OPTIMAL ESTIMATION AND INFERENCE FOR
MINIMIZER AND MINIMUM OF MULTIVARIATE
ADDITIVE CONVEX FUNCTION

By RaN CHEN

Massachusetts Institute of Technology

In this paper, we consider optimal estimation and inference for
the minimizer and minimum of multivariate additive convex functions
under suitable non-asymptotic framework that can characterize the
difficulty of the problem at individual functions. We provide sharp
minimax lower bounds for both the estimation accuracy and expected
volume (length) of confidence hypercube (interval) for the minimizer
and minimum. We provide statistically optimal and computationally
efficient algorithm for these four tasks.

1. Introduction. Motivated by a wide range of applications, estima-
tion and inference for the minimizer of nonparametric regression function
has been a long standing problems in statistics (Kiefer and Wolfowitz, 1952;
Blum, 1954; Chen, 1988). For fixed design, Belitser et al. (2012) establishes
the minimax rate of convergence over a given smoothness class for esti-
mating both the minimizer and minimum, Cai et al. (2023a) establishes
minimax rates for both estimation and inference for both minimizer and
minimum under a non-asymptotic local minimax framework for univariate
convex function. For sequential design, the minimax rate for estimation of
minimizer has been established; see Chen et al. (1996); Polyak and Tsy-
bakov (1990); Dippon (2003). Mokkadem and Pelletier (2007) introduces a
companion for the Kiefer—Wolfowitz—Blum algorithm in sequential design
for estimating both the minimizer and minimum.

Another related line of research is the stochastic continuum-armed ban-
dits, which have been used to model online decision problems under uncer-
tainty, with applications ranging from web advertising to adaptive routing.
Stochastic continuum-armed bandits are in nature finding the maximizer
(corresponding to the optimal action) of a nonparametric regression func-
tion through a sequence of actions. The objective is to minimize the expected
total regret, which values a fine trade-off between exploration of new infor-
mation and exploitation of historical information (Kleinberg, 2004; Auer
et al., 2007; Kleinberg et al., 2019).

In the present paper, we consider optimal estimation and inference for
the minimizer of multivariate additive conver functions under suitable non-

1



2 R. CHEN

asymptotic framework that can characterize the difficulty of the problem at
individual functions.

We consider both white noise model and nonparametric regression. We
first focus on the white noise model, which is given by

(1.1) dY (t) = £(t)dt + edW (t), t € [0, 1]°,

where W(t) is a standard (s,1)-Brownian sheet on [0,1]°, ¢ > 0 is the
noise level. The drift function f is assume to be in Fg, the collection of
s—dimensional additive convex functions defined as follows. Function f is
said to be an additive convex function if it can be written in the following
form:

(1.2) £(t) = fo+ > filts), 6 = (tr, La, -+, Ls) € [0, 1],
=1

where fp is a real number and for 1 < ¢ < s, f; is in F, the collec-
tion of univariate convex functions with unique minimizer, and f; also sat-
isfies fol fi(t)dt = 0. Note that for any function f that can be written
in the aforementioned decomposition (1.2), the decomposition is unique.
And for s = 1, F; = F. For clarity, we also write Y¢ for Y under f to
specify the true function. The goal is to optimally estimate the minimizer
Z(f) = argmingjg ) £(t) and minimum M(f) = mingejo,1)s £(t) and also
construct confidence hyper cube for Z(f) and confidence interval for M (f).
Estimation and inference for the minimizer Z(f) and minimum M (f) under
nonparametric setting will be discussed later in section 4.

1.1. Nom-asymptotic Function-specific Benchmarks. The first step to-
ward evaluating the performance of a procedure at individual convex func-
tions in Fy is to define function-specific benchmarks for estimation and in-
ference for minimizer. For estimation and inference of minimum and esti-
mation of minimizer, we investigate it under local minimax framework (Cai
and Low, 2015), which is also used in estimation and inference for univariate
convex functions by Cai et al. (2023a). For inference of minimizer, the same
two-point local minimax framework is not as appropriate and we take a
non-asymptotic function-specific benchmark that measures exactly the best
behavior that any method can achieve.

For estimation of the minimizer, the hardness of the problem at an in-
dividual function is naturally captured by the expected squared distance.
Further, under the local minimax framework, the benchmark is given by

1.3 R.(e;f) = sup inf max E(||Z— Zm)|?).
(13) (e38) = sup inf max B (|12 - 2(w)]?)
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For any given f € F;, the benchmark R,(e;f) quantifies the estimation
accuracy at f of the minimizer Z(f) against the hardest alternative of f
within the function class F.

For estimation of the minimum, the hardness of the problem at an individ-
ual function f is naturally captured by the expected squared error. Further,
under the local minimax framework, it is given by

14 Ry, (e;f) = sup inf max E M — M(h)|]?) .
(1.4) (648) = sup inf max By (|7 (k)

For any given function f € Fs, benchmark R,,(¢; f) quantifies the estimation
accuracy of the minimum M (f) at f against the hardest alternative of f
within function class Fs.

For estimation problems, we show that the benchmarks are valid good
benchmarks in the sense that if it is significantly out performed at function
f € Fs, then a penalty need to be paid at another function f; € F,. We es-
tablish sharp minimax rates for these benchmarks and construct procedures
attain the minimax rates, up to a constant factor depending on dimension
s, simultaneously for all f € Fj.

For confidence hyper cube of the minimizer with a pre-specified coverage,
the hardness of the problem is naturally captured by the expected volume.
Let Z, o(S) be the collection of confidence hyper cubes for the minimizer
Z(f) with guaranteed coverage probability 1—a for all f € S. The benchmark
under a non-asymptotic function-specific framework, at f, is given by the
minimum expected volume at f for all confidence hyper cube in Z, ,(F;):

1.5 Lo.(e;f) = inf  Ef (V(CL.)),
(1.5 Sef = il E(V(OL)

where V(C1I, ) is the volume of the confidence hyper cubes. Unlike local
minimax framework, which measures the best a confidence hyper cube with
the pre-specified probability coverage at f and a hardest g € F, can achieve,
this benchmark takes hyper cubes in Z, ,(Fs) (i.e. it has pre-specified proba-
bility coverage for all g € Fs). It is easy to see that this benchmark depends
on f and is the best that any method can achieve at f.

For confidence interval of the minimum with a pre-specified coverage, the
hardness of the problem is naturally captured by the expected length. Let
Zim.o(S) be the collection of confidence intervals for the minimum M (f) with
guaranteed coverage probability 1 —« for all f € S. Under the local minimax
framework, the benchmark is given by

1.6 Lom(e;f) = sup inf Ee (|Cln,a
(16) (&) g€Fs Clm,a€lm,o({f,g}) (

)
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1.2. Projection Representation and Optimal Procedures. Another major
step in our analysis is developing data-driven and computationally efficient
algorithms for the construction of estimators and confidence interval (hyper
cube) as well as establishing the optimality of these procedures at each
feF.

An interesting observation is that Yy admits a projection representation,

SB(Y}) - (ﬂl(}/f')v T 77TS<Yf)7 er(Yf))v

such that m;(Yf) is a sufficient statistic for f; and all elements in PB(Y¢) are
independent. Also Y can be fully recovered from B(Y¢). The estimators and
confidence interval (hyper cube) are constructed based on this observation
by doing estimation and inference on each component and carefully join
them together.

The key idea behind the construction for each component of the optimal
procedures is to first iteratively localize the minimizer by comparing the
integrals over relevant subintervals together with a very carefully constructed
stopping rule controlled by a user-specified parameter, and then add an
additional estimation/inference procedure. The final estimation/inference is
to carefully choose the control parameter of the component-wise stopping
rule and put together the output for each axis.

The resulting estimators, Z for Z(f) and M for M (f), are shown to attain
within a dimension-dependent constant of the benchmarks R, (g;f) R, (e;f)
simultaneously for all f € F,

(1.7) Be (12 - Z(0)]?) < CaoRa(e36),
(1.8) Er (N = M(£)|2) < ConsBones ),
for constants C, s and C}, s depending on dimension s only.

The resulting confidence interval (hyper cube), CI. , for Z(f) and C1,, o
for M(f), are shown to have the pre-specified coverage (1 — a)) while hav-
ing expected length (volume) being adaptive to f and attaining within a

coverage-dimension-dependent constant of the benchmarks Ly, . (; f), Lom(c; f)
for all f € F. That is,

(19) IEf (V(C’Iz,a)) < Cz,s,aLa,z(g; f),
(110) IE:f (‘Clm,oa‘) S Cm,s,aLa,m(E; f)7

where C; 5 o and Cp, s o are constants depending on dimension s and « only.
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1.3. Organization of the Paper. In Section 2, we analyze local minimax
risks, relating them to appropriate local modulus of continuity, in turn pro-
viding rate-sharp upper and lower bounds. We also provide lower bound for
the benchmark for inference of the minimizer in Section 2. In Section 3, we
introduce projection representation of the observation, provide computation-
ally efficient adaptive procedures and show their optimality. In Section 4, we
consider the nonparametric regression model. We introduce the correspond-
ing benchmarks, propose adaptive procedures and establish the optimality.
Proofs are given in appendix Section 6.

1.4. Notation. We conclude this section with some notation that will be
used in the section. The cdf of the standard normal distribution is denoted by
d.For0<a<l,z,=®1-a). Fora =0, z, = 0o. We use ||-|| to denote
the Lo norm for vectors, univariate functions and multivariate functions,
depending on the setting. We use 1{A} to denote indicator function that
takes 1 when event A happens and 0 otherwise. We use bold symbols to
denote multivariate functions, e.g. f, g, h. We use fi,---, fs to denote the
component functions for f and fy for constant part for f, similar convention
for g, h. Let a A b = min{a, b},a V b = max{a,b} for real numbers a and
b. We use Z(-) to denote the minimizer operator, and M(-) to denote the
minimum operator, for both f € F; and f € F. Note that we use Z, (S)
to denote the collection of confidence hyper cubes for the minimizer with
guaranteed coverage probability 1 — « for all functions in S. This can be
generalized into univariate case when & C F and the hyper cube becomes
interval.

We use 7, o(S) to denote the collection of confidence intervals for the
minimum with guaranteed coverage probability 1 — « for all functions in S.
This can be generalized into univariate case when S C F.

2. Local Minimax Rates and Lower Bounds. In this section, we
discuss the local minimax rates and the lower bound for inference of the min-
imizer. We introduce the local moduli of continuity and use it to characterize
the benchmarks for estimation of minimizer and estimation and inference of
minimum introduced in Section 1.1. We provide rate-sharp bounds for the
continuity moduli based on geometry properties of the functions. As we use
a different benchmark for inference of minimizer, we provide lower bound of
it in this section.

2.1. Local Modulus of Continuity.. For any given function f € Fj, we
define the following local moduli of continuity for the minimizer and mini-
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mum.

(21)  wi(sf) = sw{l|Z(f) - Z(@)|”: |f —gl2 < e,g € F}
wi(e;f) = sup{|M(f) - M(g)|*: f —gll2 <&, € F},
wm(e;f) = sup{[[M(f) — M(g)[| : If —gl2<efeF}.

As in the case of linear functionals or in the case of minimizer and minimum
operators for univariate convex functions, the local moduli w,(g; f), wp,(&; f),
Wm(g; f) clearly depends on f and can be regarded as an analogue of inverse
Fisher Information in regular parametric model.

The following theorem characterizes the benchmarks for estimation and
inference in terms of the corresponding local moduli of continuity.

THEOREM 2.1 (Sharp Lower Bounds). Let R,(e;f) be defined in (1.3),
Ry, (e;f) be defined in (1.4), and Lo m(c; ) be defined in (1.6). Let 0 < o <
0.1. Then

(2.4) aw,(e;f) < R,(5;f) < Aw.(gf),
(2.5) awm (e;f) < Ry(ef) < Awp(e;f)
bawm(e;f) < Lam(e;f) < Bawm(e;f)

where the constants a, A, by, Bo can be taken as a = 0.1, A = 3.1, b, =
0.6 —a, and By = 2(1 — 2a)z,.

Theorem 2.1 shows that the benchmarks can be characterized in terms of
continuity moduli of continuity. However, this continuity moduli is hard to
compute. Now we related it to geometric quantities of f. We first introduce
two geometric quantities for univariate convex function f € F, which are
also used by Cai et al. (2023a). For f € F, u € R and € > 0, let f,(¢t) =
max{f(t),u}, M(f) = mingep, f(z), and define

(2'7) Pm(ff;f) - Sup{u - mln{f(x) HEAES [07 1]} : Hf - fu” < 8}7
2.8 pz(&; ) = sup{[t = Z(f)] : f(t) < pm(e: f) + M(f),t € [0,1]}.
With the geometric quantity p.(e; f) for univariate convex function f €

F, we can establish a rate-sharp bound of modulus of continuity for the
minimizer for multivariate additive convex function f € F.

THEOREM 2.2 (Geometry Representation for Modulus of Continuity for
Minimzer). Let p,(e; f) be defined in (2.8) for f € F, and let £ € Fs. Let
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w,(g;f) be defined in (2.1).Then
(2.9) 253> pa(e fi)? Swaleif) <D 9pa(i fi)
And for any B < s, there exists £ € Fs such that Y ;_, p-(g; fi)* = 8 and
(2.10) wy(g;f) < 9573 zs:pz(fs

i=1

And for any B < s, and 8y > 0, there exists £ € Fy such thaty ;_, p.(c; fi)? =
8 and

(2.11) w.(e;:F) > p.(e; fi)% = o

Theorem 2.2 shows that the modulus of continuity for minimizer varies
within an absolute constant multiple times of

., s s
s 3 sz(g; f%)Q and sz(€§fi)2v
=1 i=1

with the order of both upper and lower bound attainable for some f € F.
With the geometric quantity p.(e; f) and pm(e; f), we can establish a
rate-sharp bound of moduli of continuity for the minimum.

THEOREM 2.3 (Geometry Representation for Modulus of Continuity for
Minimum). Let p,(&;f) be defined in (2.8) and pym(c;f) be defined in (2.7)
for f € F. Let wy,(g;f) be defined in (2.2) and @, (e;f) be defined in (2.3)
for £ € Fs. Then

(2.12)

1 s
1+ Zf:l(l A 2Pz(5;fi>) ;pm(afi) < wm( < 9 14 - me fz ,
(2.13)

s

1 o 1< .
1+ 37 (1A 2p:(53 ) ;pm(s, Joff < Gm(Ef) < 91+ s);pm( /i)

Theorem 2.3 shows that the modulus of continuity for minimum w,,(¢; f)
is of the order Y7 _; pm (e fr)? and @y, (e; f) is of the order /> _; pm(e; fx)?

Now we have done establishing the local minimax rates for three tasks,
we turn to establishing the lower bound for the benchmark of inference of
the minimizer.
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THEOREM 2.4 (Lower Bound for Expected Volume of Confidence Hyper
Cube for Minimizer). Let L, .(e;f) be defined in (1.5) for £ € Fy and
pz(g; f) be defined in (2.8) for f € F. Then we have

(2.14) La:(g;f) > Co sIT; 1 p2(e5 fi),
where Cy 5 15 a positive constant depending on o and s.

2.2. Penalty for Super-efficiency. We have shown that the estimation
benchmarks R, (e;f) and R,,(s; f) can be characterized by intrinsic geomet-
ric quantities of f. Now we show that these benchmarks can not be essentially
uniformly out performed. That is, if the benchmark is significantly out per-
formed at function f € F;, then it needs to pay a penalty at another function
f; € Fs. These benchmarks, similar to that in the univariate case, play a
role analogous to the information lower bound in the classic statistic.

THEOREM 2.5 (Penalty for Supper-Efficiency). For any estimator of the
minimizer Z, if Bg (HZ - Z(f)|]2> <R, (g;f) forf € Fs and v < ~yp, where
Yo s a positive constant, then there exists £y € Fs such that

. 1
(2.15) Er, (17 = Z(8)]?) = c,s(1og ;)%Rz(s; £1),

where ¢, 5 is a constant depending on s only.

Similarly, for any estimator of the minimum M, if Ef(|M — M(£)]?) <
YRy (;f) for £ € Fs and v < /s, where vy is a positive constant, then
there exists f1 € Fs such that

N 1.2
(2.16) Er, (I = M(£)[?) > cn,s(log D)iBn(sh)

where ¢, 5 15 a constant depending on s only.

3. Projection Representation and Adaptive Optimal Procedures..
We now turn to the construction of data-driven and computationally efficient
algorithms for estimation and inference of minimizer and minimum for white
noise model. Our construction is based on an information-preserving repre-
sentation of the observation Yy, which we call Projection Representation.
We show that our procedures achieve, up to a universal constant depending
on dimension s and confidence level 1 — «, the corresponding benchmarks
R.(e;f), Rm(e;f), Lo 2(e;f), Lam(e;f), simultaneously for all f € F.
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3.1. Projection Representation.. The construction of the procedures is
based on an interesting property of the observation Y (or Y) that Y admits
a nice information-preserving projection representation, which maps Y to an
s+ 1—tuple, where first s elements can roughly be considered as a projection
of the original stochastic process on each coordinate, and the last element is
an s—dimensional stochastic process that can be considered as a remaining
erTor.

DEFINITION 3.1 (Projection Representation). For each 1 < i < s, the

i—th projection of Y, m;(Y), is a univariate stochastic process that satisfies
for0<a; < A; <1,

(3.1) / dﬂ'Z(Y) = / dY — (A, - CLZ)/ dY,
[ai,Ai] tie[ai,Ai],t,¢€[0,1]5—1 [0,1]8

where t_; = {tl, ey tic1, b1, - .ts}.
er(Y) is a stochastic process on [0,1]°, such that for A = [a1, A1] X
[ag, Ag] X -+ X [as, As] C [0,1]°, we have

(3.2) /A der(Y) = /A dy—inj#(Aj—aj) /a A dmy (V).

i=1

The projection representation mapping B(-) of Y is
(33) m(Y) - (Wl(Y>77r2(Y)7 cee 77r5(Y>7 er(Y))

The reasons we call it a projection representation mapping are that B(Y)
preserves all information of Y, that 3(Y’) has all of its elements, the projec-
tions and error, being mutually independent, and that its first s elements are
sufficient statistics for corresponding component function f;. More specifi-
cally, we have Proposition 3.1 summarizing the properties of projection rep-
resentation.

PROPOSITION 3.1 (Property of Projection Representation). Let B(-) be

defined as in equation (3.3). Denote the class of stochastic process defined
n (1.1) as Q. Then we have the followings.

e B(-) is a bijection from Y to P(Y).
o B(Y) has all elements being independent.
o m;(Y) is a sufficient statistic for f;, fori € {1,2,...,s}.

Also, it’s easy to check that er(Y') only depends on fy, thus not car-
rying information for Z(f) by itself. Instead, it carries part of the infor-
mation of M(f). Note that the minimizer Z(f) can be written as Z(f) =
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(Z(f1), Z(f2),---,Z(fs)), so its i-th element only depends on f;. Similarly
M(f) can be written as M(f) = fo + >_5_; M(fx), so each component in
PB(Yr) serves as a sufficient statistics for each of the adding components of
M (f). The information preserving representation J3(-) plays the role of sep-
arating the relevant information of s coordinates into independent random
variables.

3.2. Adaptive Procedures.. Now we are ready to introduce the construc-
tion of data-driven and computationally efficient algorithms for estimation
and confidence interval (hyper cube) for the minimum M (f) and the min-
imizer Z(f) under the white noise model in this section. The procedures
constructed in this section are shown in Section 3.3 to be adaptive to each
individual function f € F; in the sense that they simultaneously achieve,
up to a universal constant depending on dimension s and confidence level
1 — «, the corresponding benchmarks, simultaneously for all f € F;.

Similar to the construction in Cai et al. (2023a), we have three blocks: lo-
calization, stopping, and estimation/inference. But since m;(Y") has different
distribution with that in the univariate case, and we also need to account
for the dimension, our procedures are carefully tailored to accommodate for
the new challenges.

3.2.1. Sample Splitting. For technical reasons, we split the first s coordi-
nates of the projection representation (i.e. P(Y)), V = (w1 (Y),m2(Y),...,ms(Y)),
into three independent pieces to ensure independence of the data used in the
three steps.

Let Bi(t), B(t), Bi(t), B3(t),...,BL(t), B3(t) be 2s independent stan-
dard Brownian motions that are also independent from Y. Let data vec-
tors Vi = (vi,vh, ..., vh), V. = (v, v, ..., vl) and V. = (v§,VS,..., V) be
defined as follows.

(3.4)
vi(t) =mi(Y)(t)

(B}(t) — t/olBil(:c)dx> +

+\f5
vi(t) :m(Y)(t)Jr\fg (B}(t) —t/o B;
—V2e

(B}(t) —t /0 ‘B (x)dx) .

Then the concatenate vector of vectors V;, V,., V. has all of its 3s elements

being independent, and for each axis i € {1,2...,s}, vi(t), vI(t),v¢(t) can

S
=)
o,

K
N———
|

SN
™
N
sy
TR ;
=
N—
|
~
S—
i
sy
)
—~
&
N—
o,
&
N—

vi(t) =mi(Y)(t)
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be written as

dvi(t) = f;(t)dt + V3edW},
(3.5) Avi(t) = fi(t)dt 4+ V/3edW],
Ave(t) = fi(t)dt + v/3ed Wy,

where Wil, W[, Wie are independent standard Brownian Bridges.

3.2.2. Localization. We use V; for localization step, and for each axis
ke {1,2,...,s}, localization is based on vz.

We take an iterative localization procedure similar to that in Cai et al.
(2023a) on vfg. For iterations (levels) j = 0,1,.. ., and possible location index
at jth level i = 0,1,...,27, we denote the sub-interval length, sub-interval
end points, and the index of the sub-interval containing the minimizer at
level j to be

(3.6) m; = 2_j, tj,i =1- mgj, and ’L';ik = max{z' : Z(fk) € [tj,ifl,tj’i]}-

For j=0,1,...,and i = 1,2,...,27, define

tji ;

tji—1

where vi/, is one of the three independent copies constructed above through
sample splitting. For convenience, we define X;;; = +oo for j = 0,1,...,
andi € Z\ {1,2,...,27}.

Let go,k; =1land for j=1,2,..., let

Lk = ) argmip Xjik-
2,1 —2<i<2i; 141

Note that given the value of %jfl,k at level 7 — 1, in the next iteration
the procedure halves the interval [t; Lt

i
j,irl’t

at level j from these and their immediate
neighboring subintervals. So ¢ only ranges over 4 possible values at level j.

;] into two subintervals and
j—1,k

selects the interval [t; i
7

3.2.3. Stopping Rule. For each axis, it is necessary to have a stopping
rule to select a final subinterval constructed in the localization iterations
and carry out the estimation/inference based on that. But unlike a unified
stopping rule in univariate case, we construct a series of stopping rules based
on a user select parameter ¢ > 0, which we will specify later in the specific
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estimation/inference procedures. Again, for any 1 < k < s, we focus on the
stopping rules for k-th axis.

We use another independent copy vj, constructed in the sample splitting
step to devise the stopping rules. For j =0,1,...,and i = 1,2,...,27, let

- tj,i
Xj,i,k :/ dVZ(t)

tji—1

Again, for convenience, we define Xj,i,k = +oo for j = 0,1,..., and i €
Z\{1,2,...,27}. Let the statistic T} be defined as
j_‘ng - min{XJ7€],k+67k o X]v£j,k+57k7 vaij,k_67k - vaij,k:_g)vk}’

where we use the convention +00 — x = +00 and min{+oo,z} = z, for any
—o0 <z < 00.

The stopping rule indexed by the parameter ¢ > 0 is based on the value of
T 1. Before we formally go into the stopping rule, it’s helpful to look at the
distribution of the elements defining 77 ;.. Let 0]2- = 6mj€2, some calculations

show that when X .

a6k Xj,ij,k+5,k < 00, we have
(3.7)

Xj,%j,k+6,k - ijzj,k+57k'
0j

FONA UL AVALEN 1/tfﬁj+6’k fult +m5) = fu(t) 4, 4

g,k
V6e m; J; m;j

3yij+5.k

Note that the term

m; m;

T 5450k J
can be interpreted as an average slope across the interval [¢ G4k t i +6,k]
of the line determined by two points (¢, f(¢)) and (t +mj, f(t +m;)). Basic
property of convex function shows that Sy(j, k) is non-increasing with the
increasing of j, and that S,(j, k) < 0 implies i} = 1j+5. These mean that a

o ~X.-
Jsis 6,k st g +5,k
small number of ——L—— 3%
J

choice of a far away sub-interval from the one minimizer lies in or a negligible
signal which implies little or no gain in continuing the localization procedure.

indicates either localization procedure’s

X. - =X
Jstj =6,k Jiij =5k

Analogous results hold for >

Finally, the iteration stops at level j(C, k), where

A T
(3.8) 3(C, k) = min{j : (%k <z}
J
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The subinterval containing the minimizer Z( fx) is localized to be

[tj(gvk)zii(g,k),k_l, t-}(cvk)’ii(@k)vk] '

3.2.4. Estimation and Inference. After obtaining, for each axis k € {1,2,..., s},
a stopping step 7(Cx, k), an associated index at the stopping step ij‘((k k) o

and a final interval [ti(ék,k) |, all controlled by a pa-

B =1 L CR) 5, i
rameter (; > 0, we use them to construct estimator and confidence interval
(hyper cube) for the minimum M (f) and the minimizer Z(f).

For estimation of the minimizer, we set (, = ¢ = ®(—2), for k € {1,2,...,s}.
The k-th axis of the estimator Z is given by the mid point of final interval:

5 tj(c’k)j}‘((,k),k*l + tj(gvk)’zi'(c,k%k

(3.9) Zy = 5
The final estimator Z is given by
(3.10) 7 =(Zy,Za,...,Zs),
with Zj defined in (3.9).
For inference of the minimizer, we set (,, = ( = a/s, for k € {1,2,...,s}.
The k-th axis C1j, of the hyper cube C1, , is given by
(3.11)

—J(Ck)+1 (2 —3(Ck)+1 (2
Ol = |27 (i gy 1= 7) 2770 (i gy +6) | 010,10,
The confidence cube C1 for the minimizer is give by
(3.12) Cl,o=CI xCly x --- x Cl,

where C1}, is defined in (3.11).
For estimation and inference of the minimum, let

_ Ly
mek:/ dvi(t),
tji—1
for 1 <i <2/ and +oo fori ¢ {1,2,---,27}.
For estimation of the minimum M (f), let {, = ¢ = ®(-2) for k =

1,2, s. Let the final index for estimator construction for k-th coordinate
be

(3.13)

Pk = 1)1k T2 (1{X3(<,k>,%;(<,k>+67k = Xiemiseu ek = 2en}
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The estimator of the minimum is given by

S

(314) M=Y(L,1,---,1) = Y(0,0,---,0)+ Y 2K X

I(CK)ipk ke
k=1

For inference of the minimum, let , = ¢ = a/4sfor k =1,2--- ,s. Define
an intermediate estimator of the minimum by
(3.15)

S
fi=Y (1,1, 1)=Y (0,0, ,0)4) 2R3 min Xt hyea,in:
el 1635 ¢ gy, m1— ) <IS16(i5 (¢ 1) 11 +6) ’ 7

Let Uy, be the cumulative distribution function of @ = max{uy,--- ,u,},

where

U, -+ ,Un Z’Ld N(Oa 1)7
and define
(3.16) Sui=Uy'(1-B).

In other words, Sy, g is the (1—3) quantile of the distribution of the maximum
of n i.7.d. standard normal variables.

Let
S -
5 J(Gk)+3
fr; =1 + SQOS,a/Ss X \/5522J 2 + Za/g\/g&s
k=1
(3.17)
. - > 3(Ck)+3
fio =F1 — 200V, |14+ 2@ N "2 V320277
k=1 k=1

Then the (1 — «) level confidence interval for M (f) is
(3.18) Clima = [fo, uil.

3.3. Statistical Optimality.. In this section, we establish the optimality
of the adaptive procedures constructed in Section 3.2. The results show
that the date driven estimators and the confidence interval (hyper cube)
achieve within a universal constant factor depending on s and « only of
their corresponding benchmarks simultaneously for all f € F. These results
are non-asymptotic and function-specific, which are much stronger than the
conventional minimax framework. We start with estimation of the mini-
mizer.
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THEOREM 3.1 (Estimation for Miminizer). The estimator Z defined by
(3.10) satisfies

(3.19) Eq (||Z - Z(f)||2) < C,uR.(e;f), for all f € F.,
where C, s > 0 is a constant depending on dimension s.
The following holds for the confidence hyper cube C1, .

THEOREM 3.2 (Confidence Hyper-cube for Minimizer). For0 < a < 0.3,
the confidence hyper cube C1, , defined by (3.12) is a 1 — « level confidence
hyper cube for the minimizer Z(f). Its expected volume satisfies

IE’f (V(CI)) < Cz,s,aLa,z(E; f)v
where C 5 o 15 a positive constant depending on s and a.

THEOREM 3.3 (Estimation for Minimum). ~ The estimation M defined in
(3.14) satisfies

(3.20) E ((M - M(f))Q) < OBl 1),
where Cy, 5 15 a positive constant depending on dimension s.

THEOREM 3.4 (Confidence Interval for Minimum). For 0 < «a < 0.3, the
confidence interval defined by (3.18) is a 1 — a level confidence interval for
the minimum M (f) satisfying

(3.21) E(|Clm,al) < CmsaLlam(e;f),
where Cpy 5.0 15 a positive constant depending on a and s.

4. Nonparametric Regression. We have so far focused on the white
noise model. The procedures and results presented in the previous sections
can be extended to nonparametric regression, where we observe

(4.1)

Yiyig,..is = E(i1/n,92/n, ... is/N) + 021 g,.is, 0 < iy <, for 1 <k <s,
with 2, iy, s il N(0,1), f € Fs. The noise level ¢ is assumed to be known.
The tasks are the same as before: constructing optimal estimators and confi-
dence interval (hyper cube) for the minimizer Z(f) and the minimum M (f),
for f € F,. For simplicity of notation, we take i = (i1, i2,...,7s). To avoid
trivial case, we suppose n > 2.
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4.1. Local Minimax Rates, Discretization Error and Separable Represen-
tation. Analogous to the benchmarks for the white noise model defined in
Equations (1.3), (1.4), (1.6), we define similar benchmarks for the nonpara-
metric regression model (4.1) with n+1 equally spaced observations. Denote
by Zim an(§) the collection of (1 — ) level confidence intervals for M(f) on
a function class § under the regression model (4.1) and let

R.n(0;f) = sup inf max E,|Z — Z(h)|?,
geF. 7 he{f.g}

Rmn(o:f) = sup inf max E M — M(h 2
(4.2) n(o;f) sup inf max, n( (h))
Lin.an (0 f) = sup inf Ee|Cln.al.

gEFs Clm,a€Lm,a,n({f,g})

For confidence hyper cube for minimizer, denote Z,, , (&) the collection of
(1—a) level confidence hyper cube on a function class § under the regression
model (4.1) and let
(4.3) L.an(o;f) = CIELIVLI,l(f,n(Fs) E¢V(CI).

It is clear that the expected volume for confidence hyper cube of the min-
imizer can not be smaller than L, ,,(c;f), which is also function-specific,
i.e. depending on f.

Compared with white noise model, in addition to the difference in the
probability structure caused by discrete observations, estimation and infer-
ence for both Z(f) and M (f) incur additional discretization errors, even in
the noiseless case. See the appendix Section 6.12 for further discussion.

4.1.1. Separable Representation. Analogous to the white noise model,
the observation under nonparametric setting also admits a separable repre-
sentation, as defined in Definition 4.1.

DEFINITION 4.1 (Projection Representation for Nonparametric Regres-
sion Model). For k € {1,2,...,s}, the k-th projection of {y;i}, 7x({yi}), is
an n + 1-long random vector,

(4.4)
me({yi}) =
( Zi:ikzl Yi DoV Zi:ik:2 Yi il Zi:ik:s Yi iU >

(n+1)=t (n+ 1) (n+1)=t (n4+1)s7 T (n+ 1)t (n41)8

er({yi}) is an s-dimension tensor with

S
(4.5) er({yi i sia, - is = Yiryizyis — P Tk({Bi i
k=1
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for0<ip<n,1<k<s.
The projection representation mapping B(-) of observation {y;} is given
by

(4.6) P} = m{wi}), m2({vi}), ws({wi}), er({wi}))-

Similar to white noise model, 3(-) preserves the information of {y;}; has
its s+1 elements being mutually independent; and separates the information
for the s univariate component functions of f into its first s random variables,
as shown in Proposition 4.1.

PROPOSITION 4.1 (Property of Projection Representation). Let B(-) be
define in equation (4.6). Then we have

o B(-) is invertible,
o B({yi}) has its s+ 1 elements being independent,
o w.({vi}) is sufficient statistic for f.

4.2. Optimal Procedures. Similar to the white noise model, we split the
data into three independent copies and then construct the estimators and
confidence interval (hyper cube) for Z(f) and M (f) for f € F; in three major
steps: localization, stopping, and estimation/inference.

4.2.1. Data Splitting. Let zi A N(0,1), with 1 <k <s,1<i<n,
1<j<2

For each 1 < k < s, we construct the following three sequences based on

T ({vi}):
(zg _ >0 Zl%,l) }
kst n+1 ’

(4.7)
( 9 >0 Zl%,l) }
Rli — )
’ n+1

no1

Vi =me({i})i + ( 7 e {?( Zéif”) +\é€
no1

Vi = Te({wi})i + 7 e {\Qf ( ZlOkl) _ \f

( n+1

o \/* 1 Z? Ozlil
vi o =m({yi))i — ————— V2 | 5, — ——— |,
ki ({yl})l (n n 1)551 ki n+1
for ¢ = 0,---,n. For convenience, let V,l” =, = vi; = oo fori ¢
{0,1,--- ,n}. It is easy to see that the three sequences for each axis k are

independent, and the s collections of the three sequences are also indepen-
dent. For each k, we will use {I/,lg} for localization, {y;;} for stopping rule,
and {v} } for construction of the final estimation and inference procedures.
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Let J = [logy(n+1)]. For j =0,1,---,J, i =1,2,---, |2 |, the i-th

i J . J—3 . i
block at level j consists of {(Z 11)12 - , @ 1)2n JH, Z'anj_l }. Denote the sum

of observations in the i-th block at level j for the axis k, sequence u (u=Lr,e)

as
2771
U — u
(4.8) Y= ). Ui
h=(i—1)27 7

Again, let Y{ . = 400 when i ¢ {1,2,---,[ &t} for k € {1,2,--- s},

we{l,re}, 36{0,1,-- , J}.

4.2.2. Localization. For k-th axis, we use {I/,lg poh €{0,1,--- ,n}} to con-
struct a localization procedure. Let ik,o =1,and for j =1,2,---,J, let
(4.9) ipj = arg min Yi/,’j’i.

max{2iy j_1—2,1}<i<min{2iy ;_1+1, 2J ]J}

This is similar to the localization step in the white noise model. In each
iteration, the blocks at the previous level are split into two sub-blocks. The
i-th block at level j — 1 is split into two blocks the (2¢ — 1)-th block and
the 2i-th block, at level j. For a given 1;” 1, 1;” is the sub-block with
the smallest sum (i.e. Y} ]i) among the two sub-blocks of 1;97]_1 and their
immediate neighboring s{ﬂg)—blocks.

4.2.3. Stopping Rule. Similar to the stopping rule for the white noise
model, for axis k, define the statistic Tj ; based on the sequence Yk’;,’. as

o : T _yr ro _yr
Thg = 0I0{Y) 5, b6~ Yhgins o5 Yhgde,—6 ~ ke, -5
~2 J—j a? r
Let 6;, = 6 x 2 X r)e= . It is easy to see that when Yk,] T
T
Yk’]’ik,]+5 < 007
(4.10)

(i,;+5)2777-1

ey (Y (e )

h:(ik7j+4)2‘]7j

T T
Yk’]’ik,]"’_ﬁ Yk7j7ikv]+5

Similar to white noise model, we define a series of stopping rules controlled
by a parameter ¢ > 0.
Define a stopping step precursor ji(¢) as

jx(¢) = min{j : Trj < 2c05,} if {j: Thy < 2068, N {0,1,2,--- , T} #0
Ik 00 otherwise
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and terminate the algorithm at level jx(¢) = min{.J, jx(¢)}. So either Ty
triggers the stopping for some 0 < j < J or the algorithm reaches the highest
possible level J.

With the localization strategy and the stopping rule, the final block, the
ik,jk(g)‘th block at level j;(¢) is given by

h ~ 2 ~ 2
& (egue — 12773 < h <y 02770 — 13,

4.2.4. Estimation and Inference. After we have, for each axis k € {1,2,--- , s},
our stopping step precursor jx((), stopping step 3r(¢ ), index associated with
the stopping step i k.30 (C)? and the final block, we use them to construct es-
timator and confidence hyper cube for the minimizer of f € F;, as well as
estimator and confidence interval for the minimum of f € F;.

For estimation of the minimizer, let { = ®(—2). The k-th coordinate of
Z, Zk, is defined as

1 1 3 A' 3
A S (QJ-M«) _ 2J—Jk<c>—1) , ir(€) < o0
(411) Zy=14 1 1 '
. e 3
- arg min Viio1 — o Jk(¢) =00

ip,s—2<i<ij g+2

The final estimator Z is defined as

N

(412) Z - (ZAl)ZAQ7' o 7ZS)5

where Zj, is defined in (4.11) for k € {1,2,--- , s}.

To construct the confidence hyper cube for Z(f), for each axis k € {1,..., s},
we set the parameter for stopping rule to be (, = «/2s and take a few ad-
jacent blocks at level jx(Cx) — 1 to the left and right of ik,jk(ck)—l'th block.

Let

Ly, = max{0,2-(3; 5, (a/26)-1—7)}» Uk = min{2:(iy 5, (a/20)+6), [(n1)23%(@/29)=T1},
When ji(a/2s) < oo, let

il 9J—Jk(a/2s) I 1 9J—Jk(a/2s) 1 .
. thgo=———Lp— — tpp = min{ ——— U, — —, 1}.
(4.13) ko - k= 5 thhi min{ - Uk 5 }
When jj(a/2s) = 00, tg 1, and ty p; are calculated by the following Algo-
rithm 1.
The key ideas of Algorithm 1 are as follows.
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jk(a/2s) = oo means that Ty ; never triggers the stopping, which is a
strong indicator that the signal is strong and discretization error could dom-
inate. Algorithm 1 first specifies a range that the minimizer lies in with high
probability (e.g. 1 — a;/2s), and then shrinks the interval to locate the min-
imizer among the grid points within the original interval. After this step,
the minimizer(s) among the grids are in the shrunk interval with high prob-
ability (e.g. 1 — 3a/4s). Then in the case that shrunk interval detects only
one grid-wise minimizer (i,,/n) and this minimizer does not indicates a dis-
cretizatino error larger or equal than 1/n (i.e. i, = 1 or i, = n — 1), we
use a geometry property of convex functions to determine the final interval.
Basically, the right most possible minimizer is or is infinitely near to the
intersection of two lines : y = f(in,/n), and the line joining (‘=tl f(intl))
with (2 f(imt2)) With observation Viins Vi i10 Vi, +2o We can infer
the intersection of the aforementioned two lines and specify the right end
point of the interval accordingly.

The k-th axis of confidence hyper cube C1I. , is given by

(4.14) Clk,oc = [tk,loatk,hi]-
The (1 — «)-level confidence hyper cube C1, , is given by
(4.15) Cl,o=ClioxClyox--xCls,,

where CIj, , is defined in (4.14).
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Algorithm 1 Computing ¢, and g 4; when j;(¢) = oo

Ly + max{O,Zikjk(a/%%l — 15}, Uk = min{m?ikjk(a/%)fl + 12}, a1 = a/8s, as =
a/24s

iid.
Generate 22’0, zgg, e 722771 bR N(0,1)
. . . \/50' 3 3
g« min{{U}U{i € [L,U—-1]:vg; —Viiy1 + ———— (z,” — Zhit1 — 22a1) <0}
(n+1)%
. . V3o 3 3
ir = max{{L—1}U{i € [L,U~1] : v ;= Vi i1+ =5 (2K — ZRit1 + 22a,) > 0}
(n+1)%
if 4; <1, then
tr,10 = max{0, ”;1}, tr,ni = max{1, %}
end if
if iy, =4-4+1 and 7 <n —2 then
. 3 3 3
i U isa — Vi — % (242 — i1 — 2V270,) > 0 then
(n+1) 2
Vli,il_Vz,i,+1_f73g;1(zz,il_z%,il+l_2\/§z‘12) ] )
th,i «— (n+1) 2 _‘_% + Z;L A zlzl
"(”E,il+2*l’z,il+1*%(Zz,il+2722,il+1*2\/52(12)>
(n+1) 2 +
else
) 2
thi < -
end if
end if
if iy, =4-4+1 and 7, >n — 1 then
teni =1
end if
if iy =4, +1 and ¢; > 2 then
if Vg0 — Vi -1 — — V37 (Z27i1_2 — 22’”_1 — Zﬁzaz) > 0 then
(n+1) 2
Vf;,il—Vi,il_l—%(22,i,—22,i,_1—2ﬁ2a2) ) ]
tk,lo «— _ (n+1) 2 + 117:1 A %
”(”2,@2”2,@1 33_1 (Zi,il2zz,il12\/§zaz)>
(n+1) 2 +
else
]
tk,'lo < o
end if
end if
if iy, =4-4+1 and ¢; <1 then
trio =0
end if

Now we turn to the construction of the estimator and confidence interval
for the minimum.
We start with estimation for the minimum M (f). Let { = ®(—2). For axis
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k, let

=1{Y . Y . <zl F-1{YT . Y <262, )

The estimator for M (f) is given as follows.
We define s intermediate estimators M, as

3k(Q)—Jye A R .
(4.16) M 2 Yk’jk(c)’ik,jk(g)+2Ak’ k() < o0
. k - i % .
min 1/2’1-_17 54(0) = oo

g,y —2<i<iy j+2

The final estimator M is defined as

S

(4.17) M=t S er({mh)+ ) M.

S
(n+1) i€{0,1,2, ,n}* k=1

Now we continue with the confidence interval for the minimum M (f). Let
Ck = C = / 4s.

Define the step number that will be used for constructing the interval as
Je(Q) +3,  for jx(¢) < J

(4.18) JFk = {OO’ for 3x(¢) = o

Basically, we go three steps forward from the step that the test statistic Ty ;
triggers the stopping rule.
Define

Ik,lo = 2(jF’k/\J)_jk(<)+1 X (ik,jk(f)—l - 7) 9

(119) o A
Iipni = 9(irkAT) =3k (O+1 o (ikjk(()fl 4 6) +1

VVe~ first define 3 sets 9f s intermediate estimators {Mk,md 1 < k<
shAMppi 1 <k < s}, {Mpjo:1 <k <s}as

4.20 M,,..= min Y%, - QURENT)=T
( ) Fmd T, 10<i<Ij pi k(G k)0 ’

B 3 GphD)—J
(4.21) My hi = M ma + S210,0/85 X Vi x2
7 (n+1)=2
and
(4.22)

- ~ 30’(2 4s T 1) Jpk—J
Mk,lo = Mk,md_a/—ss;lXQ 2 _5210,(1/8SX\/§73;
(n+ 1) (n+ 1)

o GrreAd)—J

- X272 for jpp < J.
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Let MMO be computed by Algorithm 2 when jgj, > J. Algorithm 2 is based
on the geometric property of the convex function f that for any 1 < i < n—2,

i+2 i+1 . .
: ) — Je\ 1+1 141
inf f(t)> inf max S5 f(">(t— )+ fi( )s
te[2, 1) veld, B] 1/n n
i i—1 . .
Jr(3) _fk(ZT)(t_ Ot
1/n n n’ [’
Algorithm 2 Computing Mk lo When jpp > J
ki < max{0, In1o — 1}, kr < min{n — 1, Ix s — 2},H < Sk, _p, 44, 2 V3 7 - +
s (n+1) 2
Za V3o
S (413
1f kl =0 then
ve o —vf 2H
vro(t) ¢ 2R (4 1/n) 4 vE y — H R(0) ¢ mingefo,1/n) vro(t)
end if
ifkT:nflthgn .
Vi n—1(t) W(t—%)—&—uﬁm,l—H, h(n—1) = mlnte[n 1 ]’Ul,nfl(t)
end if
fori=(kiv1), -, (k- An—2)do
Define two linear functions:
Vki — Vi1 — 2H 1
i = : > - [ H7
(0 Tl R
VE Vg i1 +2H 1 .
Uri = = 1;71+1 (t— =)+ Viiv1r — H
h(i) = min, s i1y max{vei(t), vri(t)}
end for o ~
Mk:,lo — min{h(i) k<i< kr} N Mk,hi
Let
(4.23)
~ 1
Mhi:m Z {yl +ZMkhZ+Za/8 2[ 1 % S,
i€{0)172""1n} ( + )
(4.24)

- 1 S. -
Mp=— > er({ui}) + > Miso— 2as5- Q\f
k=1

The confidence interval for the minimum M (f) is given by

(4.25) Clim.o = [Mig, My].
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4.3. Statistical Optimality. Now we establish the optimality of the adap-
tive procedures constructed in Section 4.2. The results show that our proce-
dures are simultaneously optimal (up to a constant depending on dimension
and confidence level) for f € F; in terms our benchmarks introduced in (4.2)
and (4.3).

We begin with the estimator of the minimizer.

THEOREM 4.1 (Estimation for Minimizer). The estimator Z defined in
(4.12) satisfies

(4.26) Eq (HZ . Z(f)H?) < QuRun(osf), for all f € F,
where Q) s 1s a positive constant depending on s.
For the confidence hyper cube C1, , of Z(f), we have the following result.

THEOREM 4.2 (Inference for Minimizer). For 0 < o < 0.3, confidence
cube C1, 4 defined in (4.15) is a (1 — «)-level confidence cube for the mini-
mizer Z(f) and its expected volume satisfies

(4.27) Ef (V(CIL4)) < Qzs.0lzan(o;f), for all f € F;
where Q) 5.« 15 a positive constant depending on s and o only.

Similarly, the estimator and confidence interval for the minimizer M (f)
also achieve within a constant depending on s and « of the corresponding
benchmark simultaneously for all f € F;.

THEOREM 4.3 (Estimation for Minimum). The estimator M defined in
(4.17) satisfies

- 2 .
(4.28) E (M - M(f)) < QR (03 F)
where Qs 15 a positive constant depending on s.
THEOREM 4.4 (Inference for Minimum). For0 < o < 0.3, the confidence

interval Cly, o defined in (4.25) is a (1 — «) level confidence interval for
minimum M (f) and its expected length satisfies

(4.29) E(‘Clm,a’) < Qm,s,aim,a,n(a; f)a

where Q. s,o 15 a positive constant depending on dimension s and o.
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5. Discussion. In the present paper, we studied optimal estimation and
inference for the minimizer of multivariate additive function in the white
noise and nonparametric regression models within the class of separable
methods under non-asymptotic benchmarks that characterize the difficulty
of the statistical problem at individual functions. We have shown that local
minimax framework (Cai and Low, 2015), unlike univariate case, does not
fully captures the difficulty of estimation/inference problem in multivariate
case for entire method class: local minimax rates are shown to be not adap-
tively achievable. We found an information-preserving representation of the
observation, projection representation, and we focus on separable methods
that are based on the representation. We turn to a definition-free framework
that resorts to the fundamental link between benchmarks (tags) and the per-
formance of the methods. These benchmarks are function-specific and can
be easily transformed into rates of conventional minimax framework. This
provides a way to characterize the difficulty of statistical problem locally
in addition to local minimax framework, and also enlarge the meaning of
minimax: we can add an variable denominator. It would be interesting to see
how the local characterization discussed in paper works for problems where
the difficulty for the statistical problem at different function varies or when
we have different affordability for the price to pay at different function.

We also developed adaptively optimal procedures with respect to our
benchmarks. Although some blocks of it looks similar to univariate case, no
direct extension of the procedure of the univariate case can achieve the op-
timal rate for confidence hyper cube, it would have an additional multiplier
of power function of dimension s.

The present work can be extended in different directions. We only consider
multivariate additive functions, it would be interesting to investigate high-
dimensional sparse additive functions with convexity constraints on each
component function, and it would also be interesting to investigate general
multivariate case. In our work, we focus on separable methods, it would be
interesting to investigate the entire method class and see how they compare.
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6. Proof.

6.1. Notation. Here we recollect or introduce notation that will be used
later. We use Z(f), M (f) to denote the minimizer and minimum of function
f, where f can be univariate or multivariate.

Recall that

1
pm(e3 f) = max{p /0 (max{p, £(1)} — F(£)2dt < =2} — M(f)
pa(e: £) = max{|t — Z(f)] = F(£) < (&5 f) + MF)}.
for f € F.

(6.1)

6.2. Proof of Theorem 2.1. For the ease of notation, denote D to be
[0, 1]%.

We start with minimizer. We start with lower bounds.

Let f € F,. Let g € Fs, which we will specify later. Take § € {—1,1} as
parameter to be estimated, with fj =f and f_; = g.

For any estimator Z for estimating the minimizer, consider the projected
estimator that projects Z to the line determined by Z(f) and Z(g) :

; Z(g) — 2(f)

(6.2) Z,=Z(f) +(Z - Z(f), M>'

It’s easy to see that
Er (12, - 2®)1?) < B (12 - 201

and
B (12, - 2@)I1?) < Fg (17 - 2(@)|1)

Therefore, we only need to consider the projected estimators Zp for calculat-
ing R, (g; f). Similarly, we only need to consider projected confidence hyper-

cube C1,, is the smallest hypercube containing { Z (f)+(t—Z(f), %> :
t € CI} for calculating L, ,(g;f), as projection does not weaken confidence
level and projected hypercube has smaller hypercube-diameter.

Note that any projected estimator Z, of the minimizer Z(fy) gives an

estimator of 6 by

(= PO 2, (0) ~ Z(8 )
| 2Bl 2, (6) = Zy(E-)]”

0 =
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and therefore By||Z, — Z(£)]? = || Z(£) — Z(£_1)|I”Eo5% . Let Py be the
probability measure associated with the white noise model corresponding to
fy. On the other hand, through calculating the Radon-Nikodym derivative

ddﬂm]P)_ll (Y') by Girsanov’s theorem,

63) L) exp </D WdY(t)—l/DWdt>,

dPg I3 2 €

a sufficient statistic for 8 is given by

6a o JolBO L)) (0~ ()t
' ellfy — £ '
Then 0 f _t
W ~ N (2 . ngln, 1) under Py.

Note that for any w,(e;f) > § > 0, there exists hs € Fs such that
|[f — hs|| = € and that ||Z(f) — Z(hs)||? > w.(e;f) — 6, we let g = hs. Then
we have R.(e; f) > (wy(e;f) —0) - r2, where 73 is the minimax risk of the
two-point problem based on an observation X ~ N(4,1),

16— 6
f max E :
r2 = mbmax By

Elementary calculation shows that ro > 0.1. Taking § — 0%, we have
R.(g;f) > 0.1w,(;f). So we have a > 0.1.

Now we turn to the upper bounds. We start with stating a property of
w;(e;f) in Proposition 6.1.

PROPOSITION 6.1.  Suppose f € Fs, ¢ € (0,1), then we have

1
(6.5) wy(g;f) > wy(ee; £) > gmax{(g)%,c} w,(g; f).
PROOF. The left hand side is apparent, we will prove the right hand side.

Using Proposition 6.3, we have

sup S palbice: i <wiles ) <9 sup S palbies: £)7,
(6 6) ZZ 1b7,<1 =1 Z’L lbz<1 =1

sup p:(big; fi)? <w.(e;£) <9 sup p=(big; fi)?.
Zz 1b?<1z Zz 1b?<1;
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Using Proposition 2.1 by Cai et al. (2023a), namely

max{(q)§7q} < M <1, forqe {0’ 1)

2 pz(€§ f)

, we know p.(e; f) is a continuous function of € > 0 for f € F. So there

exists (b1, -+ ,bs) and (by,--- ,bs) attaining the suprema:

(6.7)

_ S B S B S

b; >0, for 1 <i<s, Zb? =1, sz(bic&;fi)2 = sup sz(bice; fi)?,
i—1 i=1 - 071

B S B S B S

b; >0, for 1 <i < 87253 = 1,sz(bi5;fi)2 = sup sz(bié‘;fi)z-
i—1 i—1 =1 071,

Also we have
(6.8) > palbics; )7 <Y pa(bies £:)2 <> palbiss £i)?,
i=1 i=1 i=1

and

S

(6.9) sz(i)w& fi)? > sz@w@; fi)? > Zmax {(g)%vc} p:(big; fi)?.
=1 =1

i=1
Combining equations (6.6), (6.8), (6.9) we have

(6.10) wy(cg; f) > %max {(g)

Wl

,c} w,(g; f).

Now we continue with the upper bounds.
Recalling W define in (6.4), let

(6.11) Zzsign(w).z(f);z(g) N Z(f);rZ(g)_

Then

(6.12) E(|Z—Z(£)|?) = Eg(|1 2 Z(g)|%) = HZ(f)—Z(gW‘I’(—H;ﬂ)-
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Therefore,
f-g
Ro(e: ) < sup |2(5) — Z(g) P(- 1B
feFs 3
(6.13) < supw;(ce; f)<I>(—E)
c>0 2
< max{0.5w,(e; f), sup w,(ce; f)q)(_%)}‘
c>1

In addition
(6.14)

supwz(cs;f)qJ(—E) < QSupmin{(Qc)g,c}@(—g)wz(a; f) < 31w, (e f).
e>1 2 e>1 2

Take A = 3.1 gives the result.

Now we turn to the minimum and start with estimation. We start with
the lower bound.

Recall that W defined in (6.4) is a sufficient statistics for 6.

Then similarly to the proof of that for minimizer we have that

(6.15) Ry, (g;f) > awn(g; f).
For the upper bound. We start with a proposition.
PROPOSITION 6.2. For ¢ > 1, we have
(6.16) wim(ce; ) < Ewm(e; f), Om(ce; £) < com(e; f).
PROOF. Suppose g satisfies ||g — f||2 < ce. Then calculation show that
S
(6.17) g0 — fol* + D llgi = fil> < €%,
i=1

Let hi(t) = 1g;(t) + L fi(t). Let h(t) = Lgo + <2 fo+ 307, hi(t;) Then
we have that

(6.18) |h —f|* < &2
and that
(6.19) [M(h) — M(F)| = | M(g) ~ M(E)]

This gives the statement of the proposition.
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Recalling W define in (6.4), let

~ M(f)— M M)+ M

(6.20) M = sign(W) - (£) 5 (&) + ( )—g (g)

Then

(6.21)

Ee (I8 — ME)|2) = Eg(IN — M(g)|?) = [ M(£) — M(g) [2a(— =8l
(]l (B)7) = Eg(l @)I7) = 1M (f) — M(g) ["®(="—").
With Proposition 6.2 we have that

(6.22)

R (5 f) < supwp,(ce; f)@(—f) < max{0.5wm(€;f),supwm(cs;f)@(—g)}

c>0 2 c>1 2
< wp(g; f) max{0.5, sup 02@(—5)} < wp(g;f).
c>1

For the inference of the minimum, we again start with the lower bound.

(6.23)
La,m(e;f) > sup inf Pe({M(g), M(£)} € Clyna)|M(f) — M(g)|
g€Fs Clm,a€Tm,a(f,8)

> sup (L= —Pr(M(g) ¢ Inalf, 8)))wm(e: f)
g€ Fu llg—fll<e

>(1—a—P(—z4 + 1)om(g;f) > (0.6 — ) (&; ).
The second to last inequality is due to Neyman-Pearson inequality.

For the upper bound, we recollect our sufficient statistics (6.4) and asso-
ciated notation, let

{M(e)} W < —zq + 0.515l
Clina = MO} W > (20 — 58 v (2 + Usel)

{M(f)+ (M(g) — M(f))-t:t€[0,1]} otherwise

Clearly, we have Pr(M(f) ¢ Cl,) < o, Pg(M(g) ¢ Cl,) < . For the
expected squared length, we have for 6 € {—1,1},

620 By (Clnal) < MO - (@) (20 - T2 —a)

n
(6.25)
Ery (1Ol a) < max{y(6:6) (1= 20) sup (i £) (820 — ) = ), }
< @Wm(g; ) max{(1 — 2a),s01;11)c(<1>(za —c)—a),}

< O (&) (1 — 2a) X 224,
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6.3. Proof of Theorem 2.2. We start with stating two propositions, which
are proved later.

PROPOSITION 6.3. Let p,(g; f) be defined in (2.8) for f € F, and let
f e Fs. Then

(6.26) sup Y pa(bie i)’ <ws(ef) < sup D> 9p.(bie; fi),
Zz 1b1<1 =1 Z: 1b$<1 =1

where b; are non-negative.

PROPOSITION 6.4. Suppose f; € F, fori=1,2,--- s, then we have

1 =2 5
(6.27) §S 3sz(s;fi)2 < sup sz (bie; fl <sz €; fl
i=1

L 02<1;

And for any B < s, exist (f1, -+, fs) such that Zle p=(g; fl)2 =0 and

s

(6.28) sup S palbis [P = 55 pues fi)?
=1

Zz 1b$<1 =1

For 3 < s, for any & > 0, there exist (f1,--- , fs) such that > ;_; p:(; f;)?
8 and

(6.29) sup Z pz(bie; fi)? > sz(5§ fi)? =
i=1

Z’L lb§<]‘ =1

Inequality (6.27) in Proposition 6.4 and (6.26) in Proposition 6.3 implies
Inequality 2.9 of Theorem 2.2.

Construct f(t) = Y7, [3 filw)dz + Y7, (f(t:) — [y fi(z)dz) with f;
in Equation (6.28). Then together with the rlght hand side of Inequality
(6.26) gives Inequality (2.10) of Theorem 2.2. Similar construct f with f; in
Inequality (6.29) with 09 = § gives Inequality (2.11) in Theorem 2.2.

6.3.1. Proof of Proposition 6.3. Suppose g € Fg, such that ||g — f]| < e,
g(t) = go+g1(t1) +ga(t2) +- - +gs(ts). Using the continuity of p,(¢; f) with
respect to € implied by Proposition 2.1 by Cai et al. (2023a), we know there
exist (by,ba,--- ,bs) such that
(6.30)

b; >0, for1§i§s,25?:1,2pz(gis;ﬁ)2: sup szbsfl

i=1 i=1 PO AN .
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We only need to prove

(6.31) sz (bie; £1)? < w.(g;f) < ZQpZ (bies fi)2.

=1 =1

We start with proving the upper bound.
Since [|g — f|| < &, we have

2
EQZ”f_g”2_/ <f0_90+z.fz 7 z( z)) dt

(6.32)
= (fo — 90) +Z/ (fi(t) t))*dt.
- T (O —a.

Denote b; = fo(fz(t)a—fl(t))Q for 1 <i < s, then we have 3)5_ b2 = 1.

Therefore, using Proposition 2.2 by Cai et al. (2023a), we have
(6.33)
1Z(f) g)l* = Z Z(fi) = Z(g:) <D 9pa(big; £1)° <Y 9p2(big; £i)?.

i=1 i=1

For the lower bound, we construct a class of function g5 € Fs, with
%minlgigs p-(bie; fi) > 6 > 0. We construct the constant and components:
gs,i for 0 < s. Let gso = fo. For 1 <i < s, suppose x;;, x,; are left and right
end points of the interval {z : f;(z) < M(f;)+pm(bic; f;)}. And without loss
of generality, we assume z,; = Z(f;) + p-(bie; fi). Define univariate convex
function hs; as follow.

(6.34) -
(1) = mi{i(t) fi —0) — LoD I M) = Jillera =0

Tri — 0 — a1,

(t—l’r,i)}.
Define univariate function gs; as
1
(6.35) gsat) = hss(t) = [ hss(e)at
0

Then we have fo g5.i(t)dt = 0, so the definition defines a valid gs € Fs.
Further for ¢ =1,2---, s, we have
(6.36)
2

1 1 1
| tanste) = i = /0 <h5,z-<t>—fi<t>>2dt—( / h&,i(t)dt> <R,
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and

(6.37) 1Z(g5:) — Z(fs)| > p=(big; fi) — 6.

Therefore, we have
638 llgs—F1? <22 1 Z080) — ZOIP 2 3 (pelbizs ) — 5)°.
i=1
Let 6 — 07 , we have
(6.39) w2 (g5 £) > Z p-(big; fi)?.
i=1

6.3.2. Proof of Proposition 6.4. We start with the right hand side and
its almost-attainability.

Since b; € [0,1] for 1 < i < s, we have p,(bie; fi) < pz(e; fi). The right
hand side then apparently hold.

We first assume [ in not an integer. Let s; = [ — ], s2 = 8 — | 5],
sg=s—[f].

Let k1, ko, k3 > 0.

Now we start defining f; € F for 1 <1 <s.

If s1 > 1, for 1 <i<sq, let

(6.40) Fi(t) = k(¢ — %).
If s3> 1, for n—s3+1 < <nlet

(6.41) Filt) = ka(t %).
Let

(6.42) Forat) = kalt = 3).

Suppose 0 < § < %82.
If s3 > 1, choose k3 such that

(6.43) pa(ei fn) =/ ;;

Define s4 = s9 — % if s3 > 1, otherwise s4 = s9. Choose ko such that

(6'44) pz(& f81+1) = \/i
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Now suppose bs, +1 is the smallest b € [0, 1) such that

J

(6.45) pz(be; foy41) > 1/ Sa — 7

If s;1 > 1, choose k1 such that

_ 12
(6.46) oy e ) = L

It’s easy to verify that the above construction is legitimate and satisfy
equation (6.29).

When 8 = n, choose large enough k such that pz(%e;k(t - 0.5)) =1,
and let f; = k(t —0.5) for 1 <k <s.

When 8 < n—1 and is integer, for § < 0.5,let s1 =5—1,s3 =n—0,84 =

— g. And choose k3, ko, k1 as the case where (8 is not integer.

Now we proceed with the left hand side.

Proposition 2.1 by Cai et al. (2023a), we have
(6.47)

=

s

2 1
sup sz (bie; f;)* > sup Z(b2/4)s (e;fi)* > 2 sz )],
Z’L 1b1<1 Zz lb?<11 1 3
: : _ pz(&:fi)°
The last inequality take b; = SRTRCIALE
Cauchy-Schwarz inequality gives
1
1[< Pl e )
(6.48) 3 ;pz(e;mﬁ SEARDSTECIOE

which concludes the left hand side.
For the attainability up to constant multiple, let & > 0, which we will
pick later. Let fi(t) = k(t — 0.5) for 1 < i < s. Pick k > 0 such that

p=(e; fi) = \/g Then we have that

(6.49)
s é,@
sup szbe fz = sup Zbszsfl = sup be—.
=1 7S HIRE A . R 50 R 5
Through basic calculation, we have supys 3244 Yo b? % which

gives inequality (6.28).
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6.4. Proof of Theorem 2.3. We start with the upper bound. Suppose ||g—

f|| <e. Suppose g(t) = go + >, gi(t;), where fo gi(t)dt = 0. Calculation
show that ||g — f|| < ¢ implies

(6.50) 90— fol? + D llgi — fil> < €%
i=1

Suppose ¢; = ||gi — fi||. Then we have that

(6.51)

[M(g) = M) < (90 — fol + D 1M (g:) = M(f))? < (90 = fol + D 3pmleis fi))?

=1 i=1

(!go—fo\+23 )2 pm(e; £i))?

(e +¥pmefz >(<|go f°|> +;9(‘?)§>
(mesf@ ) s+ 1),

where the second Inequality is due to Proposition 2.1.
Now that we have the upper bound, we turn to the lower bound. Let

IN

IN

- (&1 £1) !
(6.52) € = \/Z;:1 PEYAL \/1 Y (A2 )

Suppose d > 0 is small enough quantity, which will be set going to 0 later. We
construct components of an alternative function. Without loss of generality
we assume t; ;, t; , are the left and right end points of the interval {t : f;(t) <
M(fi) + pm(ei; fi)} and that ¢, = Z(fi) + pz(&i; fi). Suppose g;5(t) =
max{ f;(t), fi(t) + — _t”( — i)}, and let hs(t) = fo+ > .7 gi(t;). Then
we have for small enough 4 >0,

1
s — £]2 < Z / gi(t)dt) +Z€ —; /0 gi(t)dt)?

< Zs?a + Z(l A 2p(ci3 £:))) < &
=1

=1

(6.53)
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We also have

Jim (M(hs) = M(E) 2 pueis fi) = D punlei )7
(6.54) = .

me(€§fi)2\/ !
=1

L4321 (LA 20:(5 f3)

This gives the lower bound.

6.5. Proof of Theorem 2.4.

(6.55)

inf Ee (V(CI, ,
o b L B (V(CTa))

> su inf Ee (V CI
B ge}?s CI, «€Z..«(f,g) f ( ( z,a))

>sup - inf o Ee (1{{Z(f), Z(g)} C Cl.a}) sup ;1| Z(g:) — Z ()]
gEFs CI. a€1:0(f,g) gEFs

f _
> sup (1 PN YRR L - )) sup TE_,|Z(g)) — Z(f,)
gEFs € geFs

Let g; s be constructed as follows. Without loss of generality, we assume
tir = Z(fi) + ps(e/V/s; fi) satisfies fi(ti,) < pm(e/v/5; fi) + M(f;) and ¢
is the left end point of {¢: f;(t) < pm(e//s; fi) + M(fi)}. Let

-4
(6.56)  gi5(t) = max{f;(t), M(fi) + pm(e/V's; fi) + ti—tl(t —ti1)}
Define
S S 1
gs(t) = fo+ Z%,&(U) - Z/ gis(t)dt.
i=1 i=170
It’s clear that

lgs — I <e.

It is obvious that Z(gs;) = Z(gis)-
(6.57)
1
s

lim T2 (950) = Z(5)] > Wiapa(e/ V5 1) = (5 2) S Tiapa(es )

0

Going back to Inequality (6.55) we have that

1 2s
. inf E o)) > (0.6 — a)(—=) 3T, ps(e: £i).
(6.58) o £ (V(Cl.a)) > (0.6 a)(zﬁ)S i—1p=(85 fi)
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6.6. Proof of Theorem 2.5. We prove the theorem by proving the follow-
ing two propositions.

A~

PROPOSITION 6.5.  For any estimator of the minimizer, Z, if
Be (12 - Z(5)?) <R (s:6)

for £ € Fs and v < ~o, where vy s a positive constant, then there exists
f1 € Fs such that

A 1.2
(6.59) Er, (12 = Z(8)]) > c,0(1og DR ),

where ¢, ¢ is a constant depending on s only.
PROPOSITION 6.6. For any estimator of the minimum, M, if
Ee(|M — M(£)]*) < yRpn (&3 )

for £ € Fs and v < ~o/s, where g is a positive constant, then there exists
f1 € Fs such that

N 1.2
(6.60) Eg, (I = M(£)[?) > cn,s(log ) iRn(eh),

where ¢y, s 15 a constant depending on s only.

6.6.1. Proof of Proposition 6.5. Let o = %. Let F(y) =
(0/e)*.

Then for v < 0.0024558 /54, we have o > \/gs.

Suppose (w1, ws, -+ ,ws) achieves

S

(6.61) sup Z p-(wie; fi)?.

G wi<Lw; >0
The compactness of {(wr,wa, -+ ,ws) : 3 54 wjz- < 1,w; > 0} and the conti-
nuity of Y7 p,(w;e; fi)? implies that supremum is attainable. So (wy, wa, - - -, w;)
is well defined. Also, it’s easy to see that ijl w]? =1.
Denote set B as

(6.62) B:{(bl,bg,---,bs):;bigl,bizmax{\/%,\/l/%}}.
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It’s clear that B is not null set, and

w? 1 w32 1 w2 1
6.63 L4 — 24— S_ 4+ —)eB.
(6.63) (\/F(’y) +4s’\/F('y) +4s F(v) +4s)
et (by,be, -+ ,bs) achieves
(6.64)

(] ()

(b1,b2,+ bs)EB \ ). i=1 pm(

Then it is clear that

2 . 2 2 pz i F &; fi
(;pzwk\ﬁm)a,fw) (3 et

(6.65) min 12)° /[ 2t/ EQe i) )
RN ( ey Flr)es ) ) /<Pm(bkm5§fk)4

2 2

> i, (hr0) = (504)

and that

s

(6.66) > pVF(e fi)® =) pa(we; fi)® >
k=1

k=1

1
JACT)
where the very last inequality comes from Proposition 6.3.

For each 1 < k < s, we construct fk

Let x;,x, be the left and right end points of the interval {z : fx(z) <
M ( fre)+pm(bro; fr)}. Without loss of generality, suppose fi (Z(fx) + pz(bro; fr)) <
M (fx) + pm(bkos fx)-

Let gox(t) = max{fy(t), fi(z,) + MP2emOuoihi)—fulor) (g )3,

Ty —Xr

Calculation similar to that in Lemma C.8 in Cai et al. (2023b) shows that

g2,k = full < VBbr/F(y)e
(6.67) E)é( n_

p=(15 92.%) < (
3 \/b2o2/3

[MIN]

p=(bros fr).

Let

s 1
(6.68) 5=+ (gQ,k@k) -[ gQ,ka)dt)-
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Then we know that

(6.69) lg — £ <@ (1-6-9-2y),
that
d 1
(6.70) 1Z(g) = ZE)|> =D palbros fu)* = §wz(e;f)7
k=1
and that

S
wo(e;g) <9 sup Y pa(die;gak)”
o1 di<1,d;20
(6.71) .

16 2 dre 4
<9 sup 2(5)3( L )5 (b fi)
S, d2<1,d;>0 b2o2/3
Taking derivative of
s dk; 4 )
(6.72) > (—=)3p=(bko; fi)
k=1 /b7
with respect to
we have
2 o1 -3 2 2 o1 -3 2

(6~74) g(dl) 3b1 Pz(b1(7§fl) y 7§(ds) 3bs pz(b5‘7§f8) :
Note that the constraint for d%, d%, s d? s

S
(6.75) Zd2:1,d?20f0r1§j§3.
k=1
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Therefore, we have that
(6.76)

B 1t (b f)? < S pa(bror £1)/61 35— (p=(byors £7)°/11)
3Pz\0k0;5 Jk)” =

(

Wi

W=

IN

> pa(bjos £3)8 /b4
j=1

ol

IN

' szo'fj)
2:: L o305 )

Using Inequality (6.65) and going back to Inequality (6.71), we have that

wir

SR
ol

w(e;8) <9-(16-3)5(~)

4 1 8s 2 -
.03 43(72)g E pz(bkg;fk‘)Q
(6.77) P i
S .2

2 () 120 - 2

Wl

=9.(16-3)

Recall that when we let fy = f for 6 = 1 and fy = g for § = —1, a sufficient
statistic would be W defined in (6.4).
Note that we have

(6.78) Be (12 = Z()?) < R-(e:6) < 6y (5 6),

where the last InequalityA comes from Theorem 2.1.
Denote event D = {||Z — Z(f)|| > {w.(&;f)}. Then

6w, (c;
(6.79) Py(D) < 1%"7(5) — 108y < 0.00491163.
Tgwa (&
So we have that
1
(6.80) Py(D) < 5.

P2 (bxos fr)?
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Hence we have that

(6.81)
By (12 - 2(2)|?) > B (<||Z<f> - 2] - (e f>>2+ 11{DC}>
> 2 (J120) - 2@IP1(DY) 2 §120) - Z(g)|?
> 25063780 E g)ﬁwz(g;g)
> L (16-3)7F 2SR (e g)F(Jg)g

Note that F(y) = 2%087/5, so F(y) ~ log(%), so we have

(6.82) Eg (12 - Z@)I) = c. - s~F log() i Ru(ig).

1
v
for some constant c, >20.

Letting ¢, s = ¢, - 573 and f; = g gives the statement of the Proposition.

6.6.2. Proof of Proposition 6.6. Take o = ®~1(1 — 108(s + 1)%v/s)e.

Suppose v < 0.1586555/108(s 4 1)2. Then we know that o > 1

Take the construction of hs in the Proof of Theorem 2.3 withe noise level
being . Then we know that

(6.83)
[hs — f|| <o,
S . 2 4 s . 2
lim HM(f) —M(h(;)HQ > Zk:l pm(ga fk) > <g>3 Zk:l pm(a, fk)
6—0t 1+s c 1+s
— 4 8_ m 'h(;k)z
>d1(1-2 1 1D 1 Pm(E; hs,
> 71 (1-2(s + Dy k=L ImE
> 1 (1-2(s+ 1)7)F ——wn(e;h
> ( (s + )7)39(s+1)2w (e;hy)

ol

1
> &7 (L= 2(s + 1)7)3 75 - (€ ho).

9(s+1)

Note that Z > 1. Hence, there exists do > 0, such that for o > ¢ > 0, we
have

(684 M) = M) 2 5 pzeom &) 2 7 Rl 6),
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Denote event

(6.85) D= {||M—M()|* >

S

7}% )1,
Z T08(s 1 2 (& B}
Then we know that

(6.86) Pe(D) <~ - 108(58“)2
So
(6.87) Py, (D) < %
Therefore, we have that
(6.88)
B (17 = M(h9)2) > By (1= )2 IM(0) - b (ho) 107
> S22V are) — a2

From Inequality (6.83), we know that there exists 0 < ; < dg, such that for
0 < 01, we have

(659 [M(E) = M(hs) [ = B0 = 205+ 1)) g s Rl ).
Hence,

(6.90)

B, (17— 9)?) > 22220741 - 25 + 19 2 R

Note that ®~1(1 — 2(s+ 1)7)3 ~ log (& )g asy — 0T and that log(é)% >
(log( )/ log(s ))3 for v < 3=, so we have the statement by taking f; = hy.

6.7. Proof of Proposition 3.1. We start with the first item.
Suppose P(Y) = PB(Y?) for Y1, Y2 € 9. Then for A = [ay, 41] x
[ag, Ag] x «-- X [as, As] C [0,1]%, we have

A;
/ le = / der + ZH];’&Z — aj / dﬂ'Z(Yl)
A A a

%

(691) = /Ader(YZ) + ZHJ?Q(AJ - CL]‘) /AZ dﬂ-Z(Y2)

=1
= / dy?2.
A
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Therefore, using Dynkin’s 7 — A\ theorem, Y = Y2,
Now we continue with the second item.
Again, from Dynkin’s m — A theorem, we only need to prove that for any

[al,Al], [az,Ag],- .. ,[CLS,AS] C [0, 1} and B = [bl,Bl]X[bQ,BQ]X' . 'X[bs,Bs],

the following variables are independent:

/ dm(Y), dma(Y),--- ,/ dms(Y), der(Y).
[al’Al} [a27A2] [C"S’AS] [bl’Bl]X[bQ»BZ]X[bszS]

Note that 7;(Y)[A;] —7;(Y)[a;] = f[al A1) dm;(Y'), but we use integral form
whenever possible to ease understanding as we have stochastic processes of

different dimensions.
From the definition 3.1 of m;(Y") and er(Y'), we know that

(/ d7r1(Y),/ dvrz(Y),---,/ dws(Y),/ der(Y))
[al,Al] [az,Az] [as,As] B

is joint normal random vector. To prove independence we only need to prove
the correlations are zero.
For 1 <i < j <s, we have

cov(| amy). [ damy))
[ai,As] [a;,A;]
:E((/ | dw>.
(692) tie[aivAiLt*ie[Ovl}s_l [0’1}3
/ dW — (Aj — aj)/ dw
tje[a]"Ath*]'E[Ovl]s_l [071}3

=0.

For 1 <i < s, suppose A; = {t : t; € [a;, 4;],t_; € [0,1]*"1}, and V (-) de-
notes the volume (length when one dimensional, area when two dimensional,
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etc.), we have

(6.93)
CoV/( /{ai,Ai} dmy(Y), [B dy)

=E / dW—(Ai—ai)/ dw | -
ti€la;,Ai],t—;€[0,1]5—1 [0,1]®

(/ dW — ZH}ng(Bk — bk)/ dWw + sHizl (B — bk)/ dW) )
B tjeb;,B;jlt—;€[0,1]51 [0,1]

J=1

= V(A NB) — (4 — a)V(B) = > Wiz (B — bi)(Bj — bj)(Ai — ;)
J#i
— Vi([ai, A} (v [bi, Bi] )1;2i(Bj — bj) + s(Ai — ai)II;_ (Bi — bi) +0
=0.

Therefore, we prove the independence.
Now we continue with the sufficiency property. Recalling the Radon-
Nikodym derivative calculated in (6.3), we have that for f, g € F;

(6.94)

dPe o\ _ £(t) —g(t) 1 f(t)* — g(t)*
d—Pg(Y) = exp (/[0’1}5 5 dY (t) 5 /[0’1}5 = dt)

_ T~ (V) — 2 (42
— exp <52;/0 (i(t) — gi(t)dm(¥) — o /MS (£(6)? — g(t) )dt).

Hence we concludes the proof.

6.8. Proof of Theorem 3.1. Recalling Theorem 2.1 and Theorem 2.2, we
know that it suffices to prove that

(6.95) Be (12 - 2(0)I2) < Co> pa(si )2,
k=1

for an absolute constant Cy > 0.
Since we have

69 Ee(1Z2-Z)R) = B (12— Z(0P)
k=1
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we only need to prove that there is an absolute constant C'> > 0 such that
for 1 <k <s,

(6.97) Er (12 = Z(f0)2) < Copa(s; fi)

Now we focus on any given k € {1,...,s}.

Note that for each level j > 1, the localization and stopping rule only
based on the following random variables {Xﬂk — f(j’i_l’k ci=2,...,27}uU
{Xj,i,k - Xj,i—l,k S 2, e ,2]}.

If we construct two stochastic process v/ and v" in the following way

dvl(t) = fr(t)dt + v3edW!,

(6.98)
dv"(t) = fr(t)dt + v/3edW™,

where W' and W are independent Brownian Motion, and also define O ; ., Oﬂk

in the same way as X ; ., X;; r with vl and v" replaced by v and ¥", then we

know that the distribution under f of the infinite dimension object Ds(X, k)

that concatenate the following vectors with j =1,2,...:

(6.99) (Xjok — Xjik Xjsk — Xjok s Xjoip — Xj2i—1
Xjak = Xjm Xjak = Xjokr - Xjoi g — Xji_14)
is the same with that having O;; x, Oj’“g in the place of Xj; 1, Xj’@k, which
we call Ds(O, k).
Also note that the localization procedure, stopping procedure and con-
struction of each axis of the estimator goes in parallel with the univariate
estimator by Cai et al. (2023a), and that the distribution of random vari-

ables playing a role in the entire estimation procedure (i.e. Ds(X, k) ) is the
same with that of Ds(O, k).

Hence bounding Ef (]Zk — Z(fr) ]2) here is the same with bounding E s, (]Z — Z(fk)\Q)
with Z being the estimator of the minimizer of the univariate function in
the setting of univariate case as in Cai et al. (2023a).

Resort to the proof of that of Theorem 3.1 in Cai et al. (2023a) with the

quantities bounding |Z — Z(f3,)| there being replaced by the square of it, we
have

(6.000)  Br (|20~ Z(f0)1?) <Eg (12 - Z(f1)P) < Copalei ),

for an absolute constant Cs.
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6.9. Proof of Theorem 3.2. Recalling the lower bound of L, ,(¢; f) estab-
lished in Theorem 2.4 and Proposition 2.1 in Cai et al. (2023a), it suffices
to prove the following two two propositions.

PROPOSITION 6.7 (Coverage). The confidence hyper cube CI, ., defined
by (3.12) is an 1 — « level confidence cube for minimizer.

PROPOSITION 6.8 (Expected Volume). For o < 0.3, and confidence hy-
per cube CI, , defined by (3.12), we have

(6.101) B (V(CLa)) < C3 Y pa(zasssi fr),
k=1

where C3 is an absolute positive constant.

Note that p.(zq/s; fr) < (QZQ/S)%pZ(e; fx), so these two propositions lead
to the theorem.

6.9.1. Proof of Proposition 6.7. By the definition of confidence hyper
cube C1I, , in (3.12), its k-th coordinate C'Ij only depend Y through m(Y").
So it has mutually independent coordinates. Hence we have
(6.102)

Pf(Z(f) S sz’a) = szlpf(Z(fk) S ka) > szl fien}f: Pf(Z(fk) € ka)

So it suffices to prove that infecr, Pr(Z(fy) € CIx) > 1 — £.
Denote j, = min{j : |i; — i% x| = 7}.Then we have for any f € F;,

(6.103)

Pe(Z(fx) ¢ CIr) = Pr(jr < j(a/s,k)) = Y Ee(Be(1{j < j(a/s, k)}vi)1{jk = j})
j=3

< Ep(o/s1{jr = j}) < a/s.
j=3

The first inequality is due to the distribution in (3.7) and that for the
X, -X..
],’Ljyk*ﬁ,k j,zj’kffy,k
aj
vfC and v}, are independent, and that j = j;, implies S,(j,k) < 0 or that for
the left side is non-positive.
This concludes the proof.

, as well as the facts that %j,k only depends on vz, that
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6.9.2. Proof of Proposition 6.8. Note that the coordinates of the confi-
dence hyper cube are independent, so we have

(6.104) Ee (V(CI0)) = TG Ee (|CLk]])

it suffice to prove that there exists an absolute constant C'3 > 0 such that
for any k € {1,2,...,s}, the following holds

(6.105) Ee (| CLi)|?) < C3p2 (20585 fr)?

Now we recollect and introduce some notation that indicate the levels at
which the localization procedure picks a interval far away from the right
one.

5]4 = min{j : ﬁj,k — i;‘:k:‘ > 2},
(6.106) e =min{j : [ij, — i% 4] > 5},
Ik = min{j : |%]k — z;‘k| > T}
It’s clear that for any j > ji we have
(6.107) lij e — 5 5] > 2.
We also introduce a quantity as follow.

(6.108) i =min{j : m; < ”Z(Zf’“)}.

We have
(6.109)
Ef(HCIk||2)

< 16921& “1{j(a/s, k) = j})

< 1692[& “H1{G(a)s, k) =,k < j}) + 1692Ef “H1{j(a/s, k) = 4,5k > 5}
7j=3

< 1692Ef "2 1{j(a/s, k) = j,r < j}) +1692Ef “H1{j(afs, k) =,k > 5})
7=3

< 169E¢ (2~ %k) + 1692&(2*211{3(@/3,1{) =4 Jk > 7).
=3

We will bound the two terms separately, now we start with the first term.
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Note that we have ji > jp > Jjr and that j, = j implies one of the
following happens:

(6.110)
{X; itk = Xy g ks {X Gt 1k = XG4, kb X Gt Lk 2 Xj,i;7k+4,k}:
{ng 1k > X 72,k};{Xj,i;’k71,k > Xjir 3 Kh{X G Lk ZXj,i;’kf&k}-

Also we have for j > ji + 3, mj > p.(e; fr).

So we have
(6.111)
Ef(Z_ij)
] 4
< Be(272%) <270 4 Y " 27U Re (1{j = j})
j=3
Jji—4 . . 3
L2 N om2 e fi) (2R pa(es fi)?
< dpa (e fi)* + ]Z; 279 % 2 x <<1>( PRETA NG )+
B oPmESe) QT Tp(e )2 o pmle fi) (PR pa(es fi) 2
A R S ey R S
< 4p,(g; fr)? +sz42—23‘ X 2 % @(—2wii)+
> 20285 Jk p \/5\/5
3(ch 3-5) 1 1 3Gp—3-4) 1 1
D(—2x2 E%)—HI)(—BXQ 2 7 3))
o(~%) o(—7%)
PRV ) V3 V3
< 4pz(67fk) +32pz(5afk) (1 —S\fexp( % %) + 1 —Sﬁexp(—% ] 1376)
d(—2v/3)

1—8v2exp(—%-12)
< 4/72(5; fk)z + 4‘5pz(5§ flc)2 = 8‘5/)2(5; fk) :
Now we turn to the second term in Inequality (6.109). We first define

three quantities.
Let the average of f; over [t;;—1,t;;] to be

27T x4
fiik = 2]/ Jr(t)dt.
2

—JIx(i—1)
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For i > 27 or i < 0, define fﬂk = 400. And suppose co — a = oo for
a € [—00,00], and min{oco,a} = a for a € [—o0, x0].
Let the minimum of the difference of the two neighboring intervals be

(6.112) Ejg = min{fje yok — Fiaz, o1k fat, 2k — Fra —1n)

Let j(¢,k) be the level j such that the signal part in 7} is relatively
small, specifically defined as follow.

(6.113) GG k) =min{j: S 27— <z + 1}

1
V6e
Note that j (¢, k) is a determined quantity depending only on ¢ and f.
Recall that j(a/s, k) is the stopping level, which is a random variable.
Also note that for j < j(a/s, k) — 1 we have

= i1 3(i(a/s,k)=1=j)

(6.114) Sk 27 NG > 2 2 (Za/s + 1)

With these quantities, we have
(6.115)

© .

> 2 Ee(1{j (/5. k) = j, G > 5})

§=3

Jo/s,k)—1
< 9~2la/sk)+1 Z 272 (— (205 +1) X 93 (i—ila/sk)+1) 4 Za/s)
=3

1

< 2—2j(a/s,k)+1 + 2—2j(a/s,k)+2q> 1
= s v e

< 3.9 2(a/sk)

Now we introduce a lemma.
LEMMA 6.1.  For j((, k) defined in (6.113), with ¢ < 0.3 we have
6v2(2¢ +1)

) (e fi) 2 277P.
¢

(6.116) (

PRrROOF. Without loss of generality, we assume
Fidjcomur2d = Jiijmatik = Ei(ch)-

Let pp = min{fk(max{tj((,k),i;f(g,k)’k7270})7fk(tj(c,k),i;f
gio € F be defined as ¢;,(t) = max{ fr(t), px}-

<<,k>,k+1)}' Let the
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For simplicity of notation, let jo = j((, k), i* = i;((,k),k‘

Therefore,
(6.117)
gt — fill® < (px — M(fr))?-3- 277

< (fi(tioir+1) = Fu(tjo,ir) + fu(tjoir) — M(fi))?-3-27%
< (fjie42 — fiirp1)? - 3-27%0
< ((zc+1)-2%9/6c)%-3. 2790
= 6(zc + 1) x 3¢%.

Therefore,

6\/5(24“ + 1)

= )%pz(qe; fr)-

(6.118) 27 < p.(3v2(x¢ + )= fi) < (

The last inequality is due to Proposition 2.1 in Cai et al. (2023a) and that
2¢ 2 203 = 0.524
O

Lemma 6.1 combined with Inequality (6.115), and note that a/s < 0.3
we have

(6.119) > 2 HRe(1{j (/5. k) = G,k > 5}) < 136p2(2as585 f5)*.
j=3

Also note that for o < 0.3, we have p.(¢; fi) < 2.6p.(2q/48; fr)-
Therefore both terms in Inequality 6.109 are bounded by multiple times
P2(2a/sE; fx)?. We conclude the proof.

6.10. Proof of Theorem 3.3. Recalling Theorem 2.1 and Theorem 2.2, it
suffice to prove

s 2
(6.120) E ((M - M(f))Q) <Cn (Z Pm(5§fk)> ;
k=1

for an absolute positive constant C,,.
We proceed to prove this.
Recall that ( = &(—2).
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Note that Y'(1,1,---,1)=Y (0,0, --- ,0), 29 X

HCk)ir ok fork=1,2,---,s

are independent. Therefore,

(6.121)
E (7 - M(£))?) <

2
. _ 2
(\/E(Y(l, Lo )= Y(0,0,,0) = fo)2+ Y \/E (29035 gy i — M) > .
Recollect the notation

_ . 2774
(6.122) fiik = 2”/2 fre(t)de.

~i(i—1)

Recall that the location procedure, the stopping rule and the definition of
ir parallel those of univariate case introduced in Cai et al. (2023a), so we

have that fﬁ'(( k)i ek has the same distribution with that of f in the proof
of Theorem 3.3 with fj being the true function.
Hence we have that

_ 2 _ = 2
(6.123) E (fj(gk),i%k - M(fk)) < Cnpm(e; fr)

for all k € {1,2,---, s}, where C,, is a positive absolute constant.
Also note that

X}(C,k),zF’thl}(Cv k)7 iF,k:) ~ N(“fj((,k),ipyk,k’ (1 - 2_J(Cyk))2_J(C7k) X 382)'
So we have that

(6.124)
o _ 2

- 2 2
— (CF) X — f f- -

=k (2J Xichy ik fj(c,k),iF,k,k) TE (fj(cyk),imvk M(J ’“))
< E((1— 279 2IER) 5 362) 4 Crpm (s fir) .

Now we will bound E(23(C’k) x 3¢2). Note that ( = ®(—2) < 0.3, so we
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have that
(6.125)
J(¢k)+3 .
Ee(2C0) < N Ee(G(C k) =) x 20 + Z Ee(j(C k) = 5) x 2
Jj=1 J=3(C k) +4

, > . 1.
< 93(Ck)+4 JP(— s 4 28T T Yi—i(C k)4
< + | Z 2 (I)( z¢ + 64 )
J=3(C:k)+4
, . 1 4
< 9i(GR)+4 | 9i(GR)+4 < 33.
- + 1-0.03 = po(2ce; fr) .

The last inequality is due to Lemma 6.3.
Going back to Inequality (6.121) we have that

2
E ((M M(f)) ) < (HZ 182 +émpm(5§fk)2>

6.120) < (zW ol m)
k=1

Cm (Z pm({;‘; fk))
k=1

6.11. Proof of Theorem 3.4. Recalling the lower bound for Lq n(e;f)
established in Theorem 2.1 and Theorem 2.2, it suffices to prove the following
propositions.

2’(8 fk)

PROPOSITION 6.9 (Coverage). The confidence interval Cl,, o defined by
(3.18) is an 1 — « level confidence cube for minimum.

PROPOSITION 6.10 (Expected Length). For a < 0.3, and confidence
interval Cl,, o defined by (3.18), we have

(6.127) E¢ (|Clm7a|) < CNvm,s,oz /)m(5; fk)v
k=1

where C’ms,a 1s an absolute positive constant depending on s and .
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6.11.1. Proof of Proposition 6.9. Recall that ( = «a//4s. Let the event Ay
be

(6.128)
A = {Z(fk:) 6[2_j(C7k)+1 x '(%j(é,k)—l,k - 7)’2—]‘((,19)-1-1 X '(%j(g,k)_l,k +6)]

for all k € {1,2,--- ,s}}.

Then from Theorem 3.2 we know that P(A;) > 1 — /4. Easy calculation
shows that A; can also be written as
(6.129)

Ar={Z(fi) € 27N 1605 4y _y = 7,277 721650 4y _y 4 + 6]}
Let the event Do be
D2,k = {5(06/48, k) < j(a/487 k) - 2}7

where j((, k) is defined in (6.113). By definition of j((, k) we know that for

(6.130) Eip- 25— > 230D (1),

Therefore, we have

P(Da g 0 {li5¢ .0 = e py il <43)
ikl A
< 3 P(iGR) =l — il <4)

(6.131) =

j(a/4s,k)—1

< (I)(_Za/4s —-1) Z P(ﬁj:k - Z;,k’ <4).
j=1

Additionally, recall jj, defined in (6.106), we have

(6.132)
P ({5 o s — i = 5.5(C.R) < jla/4s, k) = 1})
jla/ds,k)—2
<Pk <jla/ds k) —2) <6 Y @(-2PU/RTIDE( 004 1) + 204,)
j=1

< 6 X B(—24/45 — 2V2) x 1.000001.
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Therefore, for a < 0.3,

(6.133)
P(Dsy) < ®(—24/45 — 1) + 6.000006 x O(—z,,45 — 2V/2)

4 4
< (a/4s) x (3 -exp(—1.5) + 6.000006 x 3 €XP (—4)) < a/8s.
Note that for each &

. _ (¢ k) +3.i,k 4
93 (6,R)+3 o Xj’({,k)—i-?),i,k _ / fu(t) - 93 (GR)+3 3¢
t

F(C,k)+3,i—1,k

(6.134) .
+Y(1,1,---,1) = Y(0,0---,0) —fo—\/§€/ B} (x)dz
0

J(¢. k)

fori=1,2,--- s areiid N(0, 2I(Chk)+3 o 3e2). And

(6.135)
Y(1,1,---,1)—=Y(0,0---,0) — fo—

S

> <Y(1, Lo, 1) =Y (0,0---,0) — fo— V2 /1 B,i(a:)dx) ~ N(0,e%((s — 1)® + 25)).
0

k=1
Hence we have that
(6.136) P (£ < M(f)‘fh) <7
Also note that on the event A1 N D3, there is a random variable such that
Uelj (G K) ~ N(0,3(1 — 27707192,

25(<7k)+3 3 %

min X- )
. R K)3,i.k

16+(35 ¢ oy —1.6—T)<I<16 (350 o)1 +6) I(GR)+3.0
(6.137) < M(fk) + pm(zce; fr) +vk

< M(fi) + V32— + 1y,

v pz(2¢g; fi)
and vy, v, -+ ,v; are independent.
Recall Lemma 6.1 and the definition of Dj ;, we have on the event A; N

Ds,
(6.138)
2 (CRI+3 min X- ks < M(fx) R Y —

\ P ZCS fk

16-(i5 ¢ )1 x—T)<I<16:(i50c 1)1 x+6)
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So we have that

(6.139) P (fi, > M(f)‘Al N (Mo D5s)) < 2

Adding the components, we have

(6.140)
P(M(£) ¢ [fio, fi) <

P(A5) + 3 P(Dag) + Plfio = M(£)| A1 1 Moy D5 ) + P(E < M(6)| A1) < o
k=1

6.11.2. Proof of Proposition 6.10. As j(¢,1),7(¢,2),---,7(¢, s) based on
independent random variables, they are independent. Hence we have
(6.141)

5 }(za/éls’k)
E(|fni—f0%) < <2\/6€ (5208,0/85 + Zaja + 22025 + 2248) ZE(Q 2 ))
k=1

Now we will prove the following lemma.

LEMMA 6.2. Fork=1,2,---,s, for ( <0.3,

(6.142) E(2"57) < 12.7 x 2757,

where §(C, k) is defined in (6.113).

PROOF.
(6.143)
N (SO I } o ) )
Ee(272 )< Y Ee(G(Gh) =4) x22 4+ > Ee(i(¢, k) = j) x 22
j=1 J=5(¢.k)+4
(¢,k)+5 s j ze+1
o k)48 g ¢ —j(Ck)—4
<2 _ J—J
<24 Z 220(—2 + =)
J=J(¢,k)+4
< 95T | 9T 1 74803 < 12.7 x 275"

3(¢,k) . .
To bound 272, we continue with another lemma

LEMMA 6.3. For ( <0.3, andk=1,2,---,s we have

. 1
(6.144) 270 > 2p. (21 fi).
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Proor. Without loss of generality, assume fi(Z(fr) + p-(zce; fr)) <
pm(zce; fr). Suppose 277 < ipz(zga; fx), then we have that

_ _ i 1
(faz 2k = fia o v1) <272 \[E

(6.145) 1
< pml2ces fu) - 5/ p2(2ces fk)\f 2\fzc <z + 1

Therefore, j > j((, k), thus 279K > 1. (zce; f).
]

Combing Lemma 6.2 with Lemma 6.3 and getting back to Inequality
(6.141), we have

(6.146)
E(|£4i — fio]?)
2
u 1
< | 2V6e (Saos,a/8s + Zaya + 22ajas + 220s8) D 12.7 X 2
k=1 pz(za/élsE; fk)

2
< (8\/§ X 12.7 x (SZOS,a/Ss + Za/4 + 22a/4s + 2Zoz/8 Z pm Ra/4s€; fk)) :
Raf4s 1

Note that
(6.147) Pm(Zayas€; fi) < Zajaspm (€ fi),
and
(6.148) E(|fhi — fiol) < VE(|fni — fi0]?).

Therefore, we have the statement.

6.12. Analysis of Local Minimax Rates for Nonparametric Regression. In
this section, we give lower bounds for the benchmarks defined in (4.2) and
(4.3).

An additional complexity for the nonparametric regression is that two
functions f and g can have same values on all grid points i while have
different minimizers or minimums. We call this error caused by discretization

discretization error:

. (£ nl6A 40 5 {1 Z(£) — Z(g)]2  £(1) = g(1) for all i € {0,1,...,n}"},

D, (5 15 g7, {|M(£) — M(g)| : £(3) = g(2) for all i € {0,1,...,n}"}.
(6.151)
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Note that while the discretization errors are defined for f € F, they are
also well defined for univariate convex functions by setting s = 1. With
a bit abuse of notation, we use them directly for univariate convex func-
tions as well by plugging in univariate convex function f in the place of the
multivariate convex function f.

It’s apparent that
(6.152)

Ron(0£) > @Z<f;n),ﬁm,n(a;f)zi® (£:1)2, L (03 ) > (1-20)) Dy (£: ).

1
4

For simplicity of notation, for € > 0, we define

(6.153) 0a(e:f) = pale: f) (1/\\/an ; f) for f € F,
(6154) (e f) = pmle f) (1A Vrpa(s ), for f € .

Now we state the lower bounds for the benchmarks, whose proof will be
given later.

B ’Dz fin
(6.155)7n(0;f)2 <01X1252k 180,2(( +1)§’f) > (4 )’
(6.156) (0 F) > %Hs ( D.(fu;n) V os( = +1)2 ,fk))

(6.157)

) 1 o L L
Rmn0'§f2 m ; 2 s \/7©mf;n2,
R ST PR e e ey s A R

(6.158)
I:.m’a’n(cr; HH)>(1—-—a—P(—24+1)):

1 ° o 1
m (=3 fr)? S 5 ~ VO, (fin
3v2 EZ:SO ((n+1)§ Tv) \/1+n+zk=12,02((n+1)5§fk) (£5m)

Before continue with the proofs of the lower bounds (6.155), (6.156),
(6.157), and (6.158) separately, we introduce some quantities and lemmas
that will be frequently used.

We introduce a function I,(-,-). For f,g € F

7 —9(3))?
(6.159) w(fr9) \/ = n+1 .
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l, can be considered as a discrete Lo norm of the difference of function f
and g.
We also have the following lemma.

LEMMA 6.4. For fe F,e>0, and 6 > 0, there exist g € F such that
(6.160) In(f,g) < V6e,
and that

‘Z(f _Z(g) sz( f)(l/\ anz( f)>_57

pm(e: F) (LA 2np(5 f)) —
(6.161) g(t) > f(t) for0<t <1,
D00~ FC) S hlfon 5+ 206 )
1=0

PROOF. Suppose n > 0 is a small number. For p > 0, we next define
convex function g, ,. Suppose t; ,,t,, are left and right end points of {t :

f(t) <p+M(f)}. When t, +t,, > 2Z(f).

(6.162) ou(t) = max{ £(£), u+ M(f) + tw__ntlu(t — 1)}

When t;,, +t,., < 2Z(f).

(6.163) gn(t) = max{F(£), ju+ M(f) + witluu — tr)}-

For p.(e; f) > &, we have
(6’164) ln(fvgn,pm(s;f)) < \/EHf _g” < \/65,

for any n > 0. And we also have that

(6.165) ngrg+ 12(90) ~ 200 = p-(: ).

For p.(e; f) < 5=, we have that
(6.166) W (fs 9y 2mpee) = V|| f — gl < Ve,
for any n > 0.

(6.167) nlirfﬁ \Z(gmsm) —Z(f)| = pz(g; )/ 2np=(&; f)).
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Let u = pm(e; f)(L A\ 2np2(e; f)).
Then we have that

(6.168)
ln(f7 gn,u) é 652a

hm+ M(gnu) — M(f) = pm(e; £)A AV 2np.(e; f)),

im [Z(gnu) = Z(f)| = p=(&; YA NV 2np=(e; f)),

n—0t
gnu(t) = f(t) for all 0 < ¢ <1,

(nil ;<gn,u<;> - f(i)))

‘{Z gn“T(LJz;f< )}| Sln(fagﬁvﬂ)

22npz(5; f)+1

< Ia(f,
(f gn,u) n+1

Take 7 small enough gives the statement.
O

Now we continue with analyzing the probability structure of the nonpara-
metric regression setting.

For f, g € F;, denote the probability distribution under f as Pr and that
under g as Pg. Then for observation {y;}, we have

P, (1) — g(i —f(i)? i)?
Pf({yi})): 3 <y(()2g<))+ ()+g()>.

o 202
g i€{0,1,- ,n}

(6.169) log (

If we set fy = f1{0 = 1} + gl{0 = —1}, then we know that
(6.170)

W nf(3) — (i) —£()* + g(i)”
ie{o,;,n}sa@ie{o,l,..,n}s(f(i» (i))? 2a¢216{01 e (FD) — (D)2

is a sufficient statistic for #, and

LV Zictor e (F0) — 80P/ + 1)
2 o/(n+1)3

(6.171) W~ N8 1)

o2
6(n—i—1)5

@ =

6.12.1. Proof of Inequality (6.155). Recall Lemma 6.4, take e2 =
Take

6 < 0.001 min p.(e: fo) (1A Vo fo))
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Take gy 5 to be the function satisfying (6.161) in Lemma 6.4 for f = fj. Let

n

6172 Bl = 9rs() — 1 D (awal) — (D))
=0

Let

(6.173) hs(t) = fo+ > holte).
k=1

It’s easy to check hs € F;.
Then Lemma 6.4 together with elementary calculation show that

Vieg01m e (ED) — 8(0)?/ (0 + 1)°
o/(n+1)3

(6.174) <1

— )

and that

6.175) 1209~ ZOF = 3 (poles ) (14 VEmoE 1) — )’

Recall that W defined in (6.171) is sufficient statistic for €, we have

(6.176)
Ren(038) > inf max{Br (|2 — Z(5)|?) , Bu, (12 — Z(0s)[2)} > ral| Z(F) — Z(hs)]?
Z

> 123 (petes ) (10 VB 1) —6)
k=1

where

16— 6/
ro = inf max Eg ,
g 0==x1

for W ~ N (g, 1). Elementary calculation shows that ro > 0.1.
Now we take § — 0", we have that

Ren(036) > 0.1 pa(es fi)* (1A 2np.(c i)
(6.177) =1

>0.1x — 2
><12SZ¢Z EERTY o),

where the last inequality comes from Proposition 2.1.
Note that ﬁzvn(a; f) > M apparently. We concludes the proof.



MINIMIZER AND MINIMUM VALUE OF CONVEX FUNCTIONS 61

6.12.2. Proof of Inequality (6.156) . Take hy s constructed in (6.172).
Let § < 0.01 be a small positive number.
Take f, .., 5 € F satisfying

fkalt5< ) fk( )f0r0<z<n

(6.178) X ~
12 ans) ~ 2001 = 53/ (1= ). (fism).

Take
(6.179)

hys(t) = fo+ ) (hk,s(tk)ﬂ{lz(hk,s) =2l 2 1 Z(fy e s) — Z(fi)l}
k

+ fk,alt,g(tk)]l{lz(hkﬁ) - Z(fr)| < \Z(fk,alt,g) - Z(fk)”)-

It’s easy to check that hy s Fs.
Then we have that

Ve e (F0) = g0)2/(n + 1)
o/(n+1)2

(6.180) <1

i

and that
(6.181)

120y )~ Z(E)il] > (W (1 - 8)D-(fiim) v

s

(pz (&5 fx) (M v 2np2 (€5 fr) ) —5>) ;

k=1

for k € {1,2,---,s}.
Therefore, we have for Cl,, o € Zin.an(Fs),

(6.182)
Ee (V(Clna)) >(1— o — (=2 + 1)) x

= (;J (1= 3)D.(fism) v

Note that & < 0.3 gives 1 —a — (-2, + 1) > 0.

s

(o550 (11 VBT - 4) )

k=1
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Take 4,0 — 01, we have

(6.183)
E¢ (V(Clpa))

> (1= o Bz +1)) (1 (fuin) (pz(s;fk) (1 A 2npz(€;fk)>>>

Hl\')

>(1—a—®(—z4+1)) )

D)V e (—7 )
ks T \/@@Z(n—i—l)%

,fk:)> :

6.12.3. Proof of Inequality (6.157) and Inequality (6.158) . Let
(6.184)

N)

<(I—a—P(—2z4+1))(125) _5Hk 1 (\/ (fr;m) \/gpz

M\rn

+1)

Pm ( évfk) 1 o 1
\/Zz 190m f,)Q%(n—i— )2 145+ 200 20.(— %

= =)
Recall Lemma 6.4. Let 6 = 0—;~min1§kgs ©m(ek; fr). Foreach k € {1,2,--- , s},
take € = e, and take let g s be the function g in Lemma 6.4.
Let 0 < 0.01 be a small positive number.
Take f, .., 5 € F satisfying
K

fkalté( ) fr(=) for 0 <i <n,

(6.185) n .
[M(fy, q10.5) — M(fi)| = 5( 0) Do (fri ).
Let
(6.186) gs(t) = fo+ > grolte).
k=1

Clearly gs € Fs.
With a bit abuse of notation, in this proof let

(6.187) Ay = n}r : ng,a(%) - fk(%)
i=0
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Then we have that
Ve 0 e (D) — 85(0)2/ (n+ 1)°
o/(n+1)}

_ Vi AR+ X1 n(fes Gr) — Ak)?
a/(n+1)2

(6.188) \/Zk VIn(frs grs) — Ag) \/1+ + D he1 2028465 fr)
0/(n+1)
\/Zk (62142 + X 255 1)
o/(n+1)2

<1
Also, by Lemma 6.4, we have that
(6.189)

M (gs ZMQM M(fr) >me5k:7 )(1AV2nps(e; f)) — 6

_Z[a/n+15 m((n+1)%.fk)_6
1

3\[JZ¢ (+1);'f)2\/1+jl+2212pz( = fr) 0

(n +1)2

Recall the sufficient statistic W given in (6.171).
So we have

Rinn(0;£) > i&fmaX{Ef(lM — M(£)), Eg, (1M — M(gs)*)}

(6.190)
> ro| M (F) — M(gs)|?,
where )
16— 0|
"o =l B

for W ~ N (g, 1). Elementary calculation shows that ra > 0.1.
Let § — 07, so we have
(6.191)

Rmna f Z@Z(pm

1
1+ 2 +Zk 12pz( §afk:)
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It’s apparent that Ry, ,(o;f) > %@m(f; n)2. This concludes the proof of
Inequality (6.157). We now turn to the proof of Inequality (6.158) .

Let 6 < 0.01 be a small positive number. Then there exist f'l, f'g € Fs such
that
(6.192)

n

Suppose Cly o € Iim.an(Fs)-

It’s clear that Cly € Zman({f.85}), Clma € Iman({fg,fl} There-
fore, we have that

(6.193) Linan(0; ) > (1= 2a) - (1= 8)Dm(f;n),
and that

(6.194)
f-m,a,n(03f)
> (1—a—®(—2q +1)) - [M(f) - M(gs)|

E‘1(*) - f( ) fQ(%) forie {07 17 U 7n}87 |M(f1)_M(f2)| > (1_8)©m(f; n)’

1

>(1—a—P(—z4+1)) 3\/» Z‘P (n +1)§'f)2\/1+ +Zk 1 pz(
— s0.

Letting 8,6 — 0 gives Inequality (6.158).

6.13. Proof of Proposition 4.1. The idea of the proof is very similar to
that for white noise model.

Invertibility follows from definition. Independence follows from the obser-
vation that the concatenation of the elements is this s + 1 tuple B({vi})
follows a joint normal distribution and that covariance of of elements from
different places of the tuple is 0. The sufficiency rises from factorization of
the probability.

6.14. Proof of Theorem 4.1. We have

(6.195) (HZ Z(f ) ZEf(|Zk_ fk)”)

Note that Proposition 2.1 gives

Voo o
(6.196)  pe((ec+ 1) T2 e fi) < (3% 4V3) el g )

w\w

5 7fk)
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for ( < ®(—2). Also note that D, (f;n) = > 1_; D.(fr;n).
Recall the lower bound for R, ,(o; f) given in Inequality (6.155).
So it is sufficient to prove that for ¢ < 0.15 the following holds

(6.197)
Er (12— 2(f0)I?) <
> z —\/60 : 2. In Z —\/60 ; 31

for an absolute constant Cy > 0.
Now we proceed with proving it.
First we introduce a quantity for a general ¢ > 0:

(6.198)

k() = sup {f : min {\/g[fk(z(fk) +&) — M(fi)],

R e 1}.

Then let

277
(6.199) jx(¢) = max{j :

> &(Q)}-
We further introduce the following quantities.
. 2777 (i—-1) 1 2/77.¢ 1
n 2n’  n 2n
(6.200) 3k =min ({j : [ir; — i} ;] > 2} Uoo),
jr =min ({j : [ir; — ik ;| > 5} Uoo),
jr = min ({j : |ik,j - iz,j| >T7HU oo) i

i;j = max{i : Z(fx)

Then we immediately have the following facts that we summarize into a
lemma.

LEMMA 6.5.  For j <min{J, jx(¢)}, we have

(i ;+2)2777 -1

(6.201) —— > (jg(

h:(1;7j+1)2J*J

h h—2777 ; ;
)= ACTE) ) 2 230D 1),

n
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and
(i ,~12777-1 w
I h — 277 h 3
0202 o= S (ACTED) - A) 22l ().

Ol 4 .
k. h=(if ;—2)2/ =7

When i, = j, then one of the following happens

(6.203)
'O <Yl . ' <Yyl vl <Yl
kv]vi]z7j+2 - k7]7i27j+1’ k7]71]§’J+3 - k7]71k +17 k7_771k +4 - 7_]71k +1’
l / ! / )
Yegar,—2 S Vhjar —1Vkjar -3 S Yk,j,il’;‘j—lek,j,iz7j—4 S Vijag -1

Now we will state three lemmas, the proofs of which are left to latter
parts.

LEMMA 6.6. Suppose ¢ < 0.5.
(6.204) E¢ (2_25kﬂ{jk < J}) < (G2 Hr(©) (1 A 2J—J‘k(<>) ,
where Co = max{sup,, 22°®(—z), 2}.

REMARK 6.1. Note that the left hand side of Inequality (6.204) does not
depend on (, but we state this more general lemma.

LEMMA 6.7. Suppose ¢ < 0.5.
(6.205)

Ee (27251@(4)1{%(0 < 0o}1{j) > jk(o}) < 02 23k(0) (1 A 2J*jk(o) 7
where Cy = max{sup,>, 22°®(—z), 2}.

LEMMA 6.8. Suppose ¢ < 0.5.
Ee (12 = Z(fo)P1{34(Q) = 00, 3 > J})
(6.206) . .
< 642723k <1 A 27 =3k(C > + 29, (fr;n).
With these lemmas, we have that

6207)  Er (12— Z()P) < Cr-279@ (102750 120, (fiem),

where C1 = 64 + 2Co.
Now we introduce the following lemma about &(¢) and ji(¢), which
immediately concludes the proof of Theorem 4.1.



MINIMIZER AND MINIMUM VALUE OF CONVEX FUNCTIONS 67

LEMMA 6.9. For ¢ > 0, we have

(6.208)
V6o 1 V6o
292 + 1) T ) 2 8(0) 2 oo + ) )
(n+1)= vn (n+1)z Vn
2
(6.209) (R P
s 2n V6o
(6.210) 27949 < 260(0) < 8pal(ac + 1) ————i fi).
2 (n+1)7 n
6.14.1. Proof of Lemma 6.6. A basic property of normal tail bound is
that £ (2\f)x) decreases with z > 0 increasing.

(6.211)
Ry (2—25k1{jk < J})

J
< 32720 9722340 (@(=230KOD (2 + 1)1 < 34(Q} + 17 > 34(Q)})

< 1{J < §(Q))27 4O . 272 H+2k(O (25 ((O)- J)(ZC+1))+M
1 A
+1w>juonzm0(l+1>
1 — 4‘1’(—2\/5) 3
(1)
<W{J < jk<g‘)}2*2jk(<) . 97=3k(C) sup 2x2CI)(—az) +2.1{J > jk(o}2—2jk(<)

z>1
Let Cy = max{sup,>; 2z°®(—x), 2}, then we have the lemma.

6.14.2. Proof of Lemma 6.7. By our stopping rule, apparently jx(¢) > 1.
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(6.212)
Er (272O1{36(0) < 00}1{3k > 31(O)})

= zjjz—?jﬂ-zf (Ef <]l{jk > jr(C) = jH%))

J=1

Mk

272340 9 2O (=28 UK (2 + )I{G < 5u(O} + {5 > 54(0)))
1

<.
Il

- ~23x(¢) . 927423k (O) (93 (x(O)=J) .
< I{J < 3a(Q)j27% -2 HYP(—220k (Zc+1))1—4¢’(72\/§)
B1)
T > QB0 [ 2
1_42C2v2) 3
S
< {J < ()27 3+ 27736 qup 222® (—z) + 21{J > j5(¢)}27 2+
x>1

Let Cy = max{sup,> 222®(—z), 2}, then we have the lemma.

6.14.3. Proof of Lemma 6.8. Note that j,(¢) = oo, j; > J means that

. i . 2 2 2 2 2
(6.213) {i: fo(=) = min } C{ips—3,ips—2,iks—1, 1%, 1% +1},
n’ " 1ef0,1, n}

and that

iy —3 1 1
(6:214) e

When j(¢) < J, then we have 2-3+(€) > 2=/ > n%rl

(6.215)
Ee (12 = Z(f)P1{34(Q) = 00, 3x > J}) <

2
<16 n+tl 923k (C) (1 A 2J—J'k(C)) < 64 - 272380 (1 A 2J—jk(C)) )
< n <

When ji(() > J + 1, denote i,, = arg miniifk(%):minze{o,Lm,n} |& = Zgl,
the index of the position at which fi is minimized while being closest to

the estimator. Note that this is deterministic when f; has unique minimizer
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among grid points but is a random variable when f; has two minimizers
among grid points.
Then according to Lemma 6.5 we know that

Er (12 = Z(f)P1{3k(C) = 00,5k > J})
< 2E¢ <|Zk - Z;Ln|2> + 2®z(fk:§n)
<2 x E x 4P (— 25 (i (C)*J)(zg +1)) +29.(fr;n)

(6.216) 1
< 128 <n+ > 2721 (—22GO=Y 1 29 (fiin)
n

2
<128 <n + 1) 9=23k(C) . 9/ =3k (0) . 23(1)(_f) + 29, (fr;n)

n
< 10 -2723k(C) . 9J=3k(O) 4 29.(fr;n)
Hence we concludes the proof.

6.14.4. Proof of Lemma 6.9. Denote

1 V6o
Ay = §Pz((2< + 1)m; fr),

and
Ag k= min{fi(Z(fr) + A1k), fe(Z(fx) — Ark)} — M(fr)-
Then we have that

Al,kAg,k
Voo 2
= — maxfi, M m D)
ooy S M mexe M) £ (e ) M
2
= ((ZC + 1)\/6:7_1> .
(n+1)z n
Denote e
60
Azl = 2p: D)——F3—: k),
3.k P ((ZC+ )(n+ 1)57\/5 fk)
and

Agp = min{ fi.(Z(fr) + Az k), [e(Z(fr) — D3 k)} — M(fr).
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Clearly that

Mg > pm((z + 1) —— 1 fy).
ak > pm((z¢ + )(n+1)s; v fr)
Then we have that
Az kAL,
\/60' 2
> — , M + Pm +1)————m
6218 | fr — max{fr, M(fr) + pm((2 )(n+1)T\/ﬁ Fe)}

. vor Y’
_<“+”m+n?w)'

6.15. Proof of Theorem 4.2 . Note that the coordinates of the hyper cube
C1I, , are independence from each other, so the following two propositions
are sufficient to give the statement of the theorem.

PROPOSITION 6.11.  For Cly o defined in (4.14)

(6.219) Ee ({Z(fk) ¢ Cla}) < afs,
for all £ € F;

PROPOSITION 6.12.  For Cl} , defined in (4.14)
(6.220)

Eg (’tk,hi - tk,lo‘2) < C5pz(zoz/s ;fk)z (1 A npz(za/s

v
(n+1)2

for all £ € Fs, for an absolute positive constant Cs.

m; fk)) +99.(fr;n),

The reason Proposition 6.12 implies the statement of expected volume in
Theorem 4.2 is as follows. Proposition (6.12) implies that

o
(6.221) E¢ (|tgni — triol) < VCs- (22a/s)‘¢z(m; fr) +3VD.(frin),
where @, (-, ) is defined in Equation (6.153). This further gives that
(6.222)

B (VICT)) < (34 VG (220/0) Thics (i 0V VAL Tam) ).

This combined with the lower bound for L, , ,,(c; f) given in (6.156) gives
the statement about expected volume.
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Before we continue with the proofs of the propositions, recall the quanti-
ties we defined in Equation (6.200) and (6.199).
And we further introduce the following quantities that will be used fre-
quently
(6.223)
h

= minfi: f() = min F i = max{ic (D) = min ()

n h€{071)’n} n n he{oulzvn} n

On the event {jx(a/2s) = o<}, we define a “bad” event. Let the event
that first shrinking step misses the target be

(6.224) By = {iy 2 imy + 1} U {ir <im2 —2}.

We will define more “bad” events in the proofs of the propositions, usually
denoted by By, for h =2,3,4,---.

On the event {jx(a/2s) = oo}, from our definition, it is clear that i; <
i+ 1.

We recollect the quantities defined in Equations (6.200), (6.199).

6.15.1. Proof of Proposition 6.11. The event that {Z(fy) ¢ Clyq} can
be partitioned into the followings

(6.225)
{Z(fi) ¢ Clia} <{in < Ja(a/2s) — 1}
U ({3k = Jr(/2s), jr(a/2s) = oo} N By)
U (({3x = 3e(a/25), jr(e/25) = 00} N BY) N{Z(fr) ¢ Clra}) -
We will bound them separately.
(6.226)

Er (13 < Ju(a/2) = 1}) < Br ((UT, = 613, o)l ) ) < /25

On event {jix > jr(a/2s),jr(a/2s) = oo}, we know that Ly < ip; <
im,r < Uy. Therefore, we have

(6.227)
Ee ({3 = jr(a/2s), ju(a/2s) = oo} N By)
V30 o
< P v+ () > V)
’ ’ (n+1)= ’ ’ (n+1)=
NET 2v/30
PV ot = Viigny + ot (Zhiimt = i) < i Fen)
(n+1)= (n+1)=

<21 < a/4s.
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On the event {ji > jr(a/2s), jr(a/25) = oo} N Bf, we know that only

im,r«l»l

when i =i, +1 < n — 1, tgp; < min{">
when 4 =4, +1 > 1, tg 0 > max{%,O} could happen. And note that
Iy < 1) = iy + 1 < iy indicates that 4,,; = 4, ,, which we denote as i,.
So in the following we only consider fi with unique minimizer on grids. Also
we have in these cases i; = i,,. We have that

Pe ({3 = Ge(e/25), Ju(a/25) = 00} N BY) N{Z(f) & Cly.a})
(6.228) < Eg(L{im=t0=14r+1<n—1,tpn <Z(fi)})
+Ef (Wi =i =ir + 1> 1tk > Z(fr)})-

, 1} could happen, and only

The arguments bounding the two terms are similar, so we only show that
for the first one.

Use ¢, to denote the intersection between the two lines
(6.229)

liiy=f(-2), 0 y(t) = ~ —(t - :
V= Ol ylt) = SO 4 B
It is clear that Z(f) < tir.
Basic calculation shows that
i i1 )
‘m —_ ‘m T = m 1
(6.230) b — fk(inJr)Q il 7 21 im 41
n(fr(™=) = fr("=5)) n

It is easy to check that the distribution of

\/ga

e e 3 3

Ukim ~ Vkim41 — 75T (zk,im ~ Zhimtl 2\/§Za2) ;
(n+1)z

(6.231)

\/3(7

e e 3 3

Vkjim+2 = Vhyim+1 — s—1 <zk,im+2 T Phyim+1 T Qﬁzaz)
(n+1)=

is the same with the following

(6.232)
im, V6o im + 1 V6o V6o
my VO _ . — Y 2.,
<fk:( . )+ DS no — fx( - ) e m+ DS z
I + 2 V6o im + 1 V6o V60
N — . — " 220, |,

where g, 11, 72 AN (0,1) and also independent from ij, i,.
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Note that under the event

{770 2 —Rags N1 S Zag s 12 Z _Za2}7

we have tj p; >t . Hence we have that

Ef (ﬂ{lm = il = ir +1 <n-— 17tk,hi < Z(fk)})

6.233 Qo
( ) <P(no < —Zay) + P(m > 2ay) + P(N2 < —24,) < 30 = %

Similar arguments show that

Ee (Wim =i =dr + 12> 1t 10 > Z(fi)}) < 300 = &

Therefore we have
(6.234) Pe(Z(fr) ¢ CI) < /25 + 2a1 + 6an = o/ s.

6.15.2. Proof of Proposition 6.12.

E¢ (|CIx[%)

) 92J-2jk(a/2s) 3 _
< 26°E¢ Tl{jk(a/%) <00, jr(a/2s) < jr}

(6.235) .

+ 28°F; (2 ——1{Jk < jk(a/Qs)}>

+ E¢ (|CI[*1{jx(a/25) = 00, ik > J})

Recall Lemma 6.6, 6.7 and 6.9, we have first two terms being bounded by

—o 1A 1)—veo__.
(n+1)s21\/ﬁ7fk)< \/npz((za/25+ )(n+1)521\/ﬁ7fk)>’

multiple times p. ((zq/2s+1)

specifically,
(6.236)
E¢ (|CIi|?)
. V6o ) V6o
< O3p:((2072s + 1) ———; 1 2((Zay2s +1)———F——:
< C30:((2a )25 + )(n—i—l)T\/ﬁ fx) ( Anps((Za/2s + )(n+1) T fk))

+ E¢ (]C’Ik\Q]l{jk(a/Qs) = oo,jk > J}) ,

where C3 > 0 is anlabsolute constant.
Note that Zaz/ﬂ < 4, and invoke Proposition 2.1 by Cai et al. (2023a),

afs

it suffices to bound the remaining term.
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We proceed to bound the remaining term. Note that

(6.237)
2
2\/EO- Zo/8s n + 1 3 g
p=(zajss— i fi) < (2721 4V/3 pz(Zass =i fr);
(n—|—1) 2 \/ﬁ Rafs n (n+1)2
n—|—1§2’ Za/88<4f0ra§0.3.
n Za/s

So it is sufficient to have the following lemma for concluding the proof.

LEMMA 6.10.
(6.238)
Et (|CI*1{jr(er/25) = 00,3k > J}) <
- 2\/@0 2\/@0
C4pz(za/85—s;1;sz)2 1 /\npz(zoc/&s s—1 afk) +9©z(fk;n)
(n+1)2 vn (n+1)2 vn

where Cy > 282 is an absolute constant.

PrROOF. When

2412
(6.239) p(zajss—— g fi) >
(n+1)7

lemma 6.10 holds.
Now we consider the case that

(6.240) po(eayp— Y20 iy L
D= yn P

Note that this means that for i > i, ,

1+ 1 7 (n+1)"2 n
_ V> —
il " : fk(n) on pz(za/Ss 2 igf i fr)
(6.241) (n+1)"2 vn

[SI)

NI L s ie i
_\/ia/Ss(n_’_l)s;l Pz a/85(n+1)5;21\/ﬁv k

and similarly for ¢ < i,,;, we have
(6.242)

1—1 1 2120 ) -
) — fk( ) 7 a/SS( )% (npz(za/BsW7fk)>

Ful—
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Note that on the event {ji(a/2s) = 00,jr > J}, we have that L, <
iml < im,r < Up. We define a “bad” event

(6.243) By = {it <y — LU {ip > iy}
Then we know that

Pe(Ba N {jr(e/25) = 00, i > J})

_3
2v/12 ’
< 289 _\/ﬁza/&s npz(za/&s—s—al; fk) + Zay
(n+1)F v
On the other hand, for the bad event B; defined in (6.224), we have

Pe(B1 N {jr(e/25) = 00, i > J})

(6.244)

_3
(6.245) 2v/120 ?
<o _\/iza/&s npz(zoz/&s—s;l; fk) Rouy
(n+1)2 vn
Note that we have z,/3; > 1 for 0 < a < 1. Hence we have
(6.246)
E¢ (|CI,*1{B1 U Bo}1{jx(a/25) = 00, . > J})
_3
282 2V 120 :
< =5 x 40P | (V2 = 1)zayss | 102 (2085 1)
n (n+1)72 /n
“ 2v/120 2v/120
< Cspa(2ajss—————=3 [1)* [ 1 A npz(zass————: 1) | »
(n+1)7=2 /n (n+1)z y/n

where Cj = 28% x 40 x sup,, 22®(—(v/2 — 1)z).

On the remaining event
(Bl U Bg)c N {jk(a/Qs) = 00, jk > J},

we have that
U = iml, by = by — 1.
Now we have two cases. Case 1: iy, = Gy — 1, OF Uy = iy = 1 OF
iml = imy =N — 1. Case 2: 4y, = iy, and iy, # 1 and iy, # n — 1.
For the case 1, we have ©,(fx;n) > #, so we have

E¢ (‘ka‘Q]l{(Bl U BQ)C}:H.{jk(OA/2S) = OO,jk > J})
(0247 < % < 9D (fiin)-
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Combining with Inequality (6.246), we have lemma 6.10.
For the case 2, denote 4., = i, = iy, Wwe have

(6.248)
E¢ (|CI,*1{(B1 U B2)}1{jk(/25) = 00, jj > J})
< Eg (2(tkpi — im)?L{(B1 U B2)}1{jx(a/25) = 00, jp > Jim < n — 2})
+Eg (2(th 0 — im)?L{(B1 U B2)}1{jx(c/25) = 00, 5 > Jim > 2}).

The arguments for bounding the two terms are almost identical (flipping
everything around i,,), we only bound the first and second share the same
bound.

Recall ty,, defined in Equation (6.230), for simplicity of notation, denote
D = (B UB) N {jr(a/25) = 00,jp > Jyim <n—2}
we have
Ee (2(tkni — im)*1{D})
(6.249) <E¢ ((4(75,“,”» —ter)d + Aty — i;”)2> 11{D}>
<AD.(fyin) + 4E¢ ((trpi — ter)3 1{D}) .

To bound the second term, we will split event D into DN A and D N A€,
where A is an event define later. We will consider the expectation on these
two events.

Recall the joint distribution of the quantities in the numerator and de-
nominator of ¢y 5; under (By U Bg)® N {jx(a/25) = o0, 3k > J,im < n — 2},
as explained in Equation (6.232), denote £ = %, when further under

(n+1)"2"
the event t p; > % (the only one we need to consider), t; pi — ti, is upper
bounded:

(6.250)
thni — e <

eno (fe(22) — fr(22E)) +emp (fe(i2) — fu(22E2)) + eno (fe(2) — fu('2))

n (fr(2E2) — fo(mtly oeny —emy + 2ez4,) (fr(22) — fr(i2t))
X 22&25 (fk(%) - fk(%n))
n(fr(2E2) — fo(BE) + ey — em + 2e24,) (fr(2252) — fu(P2H)
The reason it is not an equation is due to the possibility of upper truncation
3 int+1
if tgpi by "=
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Recall that we define 79, 71,72 in Equation (6.232).

Now we consider a “good” event
(6.251) ‘ A ‘ A
fk(Z7,L+2) _ fk(ZnL+1) 1 fk(Z7,L+2) _ fk(ZWL+1) 1
A={m < L 6 L +§€Za2,772 > — n 6 n _5573&2}-

Under this good event A, we have
(6.252)

R (D et 2z, = § (A0 < A e

Then we have that

(6.253)
Et ((te,ni — trye)3 1{D N A})

2
1 €
<4— : : 1+4+1+1622
n? < (fr(B=E2) — fi(t=tl)) +€Za2> ( 2

2

1

; (6 +1622 /245)
2za/83 <TL,OZ( Za/8s 2\/:0 ,fk)> + Rof24s

(n+1)2
2120

CO\N)

2112 Za/24s
< pe(2ajgs 3 —; fe)? - nﬂz(za/SS—sj; fi) | [ 13.5436 </24
NG (n Vn

Za/8s

(n+1)7 +1)

The second inequahty is due to Inequality (6.241).
Also note that “/ 2% < 2 for a < 1. Hence we have that

(6.254)
E ((trpi — tey) 1{D N A})
2v120 9 2v 120
86p2(2a/8s 71— : 2(Za/8s 17—} :
< 86s(2/s (n+1)2\/ﬁfk) (m o (n+1)2\/ﬁfk)>

For event A° N D, we have

_3
2o /8s 2
6.255) P(A°ND) <20 [ 220 (1) (20 jse— 0 i f
(6.25% ) : ( e k>>

)
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Therefore we have

(6.256)
Et ((trni — trr)31{D N A%Y})
2v/120 ) 2v/120
< 18p.(2a/8s 7 —; : 2(Za/8s 17— :
< 18p.(2a/8 I Ir) (np (zass I fk))

Adding up the expection on event D N A° and D N A and going back to
Inequality (6.249), we have the first term in (6.248) bounded. Using similar
arguments, the second term can be bounded by the same bound. So we have

(6.257)
E¢ (|CI[*1{(B1 U B2)}1{ji(e/28) = o0, j), > J})
" ; 2v/120 TR 2120 _
< 8D(fk7 ) +832102( o/8s (n—|— 1)5;21\/57']0]6) ( Pz( o/8s (n+ 1)351\/ﬁ7fk)> :

This concludes case 2, thus the proof of the lemma.

6.16. Proof of Theorem 4.3. Note that ©,,(f;n) > S5, (min{ (%) : 0 <i < n} — M(fy)).
Recall the lower bound of Ly, 4.»(0; f) given in Equation (6.157). Note that

pz(ﬁ; fr) <1forall k€ {1,2,---,s}. Using Cauchy-Schwartz inequal-
n
ity, we know that it suffices to prove that

(6.258)
~ 2 5 g o
E(M-M({)) < (Om m(———=; fk) (M np:(———=; f ))
( ) ;p (m+1)5 " W (n+1)5 "

s . 2
+Z <min{fk(;)ZOSiSn}—M(fk)>) ,
k=1

Nl w
Nl w

for some positive absolute constant C,,.
Now we will prove this statement.
Recall that ¢ = ®(—2) < 0.1.

For simplicity of notation, denote

23k (051

A 1 w
i = 5.0 2 Te()-

w=23k(€) (1)
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Note that {u}jh :1<k<s0<h<n,u=I,re} are independent. So we

Ik(O)—Tye —f . Loy~ — 23k()=7Y23k ()= .
have that 2 Y50 Lo H20 fkvik,jk(c)""ZAk (v, vl) ~ N(0,(1-2 )2 3

Also recall the independence between er({y;}) and {v}/, : 1 <k <s,0 <
h <n,u=1re}. So we have that

(6.259)
E <M - M(f)>2 <

IN

Bt X el ]+ yE (- v)’

i€{0,1,2,- ,n}* k=1

AN
N
=

(( er({vi}) | — fo
16{07 ~n}s

i \/ Frdss, (<)+2Ak> 1{jx(¢) < OO}>

k=1

+ \/IE s 28k — (fk)>2 1{jr(¢) < OO}>
-\ (1310) = oo} — <fk>>)2))

- ((n+1§ \/ n+1s 1\/E 2HO1{35(Q) < o0})+
k=1

\/E <(fk,ikjk<0+mk - M(fk))2 1{jx(¢) < OO}>+
2
\/E (31— 3r(20) " 1638(0) - oo}>)> .

Now we will continue with bounding the terms in Inequality (6.259) sep-
arately.

We introduce the following lemma, which we will prove later, to bound
the first term in the summation.

LEMMA 6.11.  For ¢ < 0.1, we have
(6.260) E(23+O15,(¢) < 00}) < 37 - 23+

(n

o2
+1)°7

I

).



80 R. CHEN
fork=1,2,--- s, where jx(¢) is defined in Equation 6.199.

By definition of jx(¢) , we know that

9J=3k(C)
(6.261) > &, (¢)-
By Lemma 6.9, we have that
27=3k(¢) 1 V6o
(6:262) > 6(0) 2 5ol + )= —i i),

(n+1)z vn

Recall that we have ¢ < 0.1 (because ¢ = ®(—2) here).
This combined with Lemma 6.11 we have that

(6.263)
BEHO1{34(0) < oo)) <370 < M0 (g ()
- —on T (4 1)2] n+1)3z/)
The second inequality is due to that
(6.264)
1 \/60 ?
V6o V6o 9
< pa((z¢ + )(nﬂ)s2 7 Je)pm((z¢ + )(n—i—l) - i)
< pa((z¢ + 1)L; i) | e+ vy /2 1 2pm(gs§fk)2-
- (n+1)7 vn n (n+1)2

Therefore, we have the first term in the summation in Inequality (6.259)
upper bounded, which we summarize into the following lemma.

LEMMA 6.12.

(6.265)

Vo ,ME 2HO-T1{34(C) < o0})
3-148(n
<mm{\/ n+18 Yy n+1%‘ )}
A44(n + 1) o

6(n+1) : _7 .
<m1n{ n pm((n_’_l)% f)\/ pz(( +1)% s Sk, n pm((n+1)
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Now we continue with bounding the second term in the summation in
Inequality (6.259).

Note that our localization step and stopping rule for each coordinate
parallel that in Cai et al. (2023a), but with noise level ﬁ So according

n+

to Lemma C.42 and Lemma C.45 in Cai et al. (2023b), we have that
. 2
B ((Bui, o eon, — M) 1K) < oo}

. a 1 2 o?
< m2Pm\ =1 ——» yCm2 T
(6266) = min {C 2P ((n N 1)% \/ﬁ fk) Cm2 (n + 1)8—1 }

o2 o
(n+ 1)%,fk) (1/\npz((n+ 1);,fk)> )
where ¢;,2 and ¢é,2 are from Lemma C.42 and C.45 in Cai et al. (2023b),
and ¢,, is an absolute positive constant.

Now we turn to the third term in the summation in Inequality (6.259).

Recall that {1 , } is independent from {V]lc7h}U{l/£’h}. Let fj, = ming _ocici, 42 fu(21).
Elementary calculation show that

(6.267)
B (30— () 110 = ) )

2

WP(JV';@(C) =00) +2E <<fk - M(fk)>2 1{jk(C) = 00}) :

< Cmpm(

<2-5-

Again, note that the localization procedure and stopping rule for each
coordinate parallels that in Cai et al. (2023a), by Lemma C.46 and Lemma
C.43 in Cai et al. (2023b), we have that

e (o= M) 105400 = )

(6.268) < minf{,— 2 AL
. _mln{cmgm,cmﬁ' P m»fk)}

+ <min{fk( .)10<i<n}—M(fk)>2-

(4
n

And by Lemma C.44 in Cai et al. (2023b), we have that

o2 . o2
(6.269) WP(M(O =o00) < 64pm(m; fi)?.
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2

Also note that (n:l% < 4pm( frizl)s;fk)2 “nps( = fr) and that

(n (CESHEE
g o Voi
m < \@Pm(ml);,fk)\/m(ml);,fk).

Adding the three parts together, and going back to Inequality (6.259), we
have that

(6.270)
- 2 5 o o
E M—M(f) S (Cm m(s;f)<1/\ n Z( s;f))
( ) 2 oGy \/p (1"

s . 2
+Z (mln{fk(;) :0<i<n}— M(fk)) ) .
k=1

where (), is a positive absolute constant. This concludes the proof of the
theorem.
Now we give the proof of Lemma 6.11.

6.16.1. Proof of Lemma 6.11. By the definition of j;(¢), we immediately
have the following facts that we summarize into a lemma

LEMMA 6.13.  For J > j > ji(¢) + 5, we have that
(6.271)

. (if ;+14)2777 -1 h Ry
—_ 3 . -
; 2 (mn) - fk(n)> <277 x 22O (5 11,

G
I h=(iy 4+13)27

or
(6.272)
(if ,—13)2777-1 T
’ h—2777 h _ 3544, (C)—i
> (fk( ) — fk(n)) <27 x 20RO (2 4 1).

i . n
7 h=(if ;—14)27 9

Ok

Therefore, we have that
(6.273)
E(2*91{j(¢) < oo})
J
. . . 1 . . .
< 23k(0) < 16.23x(©) Z W O(—2¢ + % . 2%(5+Jk(C)—J)) < 3723,
J=3k(Q)+5

The last inequality is based on elementary calculation.
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6.17. Proof of Theorem 4.4. Recall the lower bound of f.m,am(a; f) given
in Inequality (6.158). Using Cauchy-Schwartz inequality, it suffices to prove
the following two propositions.

PrOPOSITION 6.13 (Coverage). For 0 < o < 0.3, Cly, o defined in
(4.25) is a 1 — « level confidence interval for M(f).

PROPOSITION 6.14 (Expected Length). Suppose a < 0.3. For Cly, 4
defined in (4.25), we have

(6.274)

E([CImal) < Dm( masZPm n—l-l);.f)(l/\\/an((‘i‘l); fk)>7
where
(6.275)

Crnas = (2\/35210,a/85 + 3(2a/4s + 1)) V8148 -2+ (\/§5210,o¢/85 + 2) 32+
(6 + S212,0/245 + Za/488/\/§) +210- V3324 Za/84\/67
and D, (f;n) is defined in (6.150).
6.17.1. Proof of Proposition 6.13. Denote
(6.276) i = jpe A

Note that ¢ = a/4s and recall Theorem 4.15, we have that for the event
A; defined by

(6.277)
A =
2J—jk(a/4s)+1 R 1 2J—jk(a/4s)+1 R 1
{Z(£) G[# X (L 50(a/as)-1— 1) — o T X (3530 (a/as)—1 T 6) — %]

fork=1,2--- s},
its probability satisfies

(6.278) P(Ay) >1— /4.
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Note that
(6.279)

i, o 2i=0%hy
23| ¥g . — — | +v2 =k
{ ha 2 G (n+1)% n+l

w=2" "k (i—1)

0_2

TRVl

(n+11)8 2_erllyh) ~for0<i< n}| (3400 Bjue) & N (0,297 -3

for i =0,1,2,---,n. This fact together with the fact that on event Ay,
(6.280)

277k —1 w 2773k —1 w
. . _ . ¢
I, lor<ni1£llk hi 2 Z fk(g) _Oglz‘lgnQJk Z fk(g),
T w=2" "Ik (i—1) w=2" "Ik (i-1)
gives
(6.281)
Y 1 o D10 %y
P M, +— D er({y;}) — fo— M +V2 _ )
( kot gy o er(lh) = fo = MU+ VB SR
< —5210,a/85 X (—\kfljﬂ x 277 A1> < a/8s.
n 2

Also note that ﬁ >oier({ui}) — fo ~ N(O, ﬁ), elementary calcu-

lation on the remainder terms of Mhi gives

(6.282) P (Mhi < M(f)]Al) < % + %

Recollect quantities introduced in (6.200) and (6.199).
Lemma 6.9 and the definition of j;(¢) gives

dp, 1 D — .
<4p.((z¢c + )<n+1)7\/ﬁ Ir)
Therefore
(6.283)
23 + 1) Y07 TP N

(n+1)7 ym V27730 (n+1)°7 yn
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This means for j > ji(¢) + 3,

30(zc+1) [ 1 .  Vee
(6.284) DS \/; > pm((z¢ +1) )R ),

and if further j < J,

(6.285)
(if jFw+1)2777 -1
' h V6o

min > fe(=) < M(fi) + pm((2¢ + 1) ————=——=5 f)-
wei=2-10} h=(1} +w)27 i n (n+1)72vn

Now we define an event
(6.286) Dot = {jr(C) < jr(¢) — 1}

Lemma 6.5 gives that for ¢ <0.1
(6.287)
P(Dyk) < P(3r < j&(Q) = 1) + P(3x(¢) < x(Q) — 1, 3 = 3(¢))

1 1 7 4

< 6D(—z — S e — < (- : —4) - = < 0.5(.
< 6®(=2 = 2) x 7507 + @5 = 275001 = ¢ To001 P 3 =05¢

Note that ¢ = a/4s, hence P(Ds ) < a/8s and P(U;_,Day) < a/8.
Equations (6.279), (6.280), (6.284), (6.285) together with the apparent
fact that

min{vy, -+, vy} < max{vy, -+, vy}
, we have that
(6.288)
- 1 o D10 %hy
P Mo+ —-— ) er({yi}) — fo+V2 — = — M(fx) >0
( k,l (Tl‘f‘l)sz ({y }) fO (n—|—1) 21 n+1 (fk)

AN Dg,k N {jp,k < J}) < 04/88.
Now we introduce a lemma.

LEMMA 6.14.

(6.289) P <Mk,lo > M(fk) AN Dik N {]F,k >J+ 1}) < a/8s,

fork=1,2,---  s.
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PrOOF. We prove the inequality for any fixed k € {1,2,---,s}. Denote
0; = V]?Z‘ - fk(%)

Note that {v®} is independent with {1/ 1"}, elementary calculation
show that
(6.290)

P(max{|d;| : (ki—1)V0 <i < (k,+2)An} < H 1/,{,,1/,7:,) >1-2-a/245s—2-a/48s = 1—a/8s.
Denote event

B =max{|d;| : ki VO<i<k,+2An} <H

On event Ap, we know that % < Z(fx) < krrj'l.
Recall a geometric fact: for ¢t € [i/n, (i + 1)/n], where 1 <i < n —2, we
have that

(6.291)

iy _ g (i=l
flt) ZmaX{fk(n) fe(57)

1/n

i fe(BE2) — fith) i1 i+1
~); Un (t=——=)+1x

1
t——
(t=—)+ /il )}
and the right hand side are also attainable for some f; when {f(%) : i =
0,1,--- ,n} are given.
For 0 <t < 1/n, we have that

f2/n) = f(1/n)
1/n

(6.292) fr(t) = (t—1/n)+ f(1/n)

and the right hand side is attainable for some fj when {fk(%) :1=0,1,---,n}
are given.
For 1 >t <n—1/n, we have that

f((n=2)/n) - f((n—1)/n)

(6:298) filt) > v

(t—(m—1)/n)+f((n—1)/n).
On event B, we have that

(6.294) h(i) < min  fi(t),

T oteld it

K2
n’ n

for i =t,--- ,t,.
Therefore, on event A; N B, we have that

(6.295) My o < fr(t).
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Also we have

(6.296)
P(A1NB|A N DS, N {jpr > J +1})

=E (E(R{B}lef,.a Vi DAL N D3 N {jpk = J + 1}}) /P(AiN D3N {jrke = J+1})
>1—«a/8s,

which gives the statement of the lemma.

Write Mlo in the form
(6.297)
Mlo =

f0+(<|{k:jp,kg}|—1>- - X el -
i€{0,1,2,.-- ,n}*

& . o D10 %k o
Y 1ipk < J3V2 L s 2V3—2 s

1 (n+1)=2 n+1 (n+1)§
S
+ Z (Mk,zo+
k=1
) 1 o >0 Zlil
]l{]F,k < J} +1)3 Z er({yi})*f0+\/§ s—1 n+1 : ’
i€{0,1,2, n}* (n+1)=
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we have
(6.298)
P (Mlo > M(f)‘Al N (OZ:1D§,k))

<P

((Hk:mw}\—u PR S

S
(n + 1) ie{o,l,Z,---,TL}S

S n 1
) o D120 %k o
—E:]l < JW?2 - L zg 2V3———5>0
£ {JF,k <J} (n + 1)521 nt1 a/8 (n+1)s

AN (mzleg’k) )

+ (P (Mk,lo + (n-}-ll)s ;er({yi}) —fo— M(fx) >0

k=1

AN D3 N {jrr < J}>
x P (A1 0 DSy 0 {rg < JHALN (M_1 D5 )

+ P (Mk,lo > M(fx)

AinDg N {jre > J + 1}>

x P (AN DS, 0 {jrr > J+1}A 0 (M= D5 ) )

Inequality (6.288) and Lemma 6.14 gives that the sum of the terms in the
summation is upper bounded by «/8s for each k.
For the first term, split it into summation of conditional probability on

A0 (MRoyD5 ) O L = i sk = 1,2, s} times P(A1 1 (M D5 ) 0
{jrk=1Jk:k=1,2,--- ,s}‘Al N (0221D53k>) for legitimate j. Elementary
calculation show that the conditional probability on A; N (ﬂZ:1D§ k) N

{jrr=Jr : k=1,2,--- s} is upper bounded by a/8.
Therefore

P (i, > M(f)‘/h N (Mo Dsa)) < af8 +a/8 = af4.

Therefore,

(6.299)

P(M(£) ¢ [Mig, Myi)) <P(AS) + " P(Dyy) + P (Mo > M(8)| 41 0 (0, D5,))
k=1

+ P (N < M(f)‘Al N (D)) <
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6.17.2. Proof of Proposition 6.14.

(6.300)

E(My; — My,) V3o + § E(M, My, 10)
o _, s _
hi lo a/8 (7’L + 1)5 — k,hi k,lo

s

< Za/84\/ézpm(L; fk)\/ z((g; fe) + Y B(Mjpi — M)
k=1

(n+1)3 n+1)2 Pt

Recall that ©,,(f;n) defined in (6.150) also applies to univariate case by
setting s = 1, more specifically,
(6.301) . .
Do (frin) = min{ fr(~) : 0 < i < n}—min{M(h) : h(~) = fr(~) for 0 <i < n,h € F}.

7 )
n n n

Then it is easy to see that

s

(6.302) Du(fin) =Y Dulfiin).

k=1

So it is sufficient to prove that the following holds for any k € {1,2,--- , s}
(6.303)

(M pi— My, 10) < @m<fk;n>+ém,a,spm<mfl);; fr) (1 A \/npz%fl);; fk>> ,

where

(6.304)
C~’m,oz,s = <2\/§‘5210,a/85 + 3(za/4s + 1)) V8- 148 -2 + (\/§5210,a/85 + 2) - 32+

(6 + S219,0/245 + Zasass/V2) - 210 - V3 - 32.

This gives the statement of the proposition by taking Cy, 0.5 = 24 /84\/6 +
Cm,a,s-

Next we will prove Inequality (6.303).

We have

E(Mk,hi — Mk,lo) <
(6.305) B . _ 5 . .
E((Mypi — My i) WHjre < J}) + E(Mgpi — M o) Hirg > J})-
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For the first term we have

(6.306)
E((Mpni — My o) 1{jpe < J})

o Irk—J .

_ (2\/55210,(1/88 + 3(2a/4s + 1)) WE(Q > Wjrk < J})
- B0 +3-

< (2\/55210,0(/85 + 3(2a/as + 1)> W <E(2 ki ) A 1)
o

< <2\/§‘5210,a/88 +3(2a/4s + 1)> (n+1)51

148 g > R
(\/8 Cn <<n+1>> ' 1>

o
< (2\/§S2lo,a/8s + 3(2a/4s + 1)) Pm(m; fr)

(\/8' 148(Z+ 1) A\/2(nn+ 1)\/npz((n:1)g;fk)).

The second to last inequality is due to Inequality (6.263).

Let C~'m757a,0 = (2\/35210701/85 + 3(20/4s + 1)) V8148 - 2, we have
(6.307)

E((My. pi—Mp10)1{jrr < J}) < ~m,s,a,0pm((n_:-1);; fr) (1 A \/npz((nfl);;fk)> :

Now we turn to the second term in Equation (6.305). We introduce two
quantities first.
(6.308)

~ . 1 ~ . {
fe = min Tr(=)s Tkym = arg min Te(=)-
(Lo, to=1)NO<i< Ik, ni—1)Vn n Ik o= D)AOKi<(Tg pi—1)Vn T

Note that these two quantities depend on {V,lc 7S

(6.309)
]E((Mk;,hz’ - Mk,lo) Hjrk > J})

<E ((Mk,hi - fk)+ Wirk > J}) +E <<ﬁ; - Mk,lo)+ Hirk > J}> :

Note that

g

(6.310) Mypi S Vs + Sa10.a/8s X V83—,
oHeym (n+1)=
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hence we have that
(6.311)

E ((Mk,hi - fk)+ Hjrk > J}) < P(jpx > J) <\/§U V30

(n+1)2 (n+1)F

LEMMA 6.15.
(6.312)

— T P(jpk > ) < 32— i) (1 A ¢npz(&; m) .

(n+1)% (n+1)2 n+1

PROOF. Recall that ¢ = a/4s < 0.25. According to Lemma 6.13, we know
that when J > jx(¢) + 8,
(6.313)

P(jpy > J) <122

- _ 3 (36(Q)+5—7) 2C+1 J—3k(¢)-7
j:jk(<)+5‘b( ze + 220k 1 ) < 0.4773 .

By Lemma 6.9 and the definition of jx({), we have that
(6.314)

) . 1
0.47736(O=T < 9T . 93s(O)=T 9T <28
n&k(C) npz((z¢ + 1)%5‘&)
n+1l) 2

When n ze +1 #; > 28 we have that
p=(( ¢ )(n+1) 21\/5 fe) =

1
.98 <« 99, <2
n&e(C) T ((ze +1)—B2 . )
np-((2 )(n+1) e fr)

(6.315) 23x(O=J+8 <

Note that 23x(©)=7+8 only takes integer value, hence we have jr(()—J+8 <0.
Hence

(6.316)
. 1
( +01)31P(]F,k > J) < ﬁpm((nfl);;fk) -2 =
n 2 z + 1 sf 7
ettt 0 s
o

< 32pm(

N|®

(n+1)

+ S210,0/8s 51
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Also, we always have

(6.317)
o _ o
——— Pk >J) < =
(n+1)z2 (n+1)2
o n+1 o
< \/5 m ) NP\ """
<V2p ((n+1)§ fin) — \/P((n+1)2 fr)
npz(%;fk)
(n+1)2
< 32pm ) \/
npz( Ulgvfk) 6
Note that when \/ — = > 1, we have ”Pz((ZC‘H)m;fk) >
28, in which case we have Inequality (6.316) holds.
So we have
(6.318)
npz(—%=; fr)
P> ) <320 (— 1 /\\/
DS (e > J) p ((n+1)§ fr) 58
o o
< 32pm(—— LA np(——=; .
< 32p ((n+1)§ fk)( \/P ((n+1)§ fk))

O

With Lemma 6.15, going back to inequality (6.311), we have

(6.319)
. ((Mk,hi - fk)+ Wirk > J}) <

<\/§S210,a/88 + 2) : 32Pm(m; Ir) (1 A \/an(W-l);; fk)) .

Now we turn to the second term in Inequality (6.309).
We have the following lemma
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LEMMA 6.16. Let ©,,(fx;n) be defined in (6.301). Then we have

(6.320)
E ((fk - Mk,lo)+ Wirk > J}) <D (fein) + (6 + Sa12,0/245 + Za/ass/V2) - 210 - V/3x

m;fk) (1 A \/an((n—kl)S;fk)>

PROOF. We first recall a basic geometry property of univariate convex
functions. Suppose f is a convex function. For any 0 < ¢ < 5 < n, we have
that

32pm(

(6.321) min'{f(i)}— min f(¢) < min {f(i)} — min f(t).

i<I<i U 'n icpcd ~o<i<n T 'm 0<t<1
n— —n

For 0 < i < n—1, we define a reference number h(4), which is the smallest
number a function h could achieve on [i/n, (i + 1)/n] when it has the same
values with fi on the grid points (i.e 0,1/n,2/n,--- ,1).

(6.322)
o , i+1, . B2 - f(HE) i+
h(l)—i/ngg&)/nmax{f’g( =)+ Un (t———),
. =1y i i

where f(—1/n) = oo = f(%) and oo x 0 is set to 0.
Therefore, we have that

(6.323)
g <(f’f - M’flo)+ Hijrk > J})

kr
<E(E | (- min h(0)+ > (h6) ~h0)e| (.01} | 1irs > T}
- i=k

kr
< D (fiin)Plirk > I)+E | DB (((i) = h@D)+| {07, 1)) 1jrs > T}
i=k;

Now we are left with bounding the second term.

Recollect the notation §; = ug’i — fr(£) for 0 < i < n, and §; = 0 for

i¢{0,1,--- ,n}.
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FElementary calculation shows that
(6.324) (h(i) — h(@))4 < 2[6;] + 2|i41] + [6i—1] + |dit2| + 3H.

And note that for fixed i, §; 1, d;, §; 11, ;12 are independent from {1/,’7,, 1/"}
2
Therefore, we have that

308 (G0 - 00|02 0) 147 > )

i—ky

< 7\/30-

(6.325) T (n+ 1)5;1
< (6 + Sa12,0/245 + Zajass/V2) - 210 - V3 x

32Pm(m§fk) (1 N \/an((nJrl);;fk)> .

The last inequality comes from Lemma 6.15.
This concludes the proof of Lemma 6.16.

(6 + S212,0/245 + Za/48s/\/§) 210P(jpx > J)

O

Now, combining Lemma 6.16, Inequality (6.309), Inequality (6.319) and
Inequality (6.307), we have that

(6.326)

E(Mk,hi_Mk,lo) < Qm(fka n)"i'ém,a,spm((n_fl);; fk) (1 A \/npz((n_fl);; fk)) )
where

(6.327)

ém,a,s = (2\/55210,(1/85 + 3(Za/4s + 1)) \/m + (\/§S210,a/8s + 2) . 324
(6 + 5212,a/243 + Za/485/\f2) - 210 - \/g - 32.
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