equation (EC.109), we have

∥Λ∗
1∥2 + ∥Λ∗

2∥2 = ∥2(P ∗ −P0)−Λ∗
2∥2 + ∥Λ∗

2∥2

≤ 8∥P ∗ −P0∥2 +3∥Λ∗
2∥2.

(EC.127)

Taking derivative with respect to Z for function U(W,Z,P ) at point (W ∗,Z∗, P ∗), we have

0=
∂U(W,Z,P )

∂Z

∣∣∣∣
W=W∗,Z=Z∗,P=P∗

= ∂h2(Z
∗)+Λ∗

2. (EC.128)

Observe that ∂h2(Z
∗)≤ λ|O|

√
min{N,T}, continuing with Inequality (EC.127), we have

∥Λ∗
1∥2 + ∥Λ∗

2∥2 ≤ 8∥P ∗ −P0∥2 +3(λ|O|)2min{N,T}. (EC.129)
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Putting together Inequalities (EC.125), (EC.126), (EC.129), together with Proposition 2.1, we

have

∥P k −P ∗∥2

≤ 1

2βk

(
2β2∥P0 −P ∗∥2 +2(λ|O|)2min{N,T}+4β2∥P0 −P ∗∥2+

4β2∥P 1 −P0∥2 +2β2∥P0 −ProjC1
(P0)∥2 +2min{N,T} (λ|O|)2

+16∥P ∗ −P0∥2 +6(λ|O|)2min{N,T}+ 20

3
β2∥P 1 −P0∥2

)

≤ 1

2βk

(
(6β2 +16)∥P0 −P ∗∥2 +

(
10+ (2+

10

3
)(

β

1+β
)2
)
(λ|O|)2min{N,T}

+

(
2β2 +(2+

10

3
)

(
β2

1+β

)2
)
∥P0 −ProjC1

(P0)∥2
)

=
1

βk

(
(3β2 +8)∥P0 −P ∗∥2 +

(
5+

8

3
(

β

1+β
)2
)
(λ|O|)2min{N,T}

+

(
β2 +

8

3
(

β2

1+β
)2
)
∥P0 −ProjC1

(P0)∥2
)
.

(EC.130)

EC.14. Proof of Theorem 6

Suppose infL∈C1
∥Lj −L∥ ≤ δ0 for j ≤ k, where k≥ 0.

Recall that

Lk+0.5 =Lk +PO(Y −Lk), (EC.131)

we have

∥ProjC1
(Lk+0.5)−Lk+0.5∥2 ≤ ∥ProjC1

(Lk)−Lk+0.5∥2 ≤ (C(Y )+ δ0)
2 ≤ 2C(Y )2 +2δ20. (EC.132)

Recalling that Proxλ|O|
2 ∥L∥∗+T{L∈C1}

(Lk+0.5) is defined as

argmin
L

∥L−Lk+0.5∥2 +λ|O|∥L∥∗ +T{L∈C1}, (EC.133)

we have

∥Prox(Lk+0.5)−Lk+0.5∥2 +λ|O|∥Prox(Lk+0.5)∥∗ +T{Prox(Lk+0.5)∈C1}

≤ ∥0−Lk+0.5∥2 +λ|O|∥0∥∗ +T{0∈C1}= ∥Lk+0.5∥2

≤ ∥Y ∥22 +(
√

NT − |O|Lmax + δ0)
2.

(EC.134)
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Combing Proposition 4.1 and Proposition 4.2, we have for β ≤ 6
17
, then

∥Lk+1 −Prox(Lk+0.5)∥2 ≤
1

βk

(
(3β2 +8)

(
∥Y ∥22 +(

√
NT − |O|Lmax + δ0)

2
)

+

(
5+

8

3
(

β

1+β
)2
)
(λ|O|)2min{N,T}

+

(
β2 +

8

3
(

β2

1+β
)2
)
(2C(Y )2 +2δ20)

)

≤ 1

k

(
δ20

(
1

β

(
6β2 +16+2β2 +

16

3
(

β2

1+β
)2
))

+

1

β
(3β2 +8)

(
∥Y ∥2 +2(NT − |O|)L2

max

)
+

1

β

(
5+

8

3
(

β

1+β
)2
)
(λ|O|)2min{N,T}+

β

(
2+

16

3
(

β

1+β
)2
)
C(Y )2

)
.

(EC.135)

Let

q0(β) =

(
1

β

(
6β2 +16+2β2 +

16

3
(

β2

1+β
)2
))

,

q1(β) =
1

β

(
5+

8

3
(

β

1+β
)2
)
,

q2(β) = β

(
2+

16

3
(

β

1+β
)2
)
,

q3(β) =
1

β
(3β2 +8),

δ(k) =

√
q1(β)(λ|O|)2min{N,T}+ q2(β)C(Y )2 + q3(β) (∥Y ∥2 +2(NT − |O|)L2

max)

k− q0(β)

(EC.136)

We show next that when k ≥ q0(β), infL∈C1
∥Lk −L∥ ≤ δ(k) and ∥Lk+1 −Prox(Lk+0.5)∥ ≤ δ(k)

for all k≥ 0. For k= 0, L0 ∈C1, the first part claim holds. Suppose the first part of claim holds for

k≤ k0, where k0 ≥ 0, then for k= k0 +1,

∥Lk0+1 −Prox(Lk0+0.5)∥2

≤ 1

k

(
δ(k)2q0(β)+ q1(β)(λ|O|)2min{N,T}+ q2(β)C(Y )2

+ q3(β)
(
∥Y ∥2 +2(NT − |O|)L2

max

))

= δ(k)2.

(EC.137)
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Since Prox(Lk0+0.5)∈C1, the first part of claim holds for k= k0+1. So the first part of the holds

for all k≥ 0. Since Inequality EC.137 is based on ∥Lk0 −ProjC1
(Lk0)∥ ≤ δ(k), it holds for all k0 ≥ 0.

Therefore, for k≥ q0(β), we have δ0 ≤ δ(k). Therefore, we know that δ1 ≤ δ(k).

Now we proceed with bounding δ. According to Proposition 4.1, we have

δ≤ 2

|O|

(
1

2K
∥L0 − L̂∥2 + δ(k)2 +

(
2Lmax

√
NT +C(Y )+min{

√
N,

√
T}λ|O|

2

)
δ(k)

)
≤ NTL2

max

K|O|
+

2δ(k)2

|O|
+

(
4Lmax

√
NT

|O|
+

2C(Y )

|O|
+min{

√
N,

√
T}λ

)
δ(k).

(EC.138)

This finishes the proof.

EC.14.1. Proof of Theorem 8

Recall that we use ρ2(Σ) to denote the maximum diagonal entry of the covariance matrix Σ.

It suffices to prove the following two results

Proposition EC.14.1. Under the linear regression model (50), for any sparse index set S such

that the cardinal of S, |S|= s, denote θ∗Sc to be the vector keeping elements not in S the same and

setting those in S to be 0. Suppose c1κ≥ 64s · c2ρ2(Σ) logdn
, where c1, c2 are constants and can be

taken as c1 = 1/8, c2 = 50, and κ is the smallest singular value of Σ. For λn ≥ 2∥XTw∥∞
n

, θ̃ satisfying

(52) has the following property

P (∥∆∥2 <
δ

2λn

√
s
+

∥θ∗Sc∥1√
s

+(2+4
√
s+

1√
s
)
λn

c1κ
)≥ 1− exp (−n/32)

1− exp (−n/32)
. (EC.139)

Lemma EC.7. For the random matrix X ∈ Rn×d, in which each row xi is drawn i.i.d. from a

N(0,Σ) distribution, its columns x̃k satisfies the following with probability at least 1−exp (− n
4ρ2(Σ)

ϵ),

max
1≤k≤d

∥x̃k∥22
n

≤ 2 log 2 · ρ2(Σ)+ 4ρ2(Σ)

n
logd+ ϵ. (EC.140)

For w with wi
i.i.d.∼ N(0, σ2) and w independent with X, we have that

PX,w

(
∥X

Tw

n
∥∞ < 2ρ(Σ)

√
(
logd

n
+1)σ

√
2 log (2d)

n
+µ

)
≥ 1− exp (−n

2
)− exp (−nµ

2
). (EC.141)
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EC.14.1.1. Proof of Proposition EC.14.1 From Inequality (52), we have

∥y−Xθ̃∥22 +λn∥θ̃∥1 ≤ ∥y−Xθ̂∥22 +λn∥θ̂∥1 + δ≤ ∥y−Xθ∗∥22 +λn∥θ∗∥1 + δ. (EC.142)

Denote ∆= θ̃− θ∗.

Therefore, we have that

0≤ 1

2n
∥X∆∥2 ≤∥X

Tw

n
∥∞∥∆∥1 +λn

(
∥θ∗∥1 −∥θ̃∥1

)
+ δ

≤λn

2

(
∥∆∥1 +2∥θ∗∥1 − 2∥θ̃∥1

)
+ δ

≤λn

2
(3∥∆S∥1 + ∥∆Sc∥1 +2∥θ∗Sc∥1 − 2∥θ∗Sc +∆Sc∥1)+ δ

≤λn

2
(3∥∆S∥1 −∥∆Sc∥1 +4∥θ∗Sc∥1)+ δ.

(EC.143)

Therefore, we have

∥∆∥1 = ∥∆S∥1 + ∥∆Sc∥1 ≤ 4∥∆S∥1 +4∥θ∗Sc∥1 +
2δ

λn

≤ 4
√
s∥∆∥2 +4∥θ∗Sc∥1 +

2δ

λn

. (EC.144)

On the other hand, according Theorem 7.16 in Wainwright (2019), we have that with probability

at 1− exp (−n/32)

1−exp (−n/32)
,

∥X∆∥22
n

≥ c1∥
√
Σ∆∥22 − c2ρ

2(Σ)
logd

n
∥∆∥21, (EC.145)

where c1, c2 are absolute constants and can be taken as c1 = 1/8, c2 = 50.

Note that ∥
√
Σ∆∥22 ≥ κ∥∆∥22, going back to Inequality (EC.143), we have

c1κ∥∆∥22 ≤c2ρ
2(Σ)

logd

n
∥∆∥21 +λn(3∥∆S∥1 −∥∆Sc∥1 +4∥θ∗Sc∥1)+ 2δ

≤c2ρ
2(Σ)

logd

n

(
4
√
s∥∆∥2 +4∥θ∗Sc∥1 +

2δ

λn

)2

+λn(3∥∆S∥1 −∥∆Sc∥1 +4∥θ∗Sc∥1)+ 2δ

≤c1κ

(
∥∆∥2
2

+
δ

4λn

√
s
+

∥θ∗Sc∥1
2
√
s

)2

+λn(3∥∆S∥1 −∥∆Sc∥1 +4∥θ∗Sc∥1)+ 2δ

≤c1κ

(
∥∆∥2
2

+
δ

4λn

√
s
+

∥θ∗Sc∥1
2
√
s

)2

+λn(3
√
s∥∆∥2 +4∥θ∗Sc∥1)+ 2δ.

(EC.146)

Solving the Inequality for ∥∆∥2, we have

∥∆∥2 <
δ

2λn

√
s
+

∥θ∗Sc∥1√
s

+(2+4
√
s+

1√
s
)
λn

c1κ
. (EC.147)
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EC.14.1.2. Proof of Lemma EC.7 Denote νk =
∥x̃k∥22

n
.

For n
2ρ2(Σ)

>λ> 0,

E(exp (λmax{νk : 1≤ k≤ d}))≤
d∑

k=1

E(exp (νkλ))≤ d(
1

1− 2λρ2(Σ)

n

)
n
2 . (EC.148)

Therefore, for ∆> 0

P (max{νk : 1≤ k≤ d}>∆)≤ d(
1

1− 2λρ2(Σ)

n

)
n
2 exp(−λ∆). (EC.149)

Take λ= n
4ρ2(Σ)

, and ∆= 2ρ2(Σ) log 2+ 4ρ2(Σ)

n
logd+ ϵ, we have

P (max{νk : 1≤ k≤ d}>∆)≤ exp (− n

4ρ2(Σ)
ϵ). (EC.150)

Therefore, the proof of the first statement is concluded.

For the second statement, suppose max{νk : 1≤ k≤ d} ≤Cν . Then we have for λ> 0,

E

(
exp (λmax{|X̃

T
k w

n
| : 1≤ k≤ d})

)
≤ 2d exp (

λ2

n
C2

νσ
2/2). (EC.151)

Therefore, for ∆> 0,

P (∥Xw

n
∥∞ >∆)≤ exp (log(2d)+

λ2

n
C2

νσ
2/2−λ∆). (EC.152)

Take λ= n∆
C2
νσ

2 , we have

P (∥Xw

n
∥∞ >∆)≤ exp (log(2d)− n∆2

2C2
νσ

2
). (EC.153)

Setting

∆=Cνσ

√
2 log (2d)

n
+µ, (EC.154)

and note that Cν ≤
√
4ρ2(Σ)+4ρ2(Σ) logd

n
with probability at least 1 − exp(−n

2
), we have the

statement of second inequality of the lemma.

EC.15. Proof of Theorem 9

It’s easy to check that

1

2n
∥y−Xθ∥22 (EC.155)

is ∥XTX
n

∥s-smooth.

By Theorem 1, and take δ0 = 0 gives the result.
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EC.16. Proof of Theorem 10

It’s easy to see that 1
2n
∥Xθ∥22 is ∥XTX∥s

n
−smooth, where ∥ · ∥s denotes the spectral norm.

Denote L= ∥XTX∥s
n

.

Note that we have an alternative expression for θk+1 for k≥ 0:

θk+1 = argmin
θ

1

2n
∥Xθk∥22 + ⟨X

TXθk
n

, θ− θk⟩+
L

2
∥θ− θk∥22 +λn∥θ∥1. (EC.156)

For simplicity we define

ϕk(θ) =
1

2n
∥Xθk∥22 + ⟨X

TXθk
n

, θ− θk⟩+
L

2
∥θ− θk∥22 +λn∥θ∥1. (EC.157)

Theorem 10.16 in Beck (2017) gives that

F (θ)−F (θk+1)≥
L

2
∥θ− θk+1∥22 −

L

2
∥θ− θk∥22 +D(θ, θk), (EC.158)

where

D(θ, θk) =
1

2n
∥Xθ∥22 −

1

2n
∥Xθk∥22 −⟨X

TXθk
n

, θ− θk⟩. (EC.159)

Taking θ= θk gives

F (θk)≥ F (θk+1)+
L

2
∥θk − θk+1∥22. (EC.160)

Taking θ= θ∗ gives

F (θ∗)−F (θk+1)≥
L

2
∥θ∗ − θk+1∥22 −

L

2
∥θ∗ − θk∥22 +D(θ∗, θk). (EC.161)

Adding up the inequality from 1 to k+1 gives

L

2
∥θ∗∥22 ≥

k+1∑
j=1

F (θj)−F (θ∗)≥ (k+1)(F (θk+1)−F (θ∗)). (EC.162)

Taking θ= θ̂, gives

F (θ̂)−F (θk+1)≥
L

2
∥θ̂− θk+1∥22 −

L

2
∥θ̂− θk∥22 +D(θ̂, θk). (EC.163)

Adding up the inequality from 1 to k+1 gives

F (θk+1)−F (θ̂)≤ 1

k+1

L

2
∥θ̂∥22. (EC.164)
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This gives the second statement of the theorem.

Recalling Inequality (EC.143), we have that

0≤ 3∥ (θk − θ∗)S ∥1 −∥ (θk − θ∗)Sc ∥1 +4∥θ∗Sc∥1 +
2(F (θk)−F (θ∗))

λn

. (EC.165)

This gives

∥θk − θ∗∥1 ≤ 4
√
s∥θk − θ∗∥2 +4∥θ∗Sc∥1 +

2(F (θk)−F (θ∗))

λn

. (EC.166)

Therefore

∥θ̂− θk∥1 ≤ ∥θk − θ∗∥1 + ∥θ̂− θ∗∥1 ≤ 4
√
s∥θ̂− θk∥2 +8

√
s∥θ̂− θ∗∥2 +8∥θ∗Sc∥1 +

2(F (θk)−F (θ∗))

λn

.

(EC.167)

Recall the definition of ϕk(θ) in Equation (EC.157). For 0<α< 1, we have

F (θk+1)≤ ϕk(θk+1)≤ ϕk(αθ̂+(1−α)θk)

≤ 1

2n
∥Xθk∥22 +α⟨X

TXθk
n

, θ̂− θk⟩+
Lα2

2
∥θ̂− θk∥22 +αλn∥θ̂∥1 +(1−α)λn∥θk∥1

≤ αF (θ̂)+ (1−α)F (θk)+
Lα2

2
∥θk − θ̂∥22.

(EC.168)

Now we will bound ∥θk − θ̂∥22.

Note that θ̂ is the minimizer of F (θ), we have

F (θk)−F (θ̂)

= F (θk)−F (θ̂)−⟨∂F (θ̂), θk − θ̂⟩ ≥D(θk, θ̂)≥
a1

2
∥θ̂− θk∥22 −

a2

2
∥θ̂− θk∥21

≥ a1

2
∥θ̂− θk∥22 −

a2

2

(
4
√
s∥θk − θ̂∥2 +8

√
s∥θ̂− θ∗∥2 +8∥θ∗Sc∥1 +

2(F (θk)−F (θ∗))

λn

)2

+

(EC.169)

Since a1 ≥ 64s · a2, we have

a1

4
∥θ̂− θk∥22 ≤ F (θk)−F (θ̂)+ a2

(
8
√
s∥θ̂− θ∗∥2 +8∥θ∗Sc∥1 +

2(F (θk)−F (θ∗))

λn

)2

+

. (EC.170)

Therefore

∥θ̂− θk∥22 ≤
4

a1

(
F (θk)−F (θ̂)

)
+

4a2

a1

· 128
(√

s∥θ̂− θ∗∥2 + ∥θ∗Sc∥1
)2

+
32a2

a1

(
F (θk)−F (θ∗)

λn

)2

+

.

(EC.171)
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Let α= a1
4L

in Inequality (EC.168), we have that

F (θk+1)−F (θ̂)≤ (1− a1

8L
)
(
F (θk)−F (θ̂)

)
+

a1

4L
· 64a2s ·

(
∥θ̂− θ∗∥2 +

∥θ∗Sc∥1√
s

)2

+
a1 · 64a2s

64L · s

(
F (θk)−F (θ∗)

λn

)2

+

.

(EC.172)

From Theorem 8 we have that

∥θ̂− θ∗∥2 ≤
∥θ∗Sc∥1√

s
+(2+4

√
s+

1√
s
)
λn

c1κ
. (EC.173)

Plug in Inequality (EC.173) into Inequality (EC.172) and note that F (θk)− F (θ∗) ≤ F (θk)−

F (θ̂)≤ F (θK)−F (θ̂) for K ≤ k gives the statement.


