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In this paper, we consider optimal estimation and inference for
the minimizer and minimum of multivariate additive convex functions
under suitable non-asymptotic framework that can characterize the
difficulty of the problem at individual functions. We provide sharp
minimax lower bounds for both the estimation accuracy and expected
volume (length) of confidence hypercube (interval) for the minimizer
and minimum. We provide statistically optimal and computationally
efficient algorithm for these four tasks.

1. Introduction. Motivated by a wide range of applications, estima-
tion and inference for the minimizer of nonparametric regression function
has been a long standing problems in statistics (Kiefer and Wolfowitz, 1952;
Blum, 1954; Chen, 1988). For fixed design, Belitser et al. (2012) establishes
the minimax rate of convergence over a given smoothness class for esti-
mating both the minimizer and minimum, Cai et al. (2023a) establishes
minimax rates for both estimation and inference for both minimizer and
minimum under a non-asymptotic local minimax framework for univariate
convex function. For sequential design, the minimax rate for estimation of
minimizer has been established; see Chen et al. (1996); Polyak and Tsy-
bakov (1990); Dippon (2003). Mokkadem and Pelletier (2007) introduces a
companion for the Kiefer–Wolfowitz–Blum algorithm in sequential design
for estimating both the minimizer and minimum.

Another related line of research is the stochastic continuum-armed ban-
dits, which have been used to model online decision problems under uncer-
tainty, with applications ranging from web advertising to adaptive routing.
Stochastic continuum-armed bandits are in nature finding the maximizer
(corresponding to the optimal action) of a nonparametric regression func-
tion through a sequence of actions. The objective is to minimize the expected
total regret, which values a fine trade-off between exploration of new infor-
mation and exploitation of historical information (Kleinberg, 2004; Auer
et al., 2007; Kleinberg et al., 2019).

In the present paper, we consider optimal estimation and inference for
the minimizer of multivariate additive convex functions under suitable non-
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asymptotic framework that can characterize the difficulty of the problem at
individual functions.

We consider both white noise model and nonparametric regression. We
first focus on the white noise model, which is given by

(1.1) dY (t) = f(t)dt+ εdW(t), t ∈ [0, 1]s,

where W(t) is a standard (s, 1)-Brownian sheet on [0, 1]s, ε > 0 is the
noise level. The drift function f is assume to be in Fs, the collection of
s−dimensional additive convex functions defined as follows. Function f is
said to be an additive convex function if it can be written in the following
form:

(1.2) f(t) = f0 +

s∑
i=1

fi(ti), t = (t1, t2, · · · , ts) ∈ [0, 1]s,

where f0 is a real number and for 1 ≤ i ≤ s, fi is in F , the collec-
tion of univariate convex functions with unique minimizer, and fi also sat-
isfies

∫ 1
0 fi(t)dt = 0. Note that for any function f that can be written

in the aforementioned decomposition (1.2), the decomposition is unique.
And for s = 1, Fs = F . For clarity, we also write Yf for Y under f to
specify the true function. The goal is to optimally estimate the minimizer
Z(f) = argmint∈[0,1]s f(t) and minimum M(f) = mint∈[0,1]s f(t) and also
construct confidence hyper cube for Z(f) and confidence interval for M(f).
Estimation and inference for the minimizer Z(f) and minimum M(f) under
nonparametric setting will be discussed later in section 4.

1.1. Non-asymptotic Function-specific Benchmarks. The first step to-
ward evaluating the performance of a procedure at individual convex func-
tions in Fs is to define function-specific benchmarks for estimation and in-
ference for minimizer. For estimation and inference of minimum and esti-
mation of minimizer, we investigate it under local minimax framework (Cai
and Low, 2015), which is also used in estimation and inference for univariate
convex functions by Cai et al. (2023a). For inference of minimizer, the same
two-point local minimax framework is not as appropriate and we take a
non-asymptotic function-specific benchmark that measures exactly the best
behavior that any method can achieve.

For estimation of the minimizer, the hardness of the problem at an in-
dividual function is naturally captured by the expected squared distance.
Further, under the local minimax framework, the benchmark is given by

Rz(ε; f) = sup
g∈Fs

inf
Ẑ

max
h∈{f ,g}

E
(
∥Ẑ − Z(h)∥2

)
.(1.3)
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For any given f ∈ Fs, the benchmark Rz(ε; f) quantifies the estimation
accuracy at f of the minimizer Z(f) against the hardest alternative of f
within the function class Fs.

For estimation of the minimum, the hardness of the problem at an individ-
ual function f is naturally captured by the expected squared error. Further,
under the local minimax framework, it is given by

(1.4) Rm(ε; f) = sup
g∈Fs

inf
M̂

max
h∈{f ,g}

Eh

(
∥M̂ −M(h)∥2

)
.

For any given function f ∈ Fs, benchmark Rm(ε; f) quantifies the estimation
accuracy of the minimum M(f) at f against the hardest alternative of f
within function class Fs.

For estimation problems, we show that the benchmarks are valid good
benchmarks in the sense that if it is significantly out performed at function
f ∈ Fs, then a penalty need to be paid at another function f1 ∈ Fs. We es-
tablish sharp minimax rates for these benchmarks and construct procedures
attain the minimax rates, up to a constant factor depending on dimension
s, simultaneously for all f ∈ Fs.

For confidence hyper cube of the minimizer with a pre-specified coverage,
the hardness of the problem is naturally captured by the expected volume.
Let Iz,α(S) be the collection of confidence hyper cubes for the minimizer
Z(f) with guaranteed coverage probability 1−α for all f ∈ S. The benchmark
under a non-asymptotic function-specific framework, at f , is given by the
minimum expected volume at f for all confidence hyper cube in Iz,α(Fs):

Lα,z(ε; f) = inf
CIz,α∈Iz,α(Fs)

Ef (V (CIz,α)) ,(1.5)

where V (CIz,α) is the volume of the confidence hyper cubes. Unlike local
minimax framework, which measures the best a confidence hyper cube with
the pre-specified probability coverage at f and a hardest g ∈ Fs can achieve,
this benchmark takes hyper cubes in Iz,α(Fs) (i.e. it has pre-specified proba-
bility coverage for all g ∈ Fs). It is easy to see that this benchmark depends
on f and is the best that any method can achieve at f .

For confidence interval of the minimum with a pre-specified coverage, the
hardness of the problem is naturally captured by the expected length. Let
Im,α(S) be the collection of confidence intervals for the minimum M(f) with
guaranteed coverage probability 1−α for all f ∈ S. Under the local minimax
framework, the benchmark is given by

(1.6) Lα,m(ε; f) = sup
g∈Fs

inf
CIm,α∈Im,α({f ,g})

Ef (|CIm,α|) ,
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1.2. Projection Representation and Optimal Procedures. Another major
step in our analysis is developing data-driven and computationally efficient
algorithms for the construction of estimators and confidence interval (hyper
cube) as well as establishing the optimality of these procedures at each
f ∈ F .

An interesting observation is that Yf admits a projection representation,

P(Yf ) = (πππ1(Yf ), · · · ,πππs(Yf ), er(Yf )),

such that πππi(Yf ) is a sufficient statistic for fi and all elements in P(Yf ) are
independent. Also Yf can be fully recovered from P(Yf ). The estimators and
confidence interval (hyper cube) are constructed based on this observation
by doing estimation and inference on each component and carefully join
them together.

The key idea behind the construction for each component of the optimal
procedures is to first iteratively localize the minimizer by comparing the
integrals over relevant subintervals together with a very carefully constructed
stopping rule controlled by a user-specified parameter, and then add an
additional estimation/inference procedure. The final estimation/inference is
to carefully choose the control parameter of the component-wise stopping
rule and put together the output for each axis.

The resulting estimators, Ẑ for Z(f) and M̂ for M(f), are shown to attain
within a dimension-dependent constant of the benchmarks Rz(ε; f) Rm(ε; f)
simultaneously for all f ∈ Fs,

Ef

(
∥Ẑ − Z(f)∥2

)
≤ Cz,sRz(ε; f),(1.7)

Ef

(
∥M̂ −M(f)∥2

)
≤ Cm,sRm(ε; f),(1.8)

for constants Cz,s and Cm,s depending on dimension s only.
The resulting confidence interval (hyper cube), CIz,α for Z(f) and CIm,α

for M(f), are shown to have the pre-specified coverage (1 − α) while hav-
ing expected length (volume) being adaptive to f and attaining within a
coverage-dimension-dependent constant of the benchmarks Lα,z(ε; f), Lα,m(ε; f)
for all f ∈ Fs. That is,

Ef (V (CIz,α)) ≤ Cz,s,αLα,z(ε; f),(1.9)

Ef (|CIm,α|) ≤ Cm,s,αLα,m(ε; f),(1.10)

where Cz,s,α and Cm,s,α are constants depending on dimension s and α only.
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1.3. Organization of the Paper. In Section 2, we analyze local minimax
risks, relating them to appropriate local modulus of continuity, in turn pro-
viding rate-sharp upper and lower bounds. We also provide lower bound for
the benchmark for inference of the minimizer in Section 2. In Section 3, we
introduce projection representation of the observation, provide computation-
ally efficient adaptive procedures and show their optimality. In Section 4, we
consider the nonparametric regression model. We introduce the correspond-
ing benchmarks, propose adaptive procedures and establish the optimality.
Proofs are given in appendix Section 6.

1.4. Notation. We conclude this section with some notation that will be
used in the section. The cdf of the standard normal distribution is denoted by
Φ. For 0 < α < 1, zα = Φ−1(1−α). For α = 0, zα = ∞. We use ∥·∥ to denote
the L2 norm for vectors, univariate functions and multivariate functions,
depending on the setting. We use 1{A} to denote indicator function that
takes 1 when event A happens and 0 otherwise. We use bold symbols to
denote multivariate functions, e.g. f , g, h. We use f1, · · · , fs to denote the
component functions for f and f0 for constant part for f , similar convention
for g, h. Let a ∧ b = min{a, b}, a ∨ b = max{a, b} for real numbers a and
b. We use Z(·) to denote the minimizer operator, and M(·) to denote the
minimum operator, for both f ∈ Fs and f ∈ F . Note that we use Iz,α(S)
to denote the collection of confidence hyper cubes for the minimizer with
guaranteed coverage probability 1 − α for all functions in S. This can be
generalized into univariate case when S ⊂ F and the hyper cube becomes
interval.

We use Im,α(S) to denote the collection of confidence intervals for the
minimum with guaranteed coverage probability 1−α for all functions in S.
This can be generalized into univariate case when S ⊂ F .

2. Local Minimax Rates and Lower Bounds. In this section, we
discuss the local minimax rates and the lower bound for inference of the min-
imizer. We introduce the local moduli of continuity and use it to characterize
the benchmarks for estimation of minimizer and estimation and inference of
minimum introduced in Section 1.1. We provide rate-sharp bounds for the
continuity moduli based on geometry properties of the functions. As we use
a different benchmark for inference of minimizer, we provide lower bound of
it in this section.

2.1. Local Modulus of Continuity.. For any given function f ∈ Fs, we
define the following local moduli of continuity for the minimizer and mini-
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mum.

ωz(ε; f) = sup{∥Z(f)− Z(g)∥2 : ∥f − g∥2 ≤ ε,g ∈ Fs}(2.1)

ωm(ε; f) = sup{∥M(f)−M(g)∥2 : ∥f − g∥2 ≤ ε, f ∈ Fs},(2.2)

ω̃m(ε; f) = sup{∥M(f)−M(g)∥ : ∥f − g∥2 ≤ ε, f ∈ Fs}.(2.3)

As in the case of linear functionals or in the case of minimizer and minimum
operators for univariate convex functions, the local moduli ωz(ε; f), ωm(ε; f),
ω̃m(ε; f) clearly depends on f and can be regarded as an analogue of inverse
Fisher Information in regular parametric model.

The following theorem characterizes the benchmarks for estimation and
inference in terms of the corresponding local moduli of continuity.

Theorem 2.1 (Sharp Lower Bounds). Let Rz(ε; f) be defined in (1.3),
Rm(ε; f) be defined in (1.4), and Lα,m(ε; f) be defined in (1.6). Let 0 < α ≤
0.1. Then

aωz(ε; f) ≤ Rz(ε; f) ≤ Aωz(ε; f),(2.4)

aωm(ε; f) ≤ Rm(ε; f) ≤ Aωm(ε; f)(2.5)

bαω̃m(ε; f) ≤ Lα,m(ε; f) ≤ Bαω̃m(ε; f)(2.6)

where the constants a,A, bα, Bα can be taken as a = 0.1, A = 3.1, bα =
0.6− α, and Bα = 2(1− 2α)zα.

Theorem 2.1 shows that the benchmarks can be characterized in terms of
continuity moduli of continuity. However, this continuity moduli is hard to
compute. Now we related it to geometric quantities of f . We first introduce
two geometric quantities for univariate convex function f ∈ F , which are
also used by Cai et al. (2023a). For f ∈ F , u ∈ R and ε > 0, let fu(t) =
max{f(t), u}, M(f) = minx∈[0,1] f(x), and define

ρm(ε; f) = sup{u−min{f(x) : x ∈ [0, 1]} : ∥f − fu∥ ≤ ε},(2.7)

ρz(ε; f) = sup{|t− Z(f)| : f(t) ≤ ρm(ε; f) +M(f), t ∈ [0, 1]}.(2.8)

With the geometric quantity ρz(ε; f) for univariate convex function f ∈
F , we can establish a rate-sharp bound of modulus of continuity for the
minimizer for multivariate additive convex function f ∈ Fs.

Theorem 2.2 (Geometry Representation for Modulus of Continuity for
Minimzer). Let ρz(ε; f) be defined in (2.8) for f ∈ F , and let f ∈ Fs. Let
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ωz(ε; f) be defined in (2.1).Then

(2.9)
1

3
s−

2
3

s∑
i=1

ρz(ε; fi)
2 ≤ ωz(ε; f) ≤

s∑
i=1

9ρz(ε; fi)
2.

And for any β ≤ s, there exists f ∈ Fs such that
∑s

i=1 ρz(ε; fi)
2 = β and

(2.10) ωz(ε; f) ≤ 9s−
2
3

s∑
i=1

ρz(ε; fi)
2.

And for any β ≤ s, and δ0 > 0, there exists f ∈ Fs such that
∑s

i=1 ρz(ε; fi)
2 =

β and

(2.11) ωz(ε; f) ≥ ρz(ε; fi)
2 − δ0.

Theorem 2.2 shows that the modulus of continuity for minimizer varies
within an absolute constant multiple times of

s−
2
3

s∑
i=1

ρz(ε; fi)
2 and

s∑
i=1

ρz(ε; fi)
2,

with the order of both upper and lower bound attainable for some f ∈ Fs.
With the geometric quantity ρz(ε; f) and ρm(ε; f), we can establish a

rate-sharp bound of moduli of continuity for the minimum.

Theorem 2.3 (Geometry Representation for Modulus of Continuity for
Minimum). Let ρz(ε; f) be defined in (2.8) and ρm(ε; f) be defined in (2.7)
for f ∈ F . Let ωm(ε; f) be defined in (2.2) and ω̃m(ε; f) be defined in (2.3)
for f ∈ Fs. Then
(2.12)

1

1 +
∑s

i=1(1 ∧ 2ρz(ε; fi))

s∑
i=1

ρm(ε; fi)
2 ≤ ωm(ε; f) ≤ 9(1 +

1

s
)

s∑
i=1

ρm(ε; fi)
2,

(2.13)√√√√ 1

1 +
∑s

i=1 (1 ∧ 2ρz(ε; fi))

s∑
i=1

ρm(ε; fi)2 ≤ ω̃m(ε; f) ≤

√√√√9(1 +
1

s
)

s∑
i=1

ρm(ε; fi)2.

Theorem 2.3 shows that the modulus of continuity for minimum ωm(ε; f)
is of the order

∑s
k=1 ρm(ε; fk)

2 and ω̃m(ε; f) is of the order
√∑s

k=1 ρm(ε; fk)2

.
Now we have done establishing the local minimax rates for three tasks,

we turn to establishing the lower bound for the benchmark of inference of
the minimizer.
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Theorem 2.4 (Lower Bound for Expected Volume of Confidence Hyper
Cube for Minimizer). Let Lα,z(ε; f) be defined in (1.5) for f ∈ Fs and
ρz(ε; f) be defined in (2.8) for f ∈ F . Then we have

(2.14) Lα,z(ε; f) ≥ Cα,sΠ
s
i=1ρz(ε; fi),

where Cα,s is a positive constant depending on α and s.

2.2. Penalty for Super-efficiency. We have shown that the estimation
benchmarks Rz(ε; f) and Rm(ε; f) can be characterized by intrinsic geomet-
ric quantities of f . Now we show that these benchmarks can not be essentially
uniformly out performed. That is, if the benchmark is significantly out per-
formed at function f ∈ Fs, then it needs to pay a penalty at another function
f1 ∈ Fs. These benchmarks, similar to that in the univariate case, play a
role analogous to the information lower bound in the classic statistic.

Theorem 2.5 (Penalty for Supper-Efficiency). For any estimator of the

minimizer Ẑ, if Ef

(
∥Ẑ − Z(f)∥2

)
≤ γRz(ε; f) for f ∈ Fs and γ < γ0, where

γ0 is a positive constant, then there exists f1 ∈ Fs such that

(2.15) Ef1

(
∥Ẑ − Z(f1)∥2

)
≥ cz,s(log

1

γ
)
2
3Rz(ε; f1),

where cz,s is a constant depending on s only.
Similarly, for any estimator of the minimum M̂ , if Ef (|M̂ − M(f)|2) ≤

γRm(ε; f) for f ∈ Fs and γ < γ0/s, where γ0 is a positive constant, then
there exists f1 ∈ Fs such that

(2.16) Ef1

(
|M̂ −M(f1)|2

)
≥ cm,s(log

1

γ
)
2
3Rm(ε; f1),

where cm,s is a constant depending on s only.

3. Projection Representation and Adaptive Optimal Procedures..
We now turn to the construction of data-driven and computationally efficient
algorithms for estimation and inference of minimizer and minimum for white
noise model. Our construction is based on an information-preserving repre-
sentation of the observation Yf , which we call Projection Representation.
We show that our procedures achieve, up to a universal constant depending
on dimension s and confidence level 1 − α, the corresponding benchmarks
Rz(ε; f), Rm(ε; f), Lα,z(ε; f), Lα,m(ε; f), simultaneously for all f ∈ Fs.
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3.1. Projection Representation.. The construction of the procedures is
based on an interesting property of the observation Yf (or Y ) that Y admits
a nice information-preserving projection representation, which maps Y to an
s+1−tuple, where first s elements can roughly be considered as a projection
of the original stochastic process on each coordinate, and the last element is
an s−dimensional stochastic process that can be considered as a remaining
error.

Definition 3.1 (Projection Representation). For each 1 ≤ i ≤ s, the
i−th projection of Y , πππi(Y ), is a univariate stochastic process that satisfies
for 0 ≤ ai < Ai ≤ 1,

(3.1)

∫
[ai,Ai]

dπππi(Y ) =

∫
ti∈[ai,Ai],t−i∈[0,1]s−1

dY − (Ai − ai)

∫
[0,1]s

dY,

where t−i = {t1, . . . , ti−1, ti+1, . . . ts}.
er(Y ) is a stochastic process on [0, 1]s, such that for A = [a1, A1] ×

[a2, A2]× · · · × [as, As] ⊂ [0, 1]s, we have

(3.2)

∫
A
der(Y ) =

∫
A
dY −

s∑
i=1

Πj ̸=i(Aj − aj)

∫ Ai

ai

dπππi(Y ).

The projection representation mapping P(·) of Y is

(3.3) P(Y ) = (πππ1(Y ),πππ2(Y ), . . . ,πππs(Y ), er(Y )).

The reasons we call it a projection representation mapping are that P(Y )
preserves all information of Y , that P(Y ) has all of its elements, the projec-
tions and error, being mutually independent, and that its first s elements are
sufficient statistics for corresponding component function fi. More specifi-
cally, we have Proposition 3.1 summarizing the properties of projection rep-
resentation.

Proposition 3.1 (Property of Projection Representation). Let P(·) be
defined as in equation (3.3). Denote the class of stochastic process defined
in (1.1) as Y. Then we have the followings.

• P(·) is a bijection from Y to P(Y).
• P(Y ) has all elements being independent.
• πππi(Y ) is a sufficient statistic for fi, for i ∈ {1, 2, . . . , s}.

Also, it’s easy to check that er(Y ) only depends on f0, thus not car-
rying information for Z(f) by itself. Instead, it carries part of the infor-
mation of M(f). Note that the minimizer Z(f) can be written as Z(f) =
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(Z(f1), Z(f2), . . . , Z(fs)), so its i-th element only depends on fi. Similarly
M(f) can be written as M(f) = f0 +

∑s
k=1M(fk), so each component in

P(Yf ) serves as a sufficient statistics for each of the adding components of
M(f). The information preserving representation P(·) plays the role of sep-
arating the relevant information of s coordinates into independent random
variables.

3.2. Adaptive Procedures.. Now we are ready to introduce the construc-
tion of data-driven and computationally efficient algorithms for estimation
and confidence interval (hyper cube) for the minimum M(f) and the min-
imizer Z(f) under the white noise model in this section. The procedures
constructed in this section are shown in Section 3.3 to be adaptive to each
individual function f ∈ Fs in the sense that they simultaneously achieve,
up to a universal constant depending on dimension s and confidence level
1− α, the corresponding benchmarks, simultaneously for all f ∈ Fs.

Similar to the construction in Cai et al. (2023a), we have three blocks: lo-
calization, stopping, and estimation/inference. But since πππi(Y ) has different
distribution with that in the univariate case, and we also need to account
for the dimension, our procedures are carefully tailored to accommodate for
the new challenges.

3.2.1. Sample Splitting. For technical reasons, we split the first s coordi-
nates of the projection representation (i.e.P(Y )), V = (πππ1(Y ),πππ2(Y ), . . . ,πππs(Y )),
into three independent pieces to ensure independence of the data used in the
three steps.

Let B1
1(t), B

2
1(t), B

1
2(t), B

2
2(t), . . . , B

1
s (t), B

2
s (t) be 2s independent stan-

dard Brownian motions that are also independent from Y . Let data vec-
tors Vl = (vl

1,v
l
2, . . . ,v

l
s), Vr = (vr

1,v
r
2, . . . ,v

r
s) and Ve = (ve

1,v
e
2, . . . ,v

e
s) be

defined as follows.

vl
i(t) = πππi(Y )(t) +

√
2

2
ε

(
B1

i (t)− t

∫ 1

0
B1

i (x)dx

)
+

√
6

2
ε

(
B2

i (t)− t

∫ 1

0
B2

i (x)dx

)
,

vr
i (t) = πππi(Y )(t) +

√
2

2
ε

(
B1

i (t)− t

∫ 1

0
B1

i (x)dx

)
−

√
6

2
ε

(
B2

i (t)− t

∫ 1

0
B2

i (x)dx

)
,

ve
i (t) = πππi(Y )(t)−

√
2ε

(
B1

i (t)− t

∫ 1

0
B1

i (x)dx

)
.

(3.4)

Then the concatenate vector of vectors Vl, Vr, Ve has all of its 3s elements
being independent, and for each axis i ∈ {1, 2 . . . , s}, vl

i(t),v
r
i (t),v

e
i (t) can
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be written as

dvl
i(t) = fi(t)dt+

√
3εdW̃ l

i ,

dvr
i (t) = fi(t)dt+

√
3εdW̃ r

i ,

dve
i (t) = fi(t)dt+

√
3εdW̃ e

i ,

(3.5)

where W̃ l
i , W̃

r
i , W̃

e
i are independent standard Brownian Bridges.

3.2.2. Localization. We use Vl for localization step, and for each axis
k ∈ {1, 2, . . . , s}, localization is based on vl

k.
We take an iterative localization procedure similar to that in Cai et al.

(2023a) on vl
k. For iterations (levels) j = 0, 1, . . . , and possible location index

at jth level i = 0, 1, . . . , 2j , we denote the sub-interval length, sub-interval
end points, and the index of the sub-interval containing the minimizer at
level j to be

(3.6) mj = 2−j , tj,i = i ·mj , and i∗j,k = max{i : Z(fk) ∈ [tj,i−1, tj,i]}.

For j = 0, 1, . . . , and i = 1, 2, . . . , 2j , define

Xj,i,k =

∫ tj,i

tj,i−1

dvl
k(t),

where vl
k is one of the three independent copies constructed above through

sample splitting. For convenience, we define Xj,i,k = +∞ for j = 0, 1, . . . ,
and i ∈ Z \ {1, 2, . . . , 2j}.

Let î0,k = 1 and for j = 1, 2, . . . , let

îj,k = argmin
2̂ij−1−2≤i≤2̂ij−1+1

Xj,i,k.

Note that given the value of îj−1,k at level j − 1, in the next iteration
the procedure halves the interval [t̂ij−1,k−1, t̂ij−1,k

] into two subintervals and

selects the interval [t̂ij,k−1, t̂ij,k ] at level j from these and their immediate

neighboring subintervals. So i only ranges over 4 possible values at level j.

3.2.3. Stopping Rule. For each axis, it is necessary to have a stopping
rule to select a final subinterval constructed in the localization iterations
and carry out the estimation/inference based on that. But unlike a unified
stopping rule in univariate case, we construct a series of stopping rules based
on a user select parameter ζ > 0, which we will specify later in the specific
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estimation/inference procedures. Again, for any 1 ≤ k ≤ s, we focus on the
stopping rules for k-th axis.

We use another independent copy vr
k constructed in the sample splitting

step to devise the stopping rules. For j = 0, 1, . . . , and i = 1, 2, . . . , 2j , let

X̃j,i,k =

∫ tj,i

tj,i−1

dvr
k(t).

Again, for convenience, we define X̃j,i,k = +∞ for j = 0, 1, . . . , and i ∈
Z \ {1, 2, . . . , 2j}. Let the statistic Tj,k be defined as

Tj,k = min{X̃j,̂ij,k+6,k − X̃j,̂ij,k+5,k, X̃j,̂ij,k−6,k − X̃j,̂ij,k−5,k},

where we use the convention +∞− x = +∞ and min{+∞, x} = x, for any
−∞ ≤ x ≤ ∞.

The stopping rule indexed by the parameter ζ > 0 is based on the value of
Tj,k. Before we formally go into the stopping rule, it’s helpful to look at the
distribution of the elements defining Tj,k. Let σ

2
j = 6mjε

2, some calculations

show that when X̃j,̂ij,k+6,k − X̃j,̂ij,k+5,k < ∞, we have

(3.7)

X̃j,̂ij,k+6,k − X̃j,̂ij,k+5,k

σj

∣∣∣∣∣îj,k ∼ N

mj
√
mj√
6ε

× 1

mj

∫ tj,̂ij+6,k

tj,̂ij+5,k

fk(t+mj)− fk(t)

mj
dt, 1

 .

Note that the term

Sp(j, k) =
1

mj

∫ tj,̂ij+6,k

tj,̂ij+5,k

fk(t+mj)− fk(t)

mj
dt

can be interpreted as an average slope across the interval [tj,̂ij+5,k, tj,̂ij+6,k]

of the line determined by two points (t, f(t)) and (t+mj , f(t+mj)). Basic
property of convex function shows that Sp(j, k) is non-increasing with the
increasing of j, and that Sp(j, k) < 0 implies i∗j,k ≥ îj+5. These mean that a

small number of
X̃j,̂ij,k+6,k−X̃j,̂ij,k+5,k

σj
indicates either localization procedure’s

choice of a far away sub-interval from the one minimizer lies in or a negligible
signal which implies little or no gain in continuing the localization procedure.

Analogous results hold for
X̃j,̂ij,k−6,k−X̃j,̂ij,k−5,k

σj
.

Finally, the iteration stops at level ĵ(ζ, k), where

(3.8) ĵ(ζ, k) = min{j :
Tj,k

σj
≤ zζ}.



MINIMIZER AND MINIMUM VALUE OF CONVEX FUNCTIONS 13

The subinterval containing the minimizer Z(fk) is localized to be

[tĵ(ζ,k),̂iĵ(ζ,k),k−1, tĵ(ζ,k),̂iĵ(ζ,k),k
].

3.2.4. Estimation and Inference. After obtaining, for each axis k ∈ {1, 2, . . . , s},
a stopping step ĵ(ζk, k), an associated index at the stopping step îĵ(ζk,k),k,

and a final interval [tĵ(ζk,k),̂iĵ(ζk,k),k−1, tĵ(ζk,k),̂iĵ(ζk,k),k
], all controlled by a pa-

rameter ζk > 0, we use them to construct estimator and confidence interval
(hyper cube) for the minimum M(f) and the minimizer Z(f).

For estimation of the minimizer, we set ζk = ζ = Φ(−2), for k ∈ {1, 2, . . . , s}.
The k-th axis of the estimator Ẑ is given by the mid point of final interval:

(3.9) Ẑk =
tĵ(ζ,k),̂iĵ(ζ,k),k−1 + tĵ(ζ,k),̂iĵ(ζ,k),k

2
.

The final estimator Ẑ is given by

(3.10) Ẑ = (Ẑ1, Ẑ2, . . . , Ẑs),

with Ẑk defined in (3.9).
For inference of the minimizer, we set ζk = ζ = α/s, for k ∈ {1, 2, . . . , s}.

The k-th axis CIk of the hyper cube CIz,α is given by
(3.11)

CIk =
[
2−ĵ(ζ,k)+1

(
îĵ(ζ,k)−1,k − 7

)
, 2−ĵ(ζ,k)+1

(
îĵ(ζ,k)−1,k + 6

)]
∩ [0, 1].

The confidence cube CI for the minimizer is give by

(3.12) CIz,α = CI1 × CI2 × · · · × CIs,

where CIk is defined in (3.11).
For estimation and inference of the minimum, let

X̄j,i,k =

∫ tj,i

tj,i−1

dve
k(t),

for 1 ≤ i ≤ 2j , and +∞ for i /∈ {1, 2, · · · , 2j}.
For estimation of the minimum M(f), let ζk = ζ = Φ(−2) for k =

1, 2 · · · , s. Let the final index for estimator construction for k-th coordinate
be

iF,k = îĵ(ζ,k)−1,k + 2

(
1{X̃ĵ(ζ,k),̂iĵ(ζ,k)+6,k − X̃ĵ(ζ,k),̂iĵ(ζ,k)+5,k ≤ 2σĵ(ζ,k)}

− 1{X̃ĵ(ζ,k),̂iĵ(ζ,k)−6,k − X̃ĵ(ζ,k),̂iĵ(ζ,k)−5,k ≤ 2σĵ(ζ,k)}

)
.

(3.13)
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The estimator of the minimum is given by

(3.14) M̂ = Y (1, 1, · · · , 1)− Y (0, 0, · · · , 0) +
s∑

k=1

2ĵ(ζ,k)X̄ĵ(ζ,k),iF,k,k
.

For inference of the minimum, let ζk = ζ = α/4s for k = 1, 2 · · · , s. Define
an intermediate estimator of the minimum by
(3.15)

f̂1 = Y (1, 1, · · · , 1)−Y (0, 0, · · · , 0)+
s∑

k=1

2ĵ(ζ,k)+3 min
16(̂iĵ(ζ,k),k−1−7)<i≤16(̂iĵ(ζ,k),k−1+6)

X̄ĵ(ζ,k)+2,i,k.

Let Un be the cumulative distribution function of ũ = max{u1, · · · , un},
where

u1, · · · , un
i.i.d∼ N(0, 1),

and define

(3.16) Sn,β = U−1
n (1− β).

In other words, Sn,β is the (1−β) quantile of the distribution of the maximum
of n i.i.d. standard normal variables.

Let

fhi = f̂1 + S208,α/8s ×
√
3ε

s∑
k=1

2
ĵ(ζ,k)+3

2 + zα/8
√
3εs

flo = f̂1 − zα/4
√
3ε

√√√√1 +
s∑

k=1

2ĵ(ζ,k)+3 −
s∑

k=1

zα/4s
√
3 · 2ε · 2

ĵ(ζ,k)+3
2 .

(3.17)

Then the (1− α) level confidence interval for M(f) is

(3.18) CIm,α = [flo, fhi].

3.3. Statistical Optimality.. In this section, we establish the optimality
of the adaptive procedures constructed in Section 3.2. The results show
that the date driven estimators and the confidence interval (hyper cube)
achieve within a universal constant factor depending on s and α only of
their corresponding benchmarks simultaneously for all f ∈ Fs. These results
are non-asymptotic and function-specific, which are much stronger than the
conventional minimax framework. We start with estimation of the mini-
mizer.
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Theorem 3.1 (Estimation for Miminizer). The estimator Ẑ defined by
(3.10) satisfies

(3.19) Ef

(
∥Ẑ − Z(f)∥2

)
≤ Cz,sRz(ε; f), for all f ∈ Fs,

where Cz,s > 0 is a constant depending on dimension s.

The following holds for the confidence hyper cube CIz,α.

Theorem 3.2 (Confidence Hyper-cube for Minimizer). For 0 < α ≤ 0.3,
the confidence hyper cube CIz,α defined by (3.12) is a 1−α level confidence
hyper cube for the minimizer Z(f). Its expected volume satisfies

Ef (V (CI)) ≤ Cz,s,αLα,z(ε; f),

where Cz,s,α is a positive constant depending on s and α.

Theorem 3.3 (Estimation for Minimum). The estimation M̂ defined in
(3.14) satisfies

(3.20) E
(
(M̂ −M(f))2

)
≤ Cm,sRm(ε; f),

where Cm,s is a positive constant depending on dimension s.

Theorem 3.4 (Confidence Interval for Minimum). For 0 < α ≤ 0.3, the
confidence interval defined by (3.18) is a 1− α level confidence interval for
the minimum M(f) satisfying

(3.21) E (|CIm,α|) ≤ Cm,s,αLα,m(ε; f),

where Cm,s,α is a positive constant depending on α and s.

4. Nonparametric Regression. We have so far focused on the white
noise model. The procedures and results presented in the previous sections
can be extended to nonparametric regression, where we observe

(4.1)
yi1,i2,...,is = f(i1/n, i2/n, . . . , is/n) + σzi1,i2,...,is , 0 ≤ ik ≤ n, for 1 ≤ k ≤ s,

with zi1,i2,...,is
i.i.d∼ N(0, 1), f ∈ Fs. The noise level σ is assumed to be known.

The tasks are the same as before: constructing optimal estimators and confi-
dence interval (hyper cube) for the minimizer Z(f) and the minimum M(f),
for f ∈ Fs. For simplicity of notation, we take i = (i1, i2, . . . , is). To avoid
trivial case, we suppose n ≥ 2.
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4.1. Local Minimax Rates, Discretization Error and Separable Represen-
tation. Analogous to the benchmarks for the white noise model defined in
Equations (1.3), (1.4), (1.6), we define similar benchmarks for the nonpara-
metric regression model (4.1) with n+1 equally spaced observations. Denote
by Im,α,n(F) the collection of (1− α) level confidence intervals for M(f) on
a function class F under the regression model (4.1) and let

R̃z,n(σ; f) = sup
g∈Fs

inf
Ẑ

max
h∈{f ,g}

Eh∥Ẑ − Z(h)∥2,

R̃m,n(σ; f) = sup
g∈Fs

inf
M̂

max
h∈{f ,g}

Eh(M̂ −M(h))2,

L̃m,α,n(σ; f) = sup
g∈Fs

inf
CIm,α∈Im,α,n({f ,g})

Ef |CIm,α|.

(4.2)

For confidence hyper cube for minimizer, denote Iz,α,n(F) the collection of
(1−α) level confidence hyper cube on a function class F under the regression
model (4.1) and let

(4.3) L̃z,α,n(σ; f) = inf
CI∈Im,α,n(Fs)

EfV (CI).

It is clear that the expected volume for confidence hyper cube of the min-
imizer can not be smaller than L̃z,α,n(σ; f), which is also function-specific,
i.e. depending on f .

Compared with white noise model, in addition to the difference in the
probability structure caused by discrete observations, estimation and infer-
ence for both Z(f) and M(f) incur additional discretization errors, even in
the noiseless case. See the appendix Section 6.12 for further discussion.

4.1.1. Separable Representation. Analogous to the white noise model,
the observation under nonparametric setting also admits a separable repre-
sentation, as defined in Definition 4.1.

Definition 4.1 (Projection Representation for Nonparametric Regres-
sion Model). For k ∈ {1, 2, . . . , s}, the k-th projection of {yi}, πππk({yi}), is
an n+ 1-long random vector,

πππk({yi}) =(∑
i:ik=1 yi

(n+ 1)s−1
−

∑
i yi

(n+ 1)s
,

∑
i:ik=2 yi

(n+ 1)s−1
−

∑
i yi

(n+ 1)s
, , . . . ,

∑
i:ik=s yi

(n+ 1)s−1
−

∑
i yi

(n+ 1)s

)
.

(4.4)

er({yi}) is an s-dimension tensor with

(4.5) er({yi})i1,i2,··· ,is = yi1,i2,··· ,is −
s∑

k=1

πππk({yi})ik ,
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for 0 ≤ ik ≤ n, 1 ≤ k ≤ s.
The projection representation mapping P(·) of observation {yi} is given

by

(4.6) P({yi}) = (πππ1({yi}),πππ2({yi}),πππs({yi}), er({yi})).

Similar to white noise model, P(·) preserves the information of {yi}; has
its s+1 elements being mutually independent; and separates the information
for the s univariate component functions of f into its first s random variables,
as shown in Proposition 4.1.

Proposition 4.1 (Property of Projection Representation). Let P(·) be
define in equation (4.6). Then we have

• P(·) is invertible,
• P({yi}) has its s+ 1 elements being independent,
• πππk({yi}) is sufficient statistic for fk.

4.2. Optimal Procedures. Similar to the white noise model, we split the
data into three independent copies and then construct the estimators and
confidence interval (hyper cube) for Z(f) and M(f) for f ∈ Fs in three major
steps: localization, stopping, and estimation/inference.

4.2.1. Data Splitting. Let zjk,i
i.i.d∼ N(0, 1), with 1 ≤ k ≤ s , 1 ≤ i ≤ n,

1 ≤ j ≤ 2.
For each 1 ≤ k ≤ s, we construct the following three sequences based on

πππk({yi}):

νlk,i = πππk({yi})i +
σ

(n+ 1)
s−1
2

{√
2

2

(
z1k,i −

∑n
l=0 z

1
k,l

n+ 1

)
+

√
6

2

(
z2k,i −

∑n
l=0 z

2
k,l

n+ 1

)}
,

νrk,i = πππk({yi})i +
σ

(n+ 1)
s−1
2

{√
2

2

(
z1k,i −

∑n
l=0 z

1
k,l

n+ 1

)
−

√
6

2

(
z2k,i −

∑n
l=0 z

2
k,l

n+ 1

)}
,

νek,i = πππk({yi})i −
σ

(n+ 1)
s−1
2

√
2

(
z1k,i −

∑n
l=0 z

1
k,l

n+ 1

)
,

(4.7)

for i = 0, · · · , n. For convenience, let νlk,i = νrk,i = νek,i = ∞ for i /∈
{0, 1, · · · , n}. It is easy to see that the three sequences for each axis k are
independent, and the s collections of the three sequences are also indepen-
dent. For each k, we will use {νlk,·} for localization, {νrk,·} for stopping rule,
and {νek,·} for construction of the final estimation and inference procedures.
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Let J = ⌊log2(n + 1)⌋. For j = 0, 1, · · · , J , i = 1, 2, · · · , ⌊ n+1
2J−j ⌋, the i-th

block at level j consists of { (i−1)2J−j

n , (i−1)2J−j+1
n , i·2

J−j−1
n }. Denote the sum

of observations in the i-th block at level j for the axis k, sequence u (u=l,r,e)
as

(4.8) Yuk,j,i =
i·2J−j−1∑

h=(i−1)2J−j

νuk,h.

Again, let Yuk,j,i = +∞ when i /∈ {1, 2, · · · , ⌊ n+1
2J−j ⌋} for k ∈ {1, 2, · · · , s},

u ∈ {l, r, e}, j ∈ {0, 1, · · · , J}.

4.2.2. Localization. For k-th axis, we use {νlk,h, h ∈ {0, 1, · · · , n}} to con-

struct a localization procedure. Let îk,0 = 1, and for j = 1, 2, · · · , J , let

(4.9) îk,j = argmin
max{2îk,j−1−2,1}≤i≤min{2îk,j−1+1,⌊ n+1

2J−j ⌋}
Ylk,j,i.

This is similar to the localization step in the white noise model. In each
iteration, the blocks at the previous level are split into two sub-blocks. The
i-th block at level j − 1 is split into two blocks, the (2i − 1)-th block and
the 2i-th block, at level j. For a given îk,j−1, îk,j is the sub-block with
the smallest sum (i.e. Ylk,j,i) among the two sub-blocks of îk,j−1 and their
immediate neighboring sub-blocks.

4.2.3. Stopping Rule. Similar to the stopping rule for the white noise
model, for axis k, define the statistic Tk,j based on the sequence Y r

k,·,· as

Tk,j = min{Yr
k,j,îk,j+6

− Yr
k,j,îk,j+5

, Yr
k,j,îk,j−6

− Yr
k,j,îk,j−5

}.

Let σ̃2
k,j = 6 × 2J−j × σ2

(n+1)s−1 . It is easy to see that when Yr
k,j,îk,j+6

−
Yr
k,j,îk,j+5

< ∞,

(4.10)

Yr
k,j,îk,j+6

−Yr
k,j,îk,j+5

∣∣∣∣∣îk,j ∼ N

(îk,j+5)2J−j−1∑
h=(îk,j+4)2J−j

(
fk(

h+ 2J−j

n
)− fk(

h

n
)

)
, σ̃2

k,j

 .

Similar to white noise model, we define a series of stopping rules controlled
by a parameter ζ > 0.

Define a stopping step precursor ǰk(ζ) as

ǰk(ζ) =

{
min{j : Tk,j ≤ zζ σ̃k,j} if {j : Tk,j ≤ zζ σ̃k,j} ∩ {0, 1, 2, · · · , J} ≠ ∅
∞ otherwise
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and terminate the algorithm at level ĵk(ζ) = min{J, ǰk(ζ)}. So either Tk,j
triggers the stopping for some 0 ≤ j ≤ J or the algorithm reaches the highest
possible level J.

With the localization strategy and the stopping rule, the final block, the
îk,ĵk(ζ)-th block at level ĵk(ζ) is given by

{h
n
: (îk,ĵk(ζ) − 1)2J−ĵk(ζ) ≤ h ≤ îk,ĵk(ζ)2

J−ĵk(ζ) − 1}.

4.2.4. Estimation and Inference. After we have, for each axis k ∈ {1, 2, · · · , s},
our stopping step precursor ǰk(ζ), stopping step ĵk(ζ), index associated with
the stopping step îk,ĵk(ζ), and the final block, we use them to construct es-
timator and confidence hyper cube for the minimizer of f ∈ Fs, as well as
estimator and confidence interval for the minimum of f ∈ Fs.

For estimation of the minimizer, let ζ = Φ(−2). The k-th coordinate of
Ẑ, Ẑk, is defined as

(4.11) Ẑk =


− 1

2n
+

1

n

(
2J−ĵk(ζ) − 2J−ĵk(ζ)−1

)
, ǰk(ζ) < ∞

1

n
argmin

îk,J−2≤i≤îk,J+2

νek,i−1 −
1

n
, ǰk(ζ) = ∞

.

The final estimator Ẑ is defined as

(4.12) Ẑ = (Ẑ1, Ẑ2, · · · , Ẑs),

where Ẑk is defined in (4.11) for k ∈ {1, 2, · · · , s}.
To construct the confidence hyper cube for Z(f), for each axis k ∈ {1, . . . , s},

we set the parameter for stopping rule to be ζk = α/2s and take a few ad-
jacent blocks at level ĵk(ζk)− 1 to the left and right of îk,ĵk(ζk)−1-th block.

Let

Lk = max{0, 2·(îk,ĵk(α/2s)−1−7)}, Uk = min{2·(îk,ĵk(α/2s)+6), ⌈(n+1)2ĵk(α/2s)−J⌉}.

When ǰk(α/2s) < ∞, let

(4.13) tk,lo =
2J−ĵk(α/2s)

n
Lk −

1

2n
, tk,hi = min{2

J−ĵk(α/2s)

n
Uk −

1

2n
, 1}.

When ǰk(α/2s) = ∞, tk,lo and tk,hi are calculated by the following Algo-
rithm 1.

The key ideas of Algorithm 1 are as follows.
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ǰk(α/2s) = ∞ means that Tk,j never triggers the stopping, which is a
strong indicator that the signal is strong and discretization error could dom-
inate. Algorithm 1 first specifies a range that the minimizer lies in with high
probability (e.g. 1− α/2s), and then shrinks the interval to locate the min-
imizer among the grid points within the original interval. After this step,
the minimizer(s) among the grids are in the shrunk interval with high prob-
ability (e.g. 1 − 3α/4s). Then in the case that shrunk interval detects only
one grid-wise minimizer (im/n) and this minimizer does not indicates a dis-
cretizatino error larger or equal than 1/n (i.e. im = 1 or im = n − 1), we
use a geometry property of convex functions to determine the final interval.
Basically, the right most possible minimizer is or is infinitely near to the
intersection of two lines : y = f(im/n), and the line joining ( im+1

n , f( im+1
n ))

with ( im+2
n , f( im+2

n )). With observation νek,im , ν
e
k,im+1, ν

e
k,im+2, we can infer

the intersection of the aforementioned two lines and specify the right end
point of the interval accordingly.

The k-th axis of confidence hyper cube CIz,α is given by

(4.14) CIk,α = [tk,lo, tk,hi].

The (1− α)-level confidence hyper cube CIz,α is given by

(4.15) CIz,α = CI1,α × CI2,α × · · · × CIs,α,

where CIk,α is defined in (4.14).
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Algorithm 1 Computing tk,lo and tk,hi when ǰk(ζ) = ∞
Lk ← max{0, 2îk,ĵk(α/2s)−1 − 15}, Uk = min{n, 2îk,ĵk(α/2s)−1 + 12}, α1 = α/8s, α2 =
α/24s

Generate z3k,0, z
3
k,2, · · · , , z3k,n

i.i.d.∼ N(0, 1)

il ← min{{U} ∪ {i ∈ [L,U − 1] : νe
k,i − νe

k,i+1 +

√
3σ

(n+ 1)
s−1
2

(
z3k,i − z3k,i+1 − 2zα1

)
≤ 0}

ir ← max{{L−1}∪{i ∈ [L,U−1] : νe
k,i−νe

k,i+1+

√
3σ

(n+ 1)
s−1
2

(
z3k,i − z3k,i+1 + 2zα1

)
≥ 0}

if il ≤ ir then
tk,lo = max{0, il−1

n
}, tk,hi = max{1, ir+2

n
}

end if
if il = ir + 1 and il ≤ n− 2 then

if νe
k,il+2 − νe

k,il+1 −
√
3σ

(n+1)
s−1
2

(
z3k,il+2 − z3k,il+1 − 2

√
2zα2

)
> 0 then

thi ←


 νe

k,il
−νe

k,il+1−
√

3σ

(n+1)
s−1
2

(
z3k,il

−z3k,il+1−2
√
2zα2

)

n

νe
k,il+2

−νe
k,il+1

−
√

3σ

(n+1)
s−1
2

(
z3
k,il+2

−z3
k,il+1

−2
√
2zα2

) + 1
n


+

+ il
n

 ∧ il+1
n

else
thi ← il

n

end if
end if
if il = ir + 1 and il ≥ n− 1 then

tk,hi = 1
end if
if il = ir + 1 and il ≥ 2 then

if νe
k,il−2 − νe

k,il−1 −
√
3σ

(n+1)
s−1
2

(
z3k,il−2 − z3k,il−1 − 2

√
2zα2

)
> 0 then

tk,lo ←


− νe

k,il
−νe

k,il−1−
√

3σ

(n+1)
s−1
2

(
z3k,il

−z3k,il−1−2
√

2zα2

)

n

νe
k,il−2

−νe
k,il−1

−
√

3σ

(n+1)
s−1
2

(
z3
k,il−2

−z3
k,il−1

−2
√

2zα2

)


+

+ il−1
n

 ∧ il
n

else
tk,lo ← il

n

end if
end if
if il = ir + 1 and il ≤ 1 then

tk,lo = 0
end if

Now we turn to the construction of the estimator and confidence interval
for the minimum.

We start with estimation for the minimum M(f). Let ζ = Φ(−2). For axis
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k, let

∆k = 1{Yr
k,j,îk,j+6

−Yr
k,j,îk,j+5

≤ zζ σ̃
2
k,ĵk(ζ)

}−1{Yr
k,j,îk,j−6

−Yr
k,j,îk,j−5

≤ zζ σ̃
2
k,ĵk(ζ)

}.

The estimator for M(f) is given as follows.
We define s intermediate estimators M̂k as

(4.16) M̂k =


2ĵk(ζ)−JYe

k,ĵk(ζ),îk,ĵk(ζ)+2∆k
, ǰk(ζ) < ∞

min
îk,J−2≤i≤îk,J+2

νek,i−1, ǰk(ζ) = ∞
.

The final estimator M̂ is defined as

(4.17) M̂ =
1

(n+ 1)s

∑
i∈{0,1,2,··· ,n}s

er({yi}) +
s∑

k=1

M̂k.

Now we continue with the confidence interval for the minimum M(f). Let
ζk = ζ = α/4s.

Define the step number that will be used for constructing the interval as

(4.18) jF,k =

{
ǰk(ζ) + 3, for ǰk(ζ) ≤ J

∞, for ǰk(ζ) = ∞

Basically, we go three steps forward from the step that the test statistic Tk,j
triggers the stopping rule.

Define

Ik,lo = 2(jF,k∧J)−ĵk(ζ)+1 ×
(
îk,ĵk(ζ)−1 − 7

)
,

Ik,hi = 2(jF,k∧J)−ĵk(ζ)+1 ×
(
îk,ĵk(ζ)−1 + 6

)
+ 1

(4.19)

We first define 3 sets of s intermediate estimators {M̃k,md : 1 ≤ k ≤
s}, {M̃k,hi : 1 ≤ k ≤ s}, {M̃k,lo : 1 ≤ k ≤ s} as

(4.20) M̃k,md = min
Ik,lo≤i≤Ik,hi

Yek,(jF,k∧J),i × 2(jF,k∧J)−J ,

(4.21) M̃k,hi = M̃k,md + S210,α/8s ×
√
3

σ

(n+ 1)
s−1
2

× 2
(jF,k∧J)−J

2

and
(4.22)

M̃k,lo = M̃k,md−
3σ(zα/4s + 1)

(n+ 1)
s−1
2

×2
jF,k−J

2 −S210,α/8s×
√
3

σ

(n+ 1)
s−1
2

×2
(jF,k∧J)−J

2 for jF,k ≤ J.
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Let M̃k,lo be computed by Algorithm 2 when jF,k > J . Algorithm 2 is based
on the geometric property of the convex function f that for any 1 ≤ i ≤ n−2,

inf
t∈[ i

n
, i+1

n
]
f(t) ≥ inf

t∈[ i
n
, i+1

n
]
max

{
fk(

i+2
n )− fk(

i+1
n )

1/n
(t− i+ 1

n
) + fk(

i+ 1

n
),

fk(
i
n)− fk(

i−1
n )

1/n
(t− i

n
) + fk(

i

n
)

}
.

Algorithm 2 Computing M̃k,lo when jF,k > J

kl ← max{0, Ik,lo − 1}, kr ← min{n − 1, Ik,hi − 2},H ← Skr−kl+4, α
24s

√
3 σ

(n+1)
s−1
2

+

z α
48s

√
3σ

(n+1)
s
2

if kl = 0 then

vr,0(t)←
νe
k,2−νe

k,1+2H

1/n
(t− 1/n) + νe

k,1 −H,h(0)← mint∈[0,1/n] vr,0(t)
end if
if kr = n− 1 then

vl,n−1(t)←
νe
k,n−1−νe

k,n−2−2H

1/n
(t− n−1

n
)+νe

k,n−1−H, h(n−1) = min
t∈[n−1

n
,1]

vl,n−1(t)

end if
for i = (kl ∨ 1), · · · , (kr ∧ n− 2) do

Define two linear functions:

vl,i(t) =
νe
k,i − νe

k,i−1 − 2H

1/n
(t− i

n
) + νe

k,i −H,

vr,i =
νe
k,i+2 − νe

k,i+1 + 2H

1/n
(t− i+ 1

n
) + νe

k,i+1 −H

h(i) = min
t∈[ i

n
, i+1

n
]
max{vl,i(t), vr,i(t)}

end for
M̃k,lo ← min{h(i) : kl ≤ i ≤ kr} ∧ M̃k,hi

Let
(4.23)

M̃hi =
1

(n+ 1)s

∑
i∈{0,1,2,··· ,n}s

er({yi}) +
s∑

k=1

M̃k,hi + zα/8 · 2
√
3

σ

(n+ 1)
s
2

s,

(4.24)

M̃lo =
1

(n+ 1)s

∑
i∈{0,1,2,··· ,n}s

er({yi}) +
s∑

k=1

M̃k,lo − zα/8 · 2
√
3

σ

(n+ 1)
s
2

s.

The confidence interval for the minimum M(f) is given by

(4.25) CIm,α = [M̃lo, M̃hi].



24 R. CHEN

4.3. Statistical Optimality. Now we establish the optimality of the adap-
tive procedures constructed in Section 4.2. The results show that our proce-
dures are simultaneously optimal (up to a constant depending on dimension
and confidence level) for f ∈ Fs in terms our benchmarks introduced in (4.2)
and (4.3).

We begin with the estimator of the minimizer.

Theorem 4.1 (Estimation for Minimizer). The estimator Ẑ defined in
(4.12) satisfies

(4.26) Ef

(
∥Ẑ − Z(f)∥2

)
≤ Qz,sR̃z,n(σ; f), for all f ∈ Fs

where Qz,s is a positive constant depending on s.

For the confidence hyper cube CIz,α of Z(f), we have the following result.

Theorem 4.2 (Inference for Minimizer). For 0 < α ≤ 0.3, confidence
cube CIz,α defined in (4.15) is a (1− α)-level confidence cube for the mini-
mizer Z(f) and its expected volume satisfies

(4.27) Ef (V (CIz,α)) ≤ Qz,s,αL̃z,α,n(σ; f), for all f ∈ Fs

where Qz,s,α is a positive constant depending on s and α only.

Similarly, the estimator and confidence interval for the minimizer M(f)
also achieve within a constant depending on s and α of the corresponding
benchmark simultaneously for all f ∈ Fs.

Theorem 4.3 (Estimation for Minimum). The estimator M̂ defined in
(4.17) satisfies

(4.28) E
(
M̂ −M(f)

)2
≤ Qm,sR̃m,n(σ; f)

where Qm,s is a positive constant depending on s.

Theorem 4.4 (Inference for Minimum). For 0 < α ≤ 0.3, the confidence
interval CIm,α defined in (4.25) is a (1 − α) level confidence interval for
minimum M(f) and its expected length satisfies

(4.29) E(|CIm,α|) ≤ Qm,s,αL̃m,α,n(σ; f),

where Qm,s,α is a positive constant depending on dimension s and α.
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5. Discussion. In the present paper, we studied optimal estimation and
inference for the minimizer of multivariate additive function in the white
noise and nonparametric regression models within the class of separable
methods under non-asymptotic benchmarks that characterize the difficulty
of the statistical problem at individual functions. We have shown that local
minimax framework (Cai and Low, 2015), unlike univariate case, does not
fully captures the difficulty of estimation/inference problem in multivariate
case for entire method class: local minimax rates are shown to be not adap-
tively achievable. We found an information-preserving representation of the
observation, projection representation, and we focus on separable methods
that are based on the representation. We turn to a definition-free framework
that resorts to the fundamental link between benchmarks (tags) and the per-
formance of the methods. These benchmarks are function-specific and can
be easily transformed into rates of conventional minimax framework. This
provides a way to characterize the difficulty of statistical problem locally
in addition to local minimax framework, and also enlarge the meaning of
minimax: we can add an variable denominator. It would be interesting to see
how the local characterization discussed in paper works for problems where
the difficulty for the statistical problem at different function varies or when
we have different affordability for the price to pay at different function.

We also developed adaptively optimal procedures with respect to our
benchmarks. Although some blocks of it looks similar to univariate case, no
direct extension of the procedure of the univariate case can achieve the op-
timal rate for confidence hyper cube, it would have an additional multiplier
of power function of dimension s.

The present work can be extended in different directions. We only consider
multivariate additive functions, it would be interesting to investigate high-
dimensional sparse additive functions with convexity constraints on each
component function, and it would also be interesting to investigate general
multivariate case. In our work, we focus on separable methods, it would be
interesting to investigate the entire method class and see how they compare.
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6. Proof.

6.1. Notation. Here we recollect or introduce notation that will be used
later. We use Z(f), M(f) to denote the minimizer and minimum of function
f , where f can be univariate or multivariate.

Recall that

ρm(ε; f) = max{ρ :

∫ 1

0
(max{ρ, f(t)} − f(t))2 dt ≤ ε2} −M(f)

ρz(ε; f) = max{|t− Z(f)| : f(t) ≤ ρm(ε; f) +M(f)}.
(6.1)

for f ∈ F .

6.2. Proof of Theorem 2.1. For the ease of notation, denote D to be
[0, 1]s.

We start with minimizer. We start with lower bounds.
Let f ∈ Fs. Let g ∈ Fs, which we will specify later. Take θ ∈ {−1, 1} as

parameter to be estimated, with f1 = f and f−1 = g.
For any estimator Ẑ for estimating the minimizer, consider the projected

estimator that projects Ẑ to the line determined by Z(f) and Z(g) :

(6.2) Ẑp = Z(f) + ⟨Ẑ − Z(f),
Z(g)− Z(f)

∥Z(f)− Z(g)∥
⟩.

It’s easy to see that

Ef

(
∥Ẑp − Z(f)∥2

)
≤ Ef

(
∥Ẑ − Z(f)∥2

)
and

Eg

(
∥Ẑp − Z(g)∥2

)
≤ Eg

(
∥Ẑ − Z(g)∥2

)
.

Therefore, we only need to consider the projected estimators Ẑp for calculat-
ing Rz(ε; f). Similarly, we only need to consider projected confidence hyper-

cube CIp is the smallest hypercube containing {Z(f)+⟨t−Z(f), Z(g)−Z(f)
∥Z(g)−Z(f)∥⟩ :

t ∈ CI} for calculating Lα,z(ε; f), as projection does not weaken confidence
level and projected hypercube has smaller hypercube-diameter.

Note that any projected estimator Ẑp of the minimizer Z(fθ) gives an
estimator of θ by

θ̂ = ⟨
Ẑp − Zp(f1)+Zp(f−1)

2

∥Zp(f1)−Zp(f−1)
2 ∥

,
Zp(f1)− Zp(f−1)

∥Zp(f1)− Zp(f−1)∥
⟩,
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and therefore Eθ∥Ẑp − Z(fθ)∥2 = ∥Z(f1) − Z(f−1)∥2Eθ
|θ̂−θ|
2 . Let Pθ be the

probability measure associated with the white noise model corresponding to
fθ. On the other hand, through calculating the Radon-Nikodym derivative
dP1
dP−1

(Y ) by Girsanov’s theorem,

(6.3)
dPf

dPg
(Y ) = exp

(∫
D

f(t)− g(t)

ε2
dY (t)− 1

2

∫
D

f(t)2 − g(t)2

ε2
dt

)
,

a sufficient statistic for θ is given by

(6.4) W =

∫
D(f1(t)− f−1(t))dY (t)− 1

2

∫
D(f1(t)

2 − f−1(t)
2)dt

ε∥f1 − f−1∥
.

Then

W ∼ N

(
θ

2
· ∥f1 − f−1∥

ε
, 1

)
under Pθ.

Note that for any ωz(ε; f) > δ > 0, there exists hδ ∈ Fs such that
∥f − hδ∥ = ε and that ∥Z(f)− Z(hδ)∥2 ≥ ωz(ε; f)− δ, we let g = hδ. Then
we have Rz(ε; f) ≥ (ωz(ε; f)− δ) · r2, where r2 is the minimax risk of the
two-point problem based on an observation X ∼ N( θ2 , 1),

r2 = inf
θ̂

max
θ=±1

Eθ
|θ̂ − θ|2

4
.

Elementary calculation shows that r2 ≥ 0.1. Taking δ → 0+, we have
Rz(ε; f) ≥ 0.1ωz(ε; f). So we have a ≥ 0.1.

Now we turn to the upper bounds. We start with stating a property of
ωz(ε; f) in Proposition 6.1.

Proposition 6.1. Suppose f ∈ Fs, c ∈ (0, 1), then we have

(6.5) ωz(ε; f) ≥ ωz(cε; f) ≥
1

9
max

{
(
c

2
)
2
3 , c
}
ωz(ε; f).

Proof. The left hand side is apparent, we will prove the right hand side.
Using Proposition 6.3, we have

sup∑s
i=1 b

2
i≤1

s∑
i=1

ρz(bicε; fi)
2 ≤ ωz(cε; f) ≤ 9 sup∑s

i=1 b
2
i≤1

s∑
i=1

ρz(bicε; fi)
2,

sup∑s
i=1 b

2
i≤1

s∑
i=1

ρz(biε; fi)
2 ≤ ωz(ε; f) ≤ 9 sup∑s

i=1 b
2
i≤1

s∑
i=1

ρz(biε; fi)
2.

(6.6)
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Using Proposition 2.1 by Cai et al. (2023a), namely

max
{
(
q

2
)
2
3 , q
}
≤ ρz(qε; f)

ρz(ε; f)
≤ 1, for q ∈ [0, 1)

, we know ρz(ϵ; f) is a continuous function of ϵ ≥ 0 for f ∈ F . So there
exists (b̃1, · · · , b̃s) and (b̄1, · · · , b̄s) attaining the suprema:

b̃i ≥ 0, for 1 ≤ i ≤ s,

s∑
i=1

b̃2i = 1,

s∑
i=1

ρz(b̃icε; fi)
2 = sup∑s

i=1 b
2
i≤1

s∑
i=1

ρz(bicε; fi)
2,

b̄i ≥ 0, for 1 ≤ i ≤ s,

s∑
i=1

b̄2i = 1,

s∑
i=1

ρz(b̄iε; fi)
2 = sup∑s

i=1 b
2
i≤1

s∑
i=1

ρz(biε; fi)
2.

(6.7)

Also we have

(6.8)
s∑

i=1

ρz(b̃icε; fi)
2 ≤

s∑
i=1

ρz(b̃iε; fi)
2 ≤

s∑
i=1

ρz(b̄iε; fi)
2,

and

(6.9)
s∑

i=1

ρz(b̃icε; fi)
2 ≥

s∑
i=1

ρz(b̄icε; fi)
2 ≥

s∑
i=1

max
{
(
c

2
)
2
3 , c
}
ρz(b̄iε; fi)

2.

Combining equations (6.6), (6.8), (6.9) we have

(6.10) ωz(cε; f) ≥
1

9
max

{
(
c

2
)
2
3 , c
}
ωz(ε; f).

Now we continue with the upper bounds.
Recalling W define in (6.4), let

(6.11) Ẑ = sign(W ) · Z(f)− Z(g)

2
+

Z(f) + Z(g)

2
.

Then

(6.12) Ef (∥Ẑ−Z(f)∥2) = Eg(∥Ẑ−Z(g)∥2) = ∥Z(f)−Z(g)∥2Φ(−∥f − g∥
2ε

).
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Therefore,

Rz(ε; f) ≤ sup
f∈Fs

∥Z(f)− Z(g)∥2Φ(−∥f − g∥
2ε

)

≤ sup
c>0

ωz(cε; f)Φ(−
c

2
)

≤ max{0.5ωz(ε; f), sup
c≥1

ωz(cε; f)Φ(−
c

2
)}.

(6.13)

In addition
(6.14)

sup
c≥1

ωz(cε; f)Φ(−
c

2
) ≤ 9 sup

c≥1
min{(2c)

2
3 , c}Φ(− c

2
)ωz(ε; f) ≤ 3.1ωz(ε; f).

Take A = 3.1 gives the result.
Now we turn to the minimum and start with estimation. We start with

the lower bound.
Recall that W defined in (6.4) is a sufficient statistics for θ.
Then similarly to the proof of that for minimizer we have that

(6.15) Rm(ε; f) ≥ aωm(ε; f).

For the upper bound. We start with a proposition.

Proposition 6.2. For c > 1, we have

(6.16) ωm(cε; f) ≤ c2ωm(ε; f), ω̃m(cε; f) ≤ cω̃m(ε; f).

Proof. Suppose g satisfies ∥g − f∥2 ≤ cε. Then calculation show that

(6.17) |g0 − f0|2 +
s∑

i=1

∥gi − fi∥2 ≤ c2ε2,

Let hi(t) =
1
cgi(t) +

c−1
c fi(t). Let h(t) =

1
cg0 +

c−1
c f0 +

∑s
i=1 hi(ti) Then

we have that

(6.18) ∥h− f∥2 ≤ ε2,

and that

(6.19) |M(h)−M(f)| = 1

c
|M(g)−M(f)|.

This gives the statement of the proposition.
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Recalling W define in (6.4), let

(6.20) M̂ = sign(W ) · M(f)−M(g)

2
+

M(f) +M(g)

2
.

Then
(6.21)

Ef (∥M̂ −M(f)∥2) = Eg(∥M̂ −M(g)∥2) = ∥M(f)−M(g) |2Φ(−∥f − g∥
2ε

).

With Proposition 6.2 we have that

Rm(ε; f) ≤ sup
c>0

ωm(cε; f)Φ(− c

2
) ≤ max{0.5ωm(ε; f), sup

c≥1
ωm(cε; f)Φ(− c

2
)}

≤ ωm(ε; f)max{0.5, sup
c≥1

c2Φ(− c

2
)} ≤ ωm(ε; f).

(6.22)

For the inference of the minimum, we again start with the lower bound.

Lα,m(ε; f) ≥ sup
g∈Fs

inf
CIm,α∈Im,α(f ,g)

Pf ({M(g),M(f)} ∈ CIm,α)|M(f)−M(g)|

≥ sup
g∈Fs,∥g−f∥≤ε

(1− α− Pf (M(g) /∈ Im,α(f ,g)))ω̃m(ε; f)

≥ (1− α− Φ(−zα + 1))ω̃m(ε; f) ≥ (0.6− α)ω̃m(ε; f).

(6.23)

The second to last inequality is due to Neyman-Pearson inequality.
For the upper bound, we recollect our sufficient statistics (6.4) and asso-

ciated notation, let

CIm,α =


{M(g)} W < −zα + 0.5∥f−g∥

ε

{M(f)} W ≥ (zα − ∥f−g∥
2ε ) ∨ (−zα + ∥f−g∥

2ε )

{M(f) + (M(g)−M(f)) · t : t ∈ [0, 1]} otherwise

.

Clearly, we have Pf (M(f) /∈ CIα) ≤ α, Pg(M(g) /∈ CIα) ≤ α. For the
expected squared length, we have for θ ∈ {−1, 1},

(6.24) Efθ (|CIm,α|) ≤ ∥M(f)−M(g)∥
(
Φ(zα − ∥f − g∥

ε
)− α

)
+

Efθ (|CIm,α|) ≤ max{ω̃m(ε; f) (1− 2α) , sup
c>1

ω̃m(cε; f) (Φ(zα − c)− α)+}

≤ ω̃m(ε; f)max{(1− 2α), sup
c>1

c (Φ(zα − c)− α)+}

≤ ω̃m(ε; f)(1− 2α)× 2zα.

(6.25)
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6.3. Proof of Theorem 2.2. We start with stating two propositions, which
are proved later.

Proposition 6.3. Let ρz(ε; f) be defined in (2.8) for f ∈ F , and let
f ∈ Fs. Then

(6.26) sup∑s
i=1 b

2
i≤1

s∑
i=1

ρz(biε; fi)
2 ≤ ωz(ε; f) ≤ sup∑s

i=1 b
2
i≤1

s∑
i=1

9ρz(biε; fi)
2,

where bi are non-negative.

Proposition 6.4. Suppose fi ∈ F , for i = 1, 2, · · · , s, then we have

(6.27)
1

3
s−

2
3

s∑
i=1

ρz(ε; fi)
2 ≤ sup∑s

i=1 b
2
i≤1

s∑
i=1

ρz(biε; fi)
2 ≤

s∑
i=1

ρz(ε; fi)
2.

And for any β ≤ s, exist (f1, · · · , fs) such that
∑s

i=1 ρz(ε; fi)
2 = β and

(6.28) sup∑s
i=1 b

2
i≤1

s∑
i=1

ρz(biε; fi)
2 = s−

2
3

s∑
i=1

ρz(ε; fi)
2.

For β ≤ s, for any δ > 0, there exist (f1, · · · , fs) such that
∑s

i=1 ρz(ε; fi)
2 =

β and

(6.29) sup∑s
i=1 b

2
i≤1

s∑
i=1

ρz(biε; fi)
2 ≥

s∑
i=1

ρz(ε; fi)
2 − δ.

Inequality (6.27) in Proposition 6.4 and (6.26) in Proposition 6.3 implies
Inequality 2.9 of Theorem 2.2.

Construct f(t) =
∑s

i=1

∫ s
0 fi(x)dx +

∑s
i=1

(
f(ti)−

∫ s
0 fi(x)dx

)
with fi

in Equation (6.28). Then together with the right hand side of Inequality
(6.26) gives Inequality (2.10) of Theorem 2.2. Similar construct f with fi in
Inequality (6.29) with δ0 = δ gives Inequality (2.11) in Theorem 2.2.

6.3.1. Proof of Proposition 6.3. Suppose g ∈ Fs, such that ∥g − f∥ ≤ ε,
g(t) = g0+g1(t1)+g2(t2)+ · · ·+gs(ts). Using the continuity of ρz(ϵ; f) with
respect to ϵ implied by Proposition 2.1 by Cai et al. (2023a), we know there
exist (b̄1, b̄2, · · · , b̄s) such that
(6.30)

b̄i ≥ 0, for 1 ≤ i ≤ s,

s∑
i=1

b̄2i = 1,

s∑
i=1

ρz(b̄iε; fi)
2 = sup∑s

i=1 b
2
i≤1

s∑
i=1

ρz(biε; fi)
2.
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We only need to prove

(6.31)
s∑

i=1

ρz(b̄iε; fi)
2 ≤ ωz(ε; f) ≤

s∑
i=1

9ρz(b̄iε; fi)
2.

We start with proving the upper bound.
Since ∥g − f∥ ≤ ε, we have

ε2 ≥ ∥f − g∥2 =
∫
D

(
f0 − g0 +

2∑
i=1

fi(ti)− gi(ti)

)2

dt

= (f0 − g0)
2 +

s∑
i=1

∫ 1

0
(fi(t)− gi(t))

2dt.

(6.32)

Denote b̃i =

√∫ 1
0 (fi(t)−gi(t))2dt

ε2
for 1 ≤ i ≤ s, then we have

∑s
i=1 b̃

2
i = 1.

Therefore, using Proposition 2.2 by Cai et al. (2023a), we have
(6.33)

∥Z(f)−Z(g)∥2 =
s∑

i=1

|Z(fi)−Z(gi)|2 ≤
s∑

i=1

9ρz(b̃iε; fi)
2 ≤

s∑
i=1

9ρz(b̄iε; fi)
2.

For the lower bound, we construct a class of function gδ ∈ Fs, with
1
2 min1≤i≤s ρz(b̄iε; fi) > δ > 0. We construct the constant and components:
gδ,i for 0 ≤ s. Let gδ,0 = f0. For 1 ≤ i ≤ s , suppose xl,i, xr,i are left and right
end points of the interval {x : fi(x) ≤ M(fi)+ρm(b̄iε; fi)}. And without loss
of generality, we assume xr,i = Z(fi) + ρz(b̄iε; fi). Define univariate convex
function hδ,i as follow.
(6.34)

hδ,i(t) = max{fi(t), fi(xr,i−δ)− ρm(b̄iε; fi) +M(fi)− fi(xr,i − δ)

xr,i − δ − xl,i
(t−xr,i)}.

Define univariate function gδ,i as

(6.35) gδ,i(t) = hδ,i(t)−
∫ 1

0
hδ,i(t)dt.

Then we have
∫ 1
0 gδ,i(t)dt = 0, so the definition defines a valid gδ ∈ Fs.

Further for i = 1, 2 · · · , s, we have
(6.36)∫ 1

0
(gδ,i(t)− fi(t))

2 dt =

∫ 1

0
(hδ,i(t)− fi(t))

2 dt−
(∫ 1

0
hδ,i(t)dt

)2

≤ b̄2i ε
2,
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and

(6.37) |Z(gδ,i)− Z(fi)| ≥ ρz(b̄iε; fi)− δ.

Therefore, we have

(6.38) ∥gδ − f∥2 ≤ ε2, ∥Z(gδ)− Z(f)∥2 ≥
s∑

i=1

(
ρz(b̄iε; fi)− δ

)2
.

Let δ → 0+ , we have

(6.39) ωz(ε; f) ≥
s∑

i=1

ρz(b̄iε; fi)
2.

6.3.2. Proof of Proposition 6.4. We start with the right hand side and
its almost-attainability.

Since bi ∈ [0, 1] for 1 ≤ i ≤ s, we have ρz(biε; fi) ≤ ρz(ε; fi). The right
hand side then apparently hold.

We first assume β in not an integer. Let s1 = ⌊β − δ⌋, s2 = β − ⌊β⌋,
s3 = s− ⌈β⌉.

Let k1, k2, k3 > 0.
Now we start defining fi ∈ F for 1 ≤ i ≤ s.
If s1 ≥ 1, for 1 ≤ i ≤ s1, let

(6.40) fi(t) = k1(t−
1

2
).

If s3 ≥ 1, for n− s3 + 1 ≤ i ≤ n let

(6.41) fi(t) = k3(t−
1

2
).

Let

(6.42) fs1+1(t) = k2(t−
1

2
).

Suppose 0 < δ < 1
2s2.

If s3 ≥ 1, choose k3 such that

(6.43) ρz(ε; fn) =

√
δ

2s3
,

Define s4 = s2 − δ
2 if s3 ≥ 1, otherwise s4 = s2. Choose k2 such that

(6.44) ρz(ε; fs1+1) =
√
s4.
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Now suppose bs1+1 is the smallest b ∈ [0, 1) such that

(6.45) ρz(bε; fs1+1) ≥
√
s4 −

δ

2
.

If s1 ≥ 1, choose k1 such that

(6.46) ρz(

√
1− b2

s1
ε; f1) = 1.

It’s easy to verify that the above construction is legitimate and satisfy
equation (6.29).

When β = n, choose large enough k such that ρz(
1√
s
ε; k(t − 0.5)) = 1,

and let fi = k(t− 0.5) for 1 ≤ k ≤ s.
When β ≤ n−1 and is integer, for δ < 0.5, let s1 = β−1, s3 = n−β,s4 =

1− δ
2 . And choose k3, k2, k1 as the case where β is not integer.

Now we proceed with the left hand side.
Proposition 2.1 by Cai et al. (2023a), we have

(6.47)

sup∑s
i=1 b

2
i≤1

s∑
i=1

ρz(biε; fi)
2 ≥ sup∑s

i=1 b
2
i≤1

s∑
i=1

(b2i /4)
2
3 ρz(ε; fi)

2 ≥ 1

3

(
s∑

i=1

ρz(ε; fi)
6

) 1
3

,

The last inequality take bi =
√

ρz(ε;fi)6∑s
i=1 ρz(ε;fi)

6 .

Cauchy-Schwarz inequality gives

(6.48)
1

3

(
s∑

i=1

ρz(ε; fi)
6

) 1
3

≥ 1

3
s−

2
3

s∑
i=1

ρz(ε; fi)
2,

which concludes the left hand side.
For the attainability up to constant multiple, let k > 0, which we will

pick later. Let fi(t) = k(t − 0.5) for 1 ≤ i ≤ s. Pick k > 0 such that

ρz(ε; fi) =
√

β
s . Then we have that

(6.49)

sup∑s
i=1 b

2
i≤1

s∑
i=1

ρz(biε; fi)
2 = sup∑s

i=1 b
2
i≤1

s∑
i=1

b
4
3
i ρz(ε; fi)

2 = sup∑s
i=1 b

2
i≤1

s∑
i=1

b
4
3
i

β

s
.

Through basic calculation, we have sup∑s
i=1 b

2
i≤1

∑s
i=1 b

4
3
i = s

1
3 , which

gives inequality (6.28).
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6.4. Proof of Theorem 2.3. We start with the upper bound. Suppose ∥g−
f∥ ≤ ε. Suppose g(t) = g0 +

∑s
i=1 gi(ti), where

∫ 1
0 gi(t)dt = 0. Calculation

show that ∥g − f∥ ≤ ε implies

(6.50) |g0 − f0|2 +
s∑

i=1

∥gi − fi∥2 ≤ ε2.

Suppose εi = ∥gi − fi∥. Then we have that

|M(g)−M(f)|2 ≤ (|g0 − f0|+
s∑

i=1

|M(gi)−M(fi)|)2 ≤ (|g0 − f0|+
s∑

i=1

3ρm(εi; fi))
2

≤ (|g0 − f0|+
s∑

i=1

3(
εi
ε
)
4
3 ρm(ε; fi))

2

≤

(
ε2 +

s∑
i=1

ρm(ε; fi)
2

)((
|g0 − f0|

ε

)2

+

s∑
i=1

9(
εi
ε
)
8
3

)

≤

(
s∑

i=1

ρm(ε; fi)
2

)
9(s+ 1)

s
,

(6.51)

where the second Inequality is due to Proposition 2.1.
Now that we have the upper bound, we turn to the lower bound. Let

(6.52) εi =
ρm(ε; fi)√∑s
j=1 ρm(ε; fj)2

√
1

1 +
∑s

i=1(1 ∧ 2ρz(ε; fi))
ε.

Suppose δ > 0 is small enough quantity, which will be set going to 0 later. We
construct components of an alternative function. Without loss of generality
we assume ti,l, ti,r are the left and right end points of the interval {t : fi(t) ≤
M(fi) + ρm(εi; fi)} and that ti,r = Z(fi) + ρz(εi; fi). Suppose gi,δ(t) =
max{fi(t), fi(tl) + −δ

ti,r−ti,l
(t − ti,l)}, and let hδ(t) = f0 +

∑s
i=1 gi(ti). Then

we have for small enough δ > 0,

∥hδ − f∥2 ≤ (
s∑

i=1

∫ 1

0
gi(t)dt)

2 +
s∑

i=1

ε2i −
s∑

i=1

(

∫ 1

0
gi(t)dt)

2

≤
s∑

i=1

ε2i (1 +

s∑
i=1

(1 ∧ 2ρz(εi; fi))) ≤ ε2.

(6.53)
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We also have

lim
δ→0+

(M(hδ)−M(f)) ≥
s∑

i=1

ρm(εi; fi) ≥
s∑

i=1

ρm(ε; fi)
εi
ε

≥

√√√√ s∑
i=1

ρm(ε; fi)2

√
1

1 +
∑s

i=1(1 ∧ 2ρz(ε; fi))
.

(6.54)

This gives the lower bound.

6.5. Proof of Theorem 2.4.

inf
CIz,α∈Iz,α(Fs)

Ef (V (CIz,α))

≥ sup
g∈Fs

inf
CIz,α∈Iz,α(f ,g)

Ef (V (CIz,α))

≥ sup
g∈Fs

inf
CIz,α∈Iz,α(f ,g)

Ef (1{{Z(f), Z(g)} ⊂ CIz,α}) sup
g∈Fs

Πs
i=1|Z(gi)− Z(fi)|

≥ sup
g∈Fs

(
1− α− Φ(−zα +

∥f − g∥
ε

)

)
sup
g∈Fs

Πs
i=1|Z(gi)− Z(fi)|

(6.55)

Let gi,δ be constructed as follows. Without loss of generality, we assume
ti,r = Z(fi) + ρz(ε/

√
s; fi) satisfies fi(ti,r) ≤ ρm(ε/

√
s; fi) +M(fi) and ti,l

is the left end point of {t : fi(t) ≤ ρm(ε/
√
s; fi) +M(fi)}. Let

(6.56) gi,δ(t) = max{fi(t),M(fi) + ρm(ε/
√
s; fi) +

−δ

ti,r − ti,l
(t− ti,l)}.

Define

gδ(t) = f0 +
s∑

i=1

gi,δ(ti)−
s∑

i=1

∫ 1

0
gi,δ(t)dt.

It’s clear that
∥gδ − f∥ ≤ ε.

It is obvious that Z(gδ,i) = Z(gi,δ).
(6.57)

lim
δ→0+

Πs
i=1|Z(gδ,i)− Z(fi)| ≥ Πs

i=1ρz(ε/
√
s; fi) ≥ (

1

2
√
s
)
2s
3 Πs

i=1ρz(ε; fi).

Going back to Inequality (6.55) we have that

(6.58) inf
CIz,α∈Iz,α(Fs)

Ef (V (CIz,α)) ≥ (0.6− α)(
1

2
√
s
)
2s
3 Πs

i=1ρz(ε; fi).
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6.6. Proof of Theorem 2.5. We prove the theorem by proving the follow-
ing two propositions.

Proposition 6.5. For any estimator of the minimizer, Ẑ, if

Ef

(
∥Ẑ − Z(f)∥2

)
≤ γRz(ε; f)

for f ∈ Fs and γ < γ0, where γ0 is a positive constant, then there exists
f1 ∈ Fs such that

(6.59) Ef1

(
∥Ẑ − Z(f1)∥2

)
≥ cz,s(log

1

γ
)
2
3Rz(ε; f1),

where cz,s is a constant depending on s only.

Proposition 6.6. For any estimator of the minimum, M̂ , if

Ef (|M̂ −M(f)|2) ≤ γRm(ε; f)

for f ∈ Fs and γ < γ0/s, where γ0 is a positive constant, then there exists
f1 ∈ Fs such that

(6.60) Ef1

(
|M̂ −M(f1)|2

)
≥ cm,s(log

1

γ
)
2
3Rm(ε; f1),

where cm,s is a constant depending on s only.

6.6.1. Proof of Proposition 6.5. Let σ = Φ−1(1−6·9·2γ)ε√
5

. Let F (γ) =

(σ/ε)2.

Then for γ ≤ 0.0024558/54, we have σ ≥
√

4
3ε.

Suppose (w1, w2, · · · , ws) achieves

(6.61) sup∑s
j=1 w

2
j≤1,wj≥0

s∑
i

ρz(wiε; fi)
2.

The compactness of {(w1, w2, · · · , ws) :
∑s

j=1w
2
j ≤ 1, wj ≥ 0} and the conti-

nuity of
∑s

i ρz(wiε; fi)
2 implies that supremum is attainable. So (w1, w2, · · · , ws)

is well defined. Also, it’s easy to see that
∑s

j=1w
2
j = 1.

Denote set B as

(6.62) B = {(b1, b2, · · · , bs) :
s∑

i=1

bi ≤ 1, bi ≥ max{ wi√
F (γ)

,
√

1/4s}}.
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It’s clear that B is not null set, and

(6.63) (

√
w2
1

F (γ)
+

1

4s
,

√
w2
2

F (γ)
+

1

4s
, · · · ,

√
w2
s

F (γ)
+

1

4s
) ∈ B.

Let (b1, b2, · · · , bs) achieves
(6.64)

sup
(b1,b2,··· ,bs)∈B

(
s∑

k=1

ρz(bk
√
F (γ)ε; fk)

2

)3 /( s∑
i=1

ρz(bi
√
F (γ)ε; fi)

4

ρm(bi
√
F (γ)ε; fi)4

)
.

Then it is clear that(
s∑

k=1

ρz(bk
√
F (γ)ε; fk)

2

)3 /( s∑
i=1

ρz(bi
√
F (γ)ε; fi)

4

ρm(bi
√
F (γ)ε; fi)4

)

≥ min
1≤k≤s

(
ρz(bk

√
F (γ)ε; fk)

2
)3

/

(
ρz(bk

√
F (γ)ε; fk)

4

ρm(bk
√

F (γ)ε; fk)4

)

≥ min
1≤k≤s

(
1

2
b2kF (γ)ε2

)2

≥
(
F (γ)

8s
ε2
)2

,

(6.65)

and that

(6.66)

s∑
k=1

ρz(bk
√

F (γ)ε; fk)
2 ≥

s∑
k=1

ρz(wkε; fk)
2 ≥ 1

9
ωz(ε; f),

where the very last inequality comes from Proposition 6.3.
For each 1 ≤ k ≤ s, we construct f̃k.
Let xl, xr be the left and right end points of the interval {x : fk(x) ≤

M(fk)+ρm(bkσ; fk)}. Without loss of generality, suppose fk (Z(fk) + ρz(bkσ; fk)) ≤
M(fk) + ρm(bkσ; fk).

Let g2,k(t) = max{fk(t), fk(xr) + M(fk)+2ρm(bkσ;fk)−fk(xr)
xl−xr

(t− xr)}.
Calculation similar to that in Lemma C.8 in Cai et al. (2023b) shows that

∥g2,k − fk∥ ≤
√
5bk
√

F (γ)ε

ρz(η; g2,k) ≤ (
16

3
)
1
3 (

η√
b2kσ

2/3
)
2
3 ρz(bkσ; fk).

(6.67)

Let

(6.68) g(t) = f0 +

s∑
k=1

(
g2,k(tk)−

∫ 1

0
g2,k(t)dt

)
.
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Then we know that

(6.69) ∥g − f∥ ≤ Φ−1(1− 6 · 9 · 2γ)ε,

that

(6.70) ∥Z(g)− Z(f)∥2 =
s∑

k=1

ρz(bkσ; fk)
2 ≥ 1

9
ωz(ε; f),

and that

ωz(ε;g) ≤ 9 sup∑s
j=1 d

2
j≤1,dj≥0

s∑
k=1

ρz(djε; g2,k)
2

≤ 9 sup∑s
j=1 d

2
j≤1,dj≥0

s∑
k=1

(
16

3
)
2
3 (

dkε√
b2kσ

2/3
)
4
3 ρz(bkσ; fk)

2.

(6.71)

Taking derivative of

(6.72)
s∑

k=1

(
dk√
b2k

)
4
3 ρz(bkσ; fk)

2

with respect to

(6.73) (d21, d
2
2, · · · , d2s),

we have

(6.74)

(
2

3
(d21)

− 1
3 b

− 4
3

1 ρz(b1σ; f1)
2, · · · , 2

3
(d2s)

− 1
3 b

− 4
3

s ρz(bsσ; fs)
2

)
.

Note that the constraint for d21, d
2
2, · · · , d2s is

(6.75)

s∑
k=1

d2k = 1, d2j ≥ 0 for 1 ≤ j ≤ s.
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Therefore, we have that

s∑
k=1

(
dk√
b2k

)
4
3 ρz(bkσ; fk)

2 ≤
s∑

k=1

ρz(bkσ; fk)
6/b4k

∑s
j=1

(
ρz(bjσ; fj)

6/b4j

)
b2k


2
3

ρz(bkσ; fk)
2

≤

 s∑
j=1

ρz(bjσ; fj)
6/b4j

 1
3

≤

 s∑
j=1

σ44 · ρz(bjσ; fj)
4

ρm(bjσ; fj)4

 1
3

.

(6.76)

Using Inequality (6.65) and going back to Inequality (6.71), we have that

ωz(ε;g) ≤ 9 · (16 · 3)
2
3 (

ε

σ
)
4
3 · σ

4
3 · 4

1
3 (

8s

F (γ)ε2
)
2
3

s∑
k=1

ρz(bkσ; fk)
2

= 9 · (16 · 3)
2
3 · 2

8
3 (

s

F (γ)
)
2
3 ∥Z(f)− Z(g)∥2.

(6.77)

Recall that when we let fθ = f for θ = 1 and fθ = g for θ = −1, a sufficient
statistic would be W defined in (6.4).

Note that we have

(6.78) Ef

(
∥Ẑ − Z(f)∥2

)
≤ γRz(ε; f) ≤ 6γωz(ε; f),

where the last Inequality comes from Theorem 2.1.
Denote event D = {∥Ẑ − Z(f)∥ ≥ 1

18ωz(ε; f)}. Then

(6.79) Pf (D) ≤ 6γωz(ε; f)
1
18ωz(ε; f)

= 108γ ≤ 0.00491163.

So we have that

(6.80) Pg(D) ≤ 1

2
.
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Hence we have that

Eg

(
∥Ẑ − Z(g)∥2

)
≥ Eg

((
∥Z(f)− Z(g)∥ − 1

18
ωz(ε; f)

)2

+

1{Dc}

)

≥ Eg

(
1

4
∥Z(f)− Z(g)∥21{Dc}

)
≥ 1

8
∥Z(f)− Z(g)∥2

≥ 1

8

1

9
(16 · 3)−

2
3 · 2−

8
3
F (γ)

2
3

s
2
3

ωz(ε;g)

≥ 1

8

1

9
(16 · 3)−

2
3 · 2−

8
3
1

6
Rz(ε;g)

F (γ)
2
3

s
2
3

.

(6.81)

Note that F (γ) = z2108γ/5, so F (γ) ∼ log( 1γ ), so we have

(6.82) Eg

(
∥Ẑ − Z(g)∥2

)
≥ cz · s−

2
3 log(

1

γ
)
2
3Rz(ε;g).

for some constant cz > 0.
Letting cz,s = cz · s−

2
3 and f1 = g gives the statement of the Proposition.

6.6.2. Proof of Proposition 6.6. Take σ = Φ−1(1− 108(s+ 1)2γ/s)ε.
Suppose γ ≤ 0.158655s/108(s+ 1)2. Then we know that σ > 1
Take the construction of hδ in the Proof of Theorem 2.3 withe noise level

being σ. Then we know that

∥hδ − f∥ ≤ σ,

lim
δ→0+

∥M(f)−M(hδ)∥2 ≥
∑s

k=1 ρm(σ; fk)
2

1 + s
≥
(σ
ε

) 4
3

∑s
k=1 ρm(ε; fk)

2

1 + s

≥ Φ−1(1− 2(s+ 1)γ)
4
3

∑s
k=1 ρm(ε;hδ,k)

2

1 + s

≥ Φ−1(1− 2(s+ 1)γ)
4
3

s

9(s+ 1)2
ωm(ε;hδ)

≥ Φ−1(1− 2(s+ 1)γ)
4
3

s

9(s+ 1)2
1

6
Rm(ε;hδ).

(6.83)

Note that σ
ε > 1. Hence, there exists δ0 > 0, such that for δ0 > δ > 0, we

have

(6.84) ∥M(f)−M(hδ)∥2 ≥
s

9(s+ 1)2
ωm(ε; f) ≥ s

54(s+ 1)2
Rm(ε; f).
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Denote event

(6.85) D = {∥M̂ −M(f)∥2 ≥ s

108(s+ 1)2
Rm(ε; f)}.

Then we know that

(6.86) Pf (D) ≤ γ · 108(s+ 1)2

s
.

So

(6.87) Phδ
(D) ≤ 1

2
.

Therefore, we have that

Ehδ

(
∥M̂ −M(hδ)∥2

)
≥ Ehδ

(
(1− 1√

2
)2∥M(f)−M(hδ)∥21{Dc}

)
≥ 3− 2

√
2

4
∥M(f)−M(hδ)∥2.

(6.88)

From Inequality (6.83), we know that there exists 0 < δ1 < δ0, such that for
δ < δ1, we have

(6.89) ∥M(f)−M(hδ)∥2 ≥ Φ−1(1− 2(s+ 1)γ)
4
3

s

55(s+ 1)2
Rm(ε;hδ).

Hence,
(6.90)

Ehδ

(
∥M̂ −M(hδ)∥2

)
≥ 3− 2

√
2

4
Φ−1(1− 2(s+ 1)γ)

4
3

s

55(s+ 1)2
Rm(ε;hδ).

Note that Φ−1(1−2(s+1)γ)
4
3 ∼ log( 1

sγ )
2
3 as γ → 0+ and that log( 1

sγ )
2
3 ≥

(log( 1γ )/ log(s))
2
3 for γ < 1

3s , so we have the statement by taking f1 = hδ.

6.7. Proof of Proposition 3.1. We start with the first item.
Suppose P(Y 1) = P(Y 2) for Y 1, Y 2 ∈ Y. Then for A = [a1, A1] ×

[a2, A2]× · · · × [as, As] ⊂ [0, 1]s, we have∫
A
dY 1 =

∫
A
der(Y 1) +

s∑
i=1

Πj ̸=i(Aj − aj)

∫ Ai

ai

dπππi(Y
1)

=

∫
A
der(Y 2) +

s∑
i=1

Πj ̸=i(Aj − aj)

∫ Ai

ai

dπππi(Y
2)

=

∫
A
dY 2.

(6.91)
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Therefore, using Dynkin’s π − λ theorem, Y 1 = Y 2.
Now we continue with the second item.
Again, from Dynkin’s π − λ theorem, we only need to prove that for any

[a1, A1], [a2, A2], · · · , [as, As] ⊂ [0, 1] and B = [b1, B1]×[b2, B2]×· · ·×[bs, Bs],

the following variables are independent:∫
[a1,A1]

dπππ1(Y ),

∫
[a2,A2]

dπππ2(Y ), · · · ,
∫
[as,As]

dπππs(Y ),

∫
[b1,B1]×[b2,B2]×[bs,Bs]

der(Y ).

Note that πππi(Y )[Ai]−πππi(Y )[ai] =
∫
[a1,A1]

dπππi(Y ), but we use integral form
whenever possible to ease understanding as we have stochastic processes of
different dimensions.

From the definition 3.1 of πππi(Y ) and er(Y ), we know that

(

∫
[a1,A1]

dπππ1(Y ),

∫
[a2,A2]

dπππ2(Y ), · · · ,
∫
[as,As]

dπππs(Y ),

∫
B
der(Y ))

is joint normal random vector. To prove independence we only need to prove
the correlations are zero.

For 1 ≤ i < j ≤ s, we have

COV (

∫
[ai,Ai]

dπππi(Y ),

∫
[aj ,Aj ]

dπππj(Y ))

= E

((∫
ti∈[ai,Ai],t−i∈[0,1]s−1

dW − (Ai − ai)

∫
[0,1]s

dW

)
·(∫

tj∈[aj ,Aj ],t−j∈[0,1]s−1

dW − (Aj − aj)

∫
[0,1]s

dW

))
= 0.

(6.92)

For 1 ≤ i ≤ s, suppose Ai = {t : ti ∈ [ai, Ai], t−i ∈ [0, 1]s−1}, and V (·) de-
notes the volume (length when one dimensional, area when two dimensional,
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etc.), we have

COV (

∫
[ai,Ai]

dπππi(Y ),

∫
B
dY )

= E

((∫
ti∈[ai,Ai],t−i∈[0,1]s−1

dW − (Ai − ai)

∫
[0,1]s

dW

)
·∫

B
dW −

s∑
j=1

Πk ̸=j(Bk − bk)

∫
tj∈[bj ,Bj ],t−j∈[0,1]s−1

dW + sΠs
k=1(Bk − bk)

∫
[0,1]s

dW

)

= V (Ai ∩B)− (Ai − ai)V (B)−
∑
j ̸=i

Πk ̸=j(Bk − bk)(Bj − bj)(Ai − ai)

− V ([ai, Ai] ∩ [bi, Bi])Πj ̸=i(Bj − bj) + s(Ai − ai)Π
s
i=1(Bi − bi) + 0

= 0.

(6.93)

Therefore, we prove the independence.
Now we continue with the sufficiency property. Recalling the Radon-

Nikodym derivative calculated in (6.3), we have that for f ,g ∈ Fs

dPf

dPg
(Y ) = exp

(∫
[0,1]s

f(t)− g(t)

ε2
dY (t)− 1

2

∫
[0,1]s

f(t)2 − g(t)2

ε2
dt

)

= exp

(
1

ε2

s∑
i=1

∫ 1

0
(fi(t)− gi(t))dπππi(Y )− 1

2ε2

∫
[0,1]s

(
f(t)2 − g(t)2

)
dt

)
.

(6.94)

Hence we concludes the proof.

6.8. Proof of Theorem 3.1. Recalling Theorem 2.1 and Theorem 2.2, we
know that it suffices to prove that

(6.95) Ef

(
∥Ẑ − Z(f)∥2

)
≤ C2

s∑
k=1

ρz(ε; f)
2,

for an absolute constant C2 > 0.
Since we have

(6.96) Ef

(
∥Ẑ − Z(f)∥2

)
=

s∑
k=1

Ef

(
|Ẑk − Z(fk)|2

)
,
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we only need to prove that there is an absolute constant C2 > 0 such that
for 1 ≤ k ≤ s,

(6.97) Ef

(
|Ẑk − Z(fk)|2

)
≤ C2ρz(ε; fk)

2.

Now we focus on any given k ∈ {1, . . . , s}.
Note that for each level j ≥ 1, the localization and stopping rule only

based on the following random variables {X̃j,i,k − X̃j,i−1,k : i = 2, . . . , 2j} ∪
{Xj,i,k −Xj,i−1,k : i = 2, . . . , 2j}.

If we construct two stochastic process ṽl and ṽr in the following way

dṽl(t) = fk(t)dt+
√
3εdW l,

dṽr(t) = fk(t)dt+
√
3εdW r,

(6.98)

whereW l andW r are independent Brownian Motion, and also defineOj,i,k, Õj,i,k

in the same way asXj,i,k, X̃j,i,k with vl and vr replaced by ṽl and ṽr, then we
know that the distribution under f of the infinite dimension object Ds(X, k)
that concatenate the following vectors with j = 1, 2, . . . :

(X̃j,2,k − X̃j,1,k, X̃j,3,k − X̃j,2,k, . . . , X̃j,2j ,k − X̃j,2j−1,k,

Xj,2,k −Xj,1,k, Xj,3,k −Xj,2,k, . . . , Xj,2j ,k −Xj,2j−1,k)
(6.99)

is the same with that having Oj,i,k, Õj,i,k in the place of Xj,i,k, X̃j,i,k, which
we call Ds(O, k).

Also note that the localization procedure, stopping procedure and con-
struction of each axis of the estimator goes in parallel with the univariate
estimator by Cai et al. (2023a), and that the distribution of random vari-
ables playing a role in the entire estimation procedure (i.e. Ds(X, k) ) is the
same with that of Ds(O, k).

Hence bounding Ef

(
|Ẑk − Z(fk)|2

)
here is the same with bounding Efk

(
|Z̃ − Z(fk)|2

)
with Z̃ being the estimator of the minimizer of the univariate function in
the setting of univariate case as in Cai et al. (2023a).

Resort to the proof of that of Theorem 3.1 in Cai et al. (2023a) with the
quantities bounding |Z̃−Z(fk)| there being replaced by the square of it, we
have

(6.100) Ef

(
|Ẑk − Z(fk)|2

)
≤ Efk

(
|Z̃ − Z(fk)|2

)
≤ C2ρz(ε; fk)

2,

for an absolute constant C2.
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6.9. Proof of Theorem 3.2. Recalling the lower bound of Lα,z(ε; f) estab-
lished in Theorem 2.4 and Proposition 2.1 in Cai et al. (2023a), it suffices
to prove the following two two propositions.

Proposition 6.7 (Coverage). The confidence hyper cube CIz,α defined
by (3.12) is an 1− α level confidence cube for minimizer.

Proposition 6.8 (Expected Volume). For α ≤ 0.3, and confidence hy-
per cube CIz,α defined by (3.12), we have

(6.101) Ef (V (CIz,α)) ≤ C
s
2
3

s∑
k=1

ρz(zα/sε; fk),

where C3 is an absolute positive constant.

Note that ρz(zα/sε; fk) ≤ (2zα/s)
2
3 ρz(ε; fk), so these two propositions lead

to the theorem.

6.9.1. Proof of Proposition 6.7. By the definition of confidence hyper
cube CIz,α in (3.12), its k-th coordinate CIk only depend Y through πππk(Y ).
So it has mutually independent coordinates. Hence we have
(6.102)
Pf (Z(f) ∈ CIz,α) = Πs

k=1Pf (Z(fk) ∈ CIk) ≥ Πs
k=1 inf

f∈Fs

Pf (Z(fk) ∈ CIk).

So it suffices to prove that inff∈Fs Pf (Z(fk) ∈ CIk) ≥ 1− α
s .

Denote j̀k = min{j : |̂ij,k − i∗j,k| ≥ 7}.Then we have for any f ∈ Fs,

Pf (Z(fk) /∈ CIk) = Pf (j̀k < ĵ(α/s, k)) =

∞∑
j=3

Ef (Ef (1{j < ĵ(α/s, k)}|vl
k)1{j̀k = j})

≤
∞∑
j=3

Ef (α/s1{j̀k = j}) ≤ α/s.

(6.103)

The first inequality is due to the distribution in (3.7) and that for the
X̃j,̂ij,k−6,k−X̃j,̂ij,k−5,k

σj
, as well as the facts that îj,k only depends on vl

k, that

vl
k and vr

k are independent, and that j = j̀k implies Sp(j, k) ≤ 0 or that for
the left side is non-positive.

This concludes the proof.
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6.9.2. Proof of Proposition 6.8. Note that the coordinates of the confi-
dence hyper cube are independent, so we have

(6.104) Ef (V (CIz,α)) = Πs
k=1Ef (∥CIk∥) ,

it suffice to prove that there exists an absolute constant C3 > 0 such that
for any k ∈ {1, 2, . . . , s}, the following holds

(6.105) Ef

(
∥CIk∥2

)
≤ C3ρz(zα/sε; fk)

2.

Now we recollect and introduce some notation that indicate the levels at
which the localization procedure picks a interval far away from the right
one.

j̃k = min{j : |̂ij,k − i∗j,k| ≥ 2},
j́k = min{j : |̂ij,k − i∗j,k| ≥ 5},
j̀k = min{j : |̂ij,k − i∗j,k| ≥ 7}.

(6.106)

It’s clear that for any j ≥ j̃k we have

(6.107) |̂ij,k − i∗j,k| ≥ 2.

We also introduce a quantity as follow.

(6.108) j∗k = min{j : mj ≤
ρz(ε; fk)

4
}.

We have

Ef (∥CIk∥2)

≤ 169

∞∑
j=3

Ef (2
−2j

1{ĵ(α/s, k) = j})

≤ 169

∞∑
j=3

Ef (2
−2j

1{ĵ(α/s, k) = j, j́k ≤ j}) + 169

∞∑
j=3

Ef (2
−2j

1{ĵ(α/s, k) = j, j́k > j})

≤ 169
∞∑
j=3

Ef (2
−2j́k1{ĵ(α/s, k) = j, j́k ≤ j}) + 169

∞∑
j=3

Ef (2
−2j

1{ĵ(α/s, k) = j, j́k > j})

≤ 169Ef (2
−2j́k) + 169

∞∑
j=3

Ef (2
−2j

1{ĵ(α/s, k) = j, j́k > j}).

(6.109)

We will bound the two terms separately, now we start with the first term.
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Note that we have j̀k ≥ j́k ≥ j̃k and that j̃k = j implies one of the
following happens:

{Xj,i∗j,k+1,k ≥ Xj,i∗j,k+2,k}, {Xj,i∗j,k+1,k ≥ Xj,i∗j,k+3,k}, {Xj,i∗j,k+1,k ≥ Xj,i∗j,k+4,k},

{Xj,i∗j,k−1,k ≥ Xj,i∗j,k−2,k}, {Xj,i∗j,k−1,k ≥ Xj,i∗j,k−3,k}, {Xj,i∗j,k−1,k ≥ Xj,i∗j,k−4,k}.

(6.110)

Also we have for j ≥ j∗k + 3, mj > ρz(ε; fk).
So we have

Ef (2
−2j́k)

≤ Ef (2
−2j̃k) ≤ 2−2j∗k+6 +

j∗k−4∑
j=3

2−2jEf (1{j̃k = j})

≤ 4ρz(ε; fk)
2 +

j∗k−4∑
j=3

2−2j × 2×

(
Φ(−ρm(ε; fk)

ρz(ε; fk)

(2j
∗
k−3−jρz(ε; fk))

3
2

√
3ε

)+

Φ(−2
ρm(ε; fk)

ρz(ε; fk)

(2j
∗
k−3−jρz(ε; fk))

3
2

√
3ε

) + Φ(−3
ρm(ε; fk)

ρz(ε; fk)

(2j
∗
k−3−jρz(ε; fk))

3
2

√
3ε

)

)

≤ 4ρz(ε; fk)
2 +

j∗k−4∑
j=3

2−2j × 2×

(
Φ(−2

3(j∗k−3−j)

2
1√
2

1√
3
)+

Φ(−2× 2
3(j∗k−3−j)

2
1√
2

1√
3
) + Φ(−3× 2

3(j∗k−3−j)

2
1√
2

1√
3
)

)

≤ 4ρz(ε; fk)
2 + 32ρz(ε; fk)

2(
Φ(− 2√

3
)

1− 8
√
2 exp (−7

2 · 4
3)

+
Φ(− 4√

3
)

1− 8
√
2 exp (−7

2 · 16
3 )

+
Φ(−2

√
3)

1− 8
√
2 exp (−7

2 · 12)
)

≤ 4ρz(ε; fk)
2 + 4.5ρz(ε; fk)

2 = 8.5ρz(ε; fk)
2.

(6.111)

Now we turn to the second term in Inequality (6.109). We first define
three quantities.

Let the average of fk over [tj,i−1, tj,i] to be

f̄j,i,k = 2j
∫ 2−j×i

2−j×(i−1)
fk(t)dt.
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For i > 2j or i ≤ 0, define f̄j,i,k = +∞. And suppose ∞ − a = ∞ for
a ∈ [−∞,∞], and min{∞, a} = a for a ∈ [−∞,∞].

Let the minimum of the difference of the two neighboring intervals be

(6.112) Ξj,k = min{f̄j,i∗j,k+2,k − f̄j,i∗j,k+1,k, f̄j,i∗j,k−2,k − f̄j,i∗j,k−1,k}.

Let j(ζ, k) be the level j such that the signal part in Tj,k is relatively
small, specifically defined as follow.

(6.113) j(ζ, k) = min{j : Ξj,k · 2−
j
2

1√
6ε

≤ zζ + 1}.

Note that j(ζ, k) is a determined quantity depending only on ζ and fk.
Recall that ĵ(α/s, k) is the stopping level, which is a random variable.

Also note that for j ≤ j(α/s, k)− 1 we have

(6.114) Ξj,k · 2−
j
2

1√
6ε

≥ 2
3(j(α/s,k)−1−j)

2 (zα/s + 1)

With these quantities, we have

∞∑
j=3

2−2jEf (1{ĵ(α/s, k) = j, j́k > j})

≤ 2−2j(α/s,k)+1 +

j(α/s,k)−1∑
j=3

2−2jΦ(−(zα/s + 1)× 2
3
2
(j−j(α/s,k)+1) + zα/s)

≤ 2−2j(α/s,k)+1 + 2−2j(α/s,k)+2Φ(−1)
1

1− Φ(−2
√
2)/Φ(−1)

< 3 · 2−2j(α/s,k).

(6.115)

Now we introduce a lemma.

Lemma 6.1. For j(ζ, k) defined in (6.113), with ζ ≤ 0.3 we have

(6.116) (
6
√
2(zζ + 1)

zζ
)
2
3 ρz(zζε; fk) ≥ 2−j(ζ,k).

Proof. Without loss of generality, we assume

f̄j,ij(ζ,k),k+2,k − f̄j,ij(ζ,k),k+1,k = Ξj(ζ,k).

Let µk = min{fk(max{tj(ζ,k),i∗
j(ζ,k),k

−2, 0}), fk(tj(ζ,k),i∗
j(ζ,k),k

+1)}. Let the

glo ∈ F be defined as glo(t) = max{fk(t), µk}.
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For simplicity of notation, let j0 = j(ζ, k), i∗ = i∗j(ζ,k),k.
Therefore,

∥glo − fk∥2 ≤ (µk −M(fk))
2 · 3 · 2−j0

≤ (fk(tj0,i∗+1)− fk(tj0,i∗) + fk(tj0,i∗)−M(fk))
2 · 3 · 2−j0

≤ (f̄j,i∗+2 − f̄j,i∗+1)
2 · 3 · 2−j0

≤ ((zζ + 1) · 2
j0
2

√
6ε)2 · 3 · 2−j0

= 6(zζ + 1)2 × 3ε2.

(6.117)

Therefore,

(6.118) 2−j0 ≤ ρz(3
√
2(zζ + 1)ε; fk) ≤ (

6
√
2(zζ + 1)

zζ
)
2
3 ρz(zζε; fk).

The last inequality is due to Proposition 2.1 in Cai et al. (2023a) and that
zζ ≥ z0.3 = 0.524

Lemma 6.1 combined with Inequality (6.115), and note that α/s ≤ 0.3
we have

(6.119)

∞∑
j=3

2−2jEf (1{ĵ(α/s, k) = j, j́k > j}) < 136ρz(zα/sε; fk)
2.

Also note that for α ≤ 0.3, we have ρz(ε; fk) < 2.6ρz(zα/sε; fk).
Therefore both terms in Inequality 6.109 are bounded by multiple times

ρz(zα/sε; fk)
2. We conclude the proof.

6.10. Proof of Theorem 3.3. Recalling Theorem 2.1 and Theorem 2.2, it
suffice to prove

(6.120) E
(
(M̂ −M(f))2

)
≤ Cm

(
s∑

k=1

ρm(ε; fk)

)2

,

for an absolute positive constant Cm.
We proceed to prove this.
Recall that ζ = Φ(−2).
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Note that Y (1, 1, · · · , 1)−Y (0, 0, · · · , 0), 2ĵ(ζ,k)X̄ĵ(ζ,k),iF,k,k
for k = 1, 2, · · · , s

are independent. Therefore,

E
(
(M̂ −M(f))2

)
≤(√

E(Y (1, 1, · · · , 1)− Y (0, 0, · · · , 0)− f0)2 +

s∑
k=1

√
E
(
2ĵ(ζ,k)X̄ĵ(ζ,k),iF,k,k

−M(fk)
)2)2

.

(6.121)

Recollect the notation

(6.122) f̄j,i,k = 2j
∫ 2−j ·i

2−j(i−1)
fk(t)dt.

Recall that the location procedure, the stopping rule and the definition of
iF,k parallel those of univariate case introduced in Cai et al. (2023a), so we

have that f̄ĵ(ζ,k),iF,k,k
has the same distribution with that of f̂ in the proof

of Theorem 3.3 with fk being the true function.
Hence we have that

(6.123) E
(
f̄ĵ(ζ,k),iF,k,k

−M(fk)
)2

≤ C̃mρm(ε; fk)
2

for all k ∈ {1, 2, · · · , s}, where C̃m is a positive absolute constant.
Also note that

X̄ĵ(ζ,k),iF,k,k
|(ĵ(ζ, k), iF,k) ∼ N(f̄ĵ(ζ,k),iF,k,k

, (1− 2−ĵ(ζ,k))2−ĵ(ζ,k) × 3ε2).

So we have that

E
(
2ĵ(ζ,k)X̄ĵ(ζ,k),iF,k,k

−M(fk)
)2

= E
(
2ĵ(ζ,k)X̄ĵ(ζ,k),iF,k,k

− f̄ĵ(ζ,k),iF,k,k

)2
+ E

(
f̄ĵ(ζ,k),iF,k,k

−M(fk)
)2

≤ E((1− 2−ĵ(ζ,k))2ĵ(ζ,k) × 3ε2) + C̃mρm(ε; fk)
2.

(6.124)

Now we will bound E(2ĵ(ζ,k) × 3ε2). Note that ζ = Φ(−2) < 0.3, so we
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have that

Ef (2
ĵ(ζ,k)) ≤

j(ζ,k)+3∑
j=1

Ef (ĵ(ζ, k) = j)× 2j +
∞∑

j=j(ζ,k)+4

Ef (ĵ(ζ, k) = j)× 2j

≤ 2j(ζ,k)+4 +
∞∑

j=j(ζ,k)+4

2jΦ(−zζ +
zζ + 1

64
)j−j(ζ,k)−4

≤ 2j(ζ,k)+4 + 2j(ζ,k)+4 · 1

1− 0.03
≤ 4

ρz(zζε; fk)
× 33.

(6.125)

The last inequality is due to Lemma 6.3.
Going back to Inequality (6.121) we have that

E
(
(M̂ −M(f))2

)
≤

(
ε+

s∑
k=1

√
132

3ε2

ρz(zζε; fk)
+ C̃mρm(ε; fk)2

)2

≤

(
ε+

s∑
k=1

√
800 + C̃m × ρm(zζε; fk)

)2

≤ Cm

(
s∑

k=1

ρm(ε; fk)

)2

.

(6.126)

6.11. Proof of Theorem 3.4. Recalling the lower bound for Lα,m(ε; f)
established in Theorem 2.1 and Theorem 2.2, it suffices to prove the following
propositions.

Proposition 6.9 (Coverage). The confidence interval CIm,α defined by
(3.18) is an 1− α level confidence cube for minimum.

Proposition 6.10 (Expected Length). For α ≤ 0.3, and confidence
interval CIm,α defined by (3.18), we have

(6.127) Ef (|CIm,α|) ≤ C̃m,s,α

s∑
k=1

ρm(ε; fk),

where C̃m,s,α is an absolute positive constant depending on s and α.



MINIMIZER AND MINIMUM VALUE OF CONVEX FUNCTIONS 53

6.11.1. Proof of Proposition 6.9. Recall that ζ = α/4s. Let the event A1

be

A1 =
{
Z(fk) ∈[2−ĵ(ζ,k)+1 × ·(̂iĵ(ζ,k)−1,k − 7), 2−ĵ(ζ,k)+1 × ·(̂iĵ(ζ,k)−1,k + 6)]

for all k ∈ {1, 2, · · · , s}
}
.

(6.128)

Then from Theorem 3.2 we know that P (A1) ≥ 1 − α/4. Easy calculation
shows that A1 can also be written as
(6.129)

A1 = {Z(fk) ∈ [2−ĵ(ζ,k)−3 · 16(̂iĵ(ζ,k)−1,k − 7), 2−ĵ(ζ,k)−3 · 16(̂iĵ(ζ,k)−1,k + 6)]}

Let the event D2,k be

D2,k = {ĵ(α/4s, k) ≤ j(α/4s, k)− 2},

where j(ζ, k) is defined in (6.113). By definition of j(ζ, k) we know that for
j ≤ j(ζ, k)− 1

(6.130) Ξj,k · 2−
j
2

1√
6ε

> 2
3
2
(j(ζ,k)−1−j)(zα/4s + 1).

Therefore, we have

P (D2,k ∩ {|̂iĵ(ζ,k),k − i∗j(ζ,k),k| ≤ 4})

≤
j(α/4s,k)−1∑

j=1

P
(
ĵ(ζ, k) = j, |̂ij,k − i∗j,k| ≤ 4

)

≤ Φ(−zα/4s − 1)

j(α/4s,k)−1∑
j=1

P (|̂ij,k − i∗j,k| ≤ 4).

(6.131)

Additionally, recall j̃k defined in (6.106), we have

P
(
{|̂iĵ(ζ,k),k − i∗j,k| ≥ 5, ĵ(ζ, k) ≤ j(α/4s, k)− 1}

)
≤ P

(
j̃k ≤ j(α/4s, k)− 2

)
≤ 6

j(α/4s,k)−2∑
j=1

Φ(−23·(j(α/4s,k)−1−j)/2(zα/4s + 1) + zα/4s)

≤ 6× Φ(−zα/4s − 2
√
2)× 1.000001.

(6.132)
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Therefore, for α ≤ 0.3,

P (D2,k) ≤ Φ(−zα/4s − 1) + 6.000006× Φ(−zα/4s − 2
√
2)

≤ (α/4s)×
(
4

3
· exp(−1.5) + 6.000006× 4

3
exp (−4)

)
≤ α/8s.

(6.133)

Note that for each k

2ĵ(ζ,k)+3 × X̄ĵ(ζ,k)+3,i,k −
∫ tĵ(ζ,k)+3,i,k

tĵ(ζ,k)+3,i−1,k

fk(t) · 2ĵ(ζ,k)+3dt

+ Y (1, 1, · · · , 1)− Y (0, 0 · · · , 0)− f0 −
√
2ε

∫ 1

0
B1

k(x)dx

∣∣∣∣∣ĵ(ζ, k)
(6.134)

for i = 1, 2, · · · , s are i.i.d N(0, 2ĵ(ζ,k)+3 × 3ε2). And

Y (1, 1, · · · , 1)− Y (0, 0 · · · , 0)− f0−
s∑

k=1

(
Y (1, 1, · · · , 1)− Y (0, 0 · · · , 0)− f0 −

√
2ε

∫ 1

0
B1

k(x)dx

)
∼ N(0, ε2((s− 1)2 + 2s)).

(6.135)

Hence we have that

(6.136) P
(
fhi ≤ M(f)

∣∣∣A1

)
≤ α

4
.

Also note that on the event A1 ∩Dc
2,k, there is a random variable such that

vk|ĵ(ζ, k) ∼ N(0, 3(1− 2−ĵ(ζ,k)−3)2ĵ(ζ,k)+3ε2),

2ĵ(ζ,k)+3 min
16·(̂iĵ(ζ,k)−1,k−7)<i≤16·(̂iĵ(ζ,k)−1,k+6)

X̄ĵ(ζ,k)+3,i,k

≤ M(fk) + ρm(zζε; fk) + vk

≤ M(fk) +
√
3εzζ

1√
ρz(zζε; fk)

+ vk,

(6.137)

and v1, v2, · · · , vk are independent.
Recall Lemma 6.1 and the definition of Dc

2,k, we have on the event A1 ∩
Dc

2,k

(6.138)

2ĵ(ζ,k)+3 min
16·(̂iĵ(ζ,k)−1,k−7)<i≤16·(̂iĵ(ζ,k)−1,k+6)

X̄ĵ(ζ,k)+3,i,k ≤ M(fk)+
√
3εzζ

1√
ρz(zζε; fk)

+vk.
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So we have that

(6.139) P
(
flo ≥ M(f)

∣∣∣A1 ∩
(
∩s
k=1D

c
2,k

))
≤ α

4
.

Adding the components, we have

P (M(f) /∈ [flo, fhi]) ≤

P (Ac
1) +

s∑
k=1

P (D2,k) + P (flo ≥ M(f)
∣∣∣A1 ∩

(
∩s
k=1D

c
2,k

)
) + P (fhi ≤ M(f)

∣∣∣A1) ≤ α.

(6.140)

6.11.2. Proof of Proposition 6.10. As ĵ(ζ, 1), ĵ(ζ, 2), · · · , ĵ(ζ, s) based on
independent random variables, they are independent. Hence we have
(6.141)

E(|fhi−flo|2) ≤

(
2
√
6ε
(
S208,α/8s + zα/4 + 2zα/4s + 2zα/8

) s∑
k=1

E(2
ĵ(zα/4s,k)

2 )

)2

.

Now we will prove the following lemma.

Lemma 6.2. For k = 1, 2, · · · , s, for ζ ≤ 0.3,

(6.142) E(2
ĵ(ζ,k)

2 ) ≤ 12.7× 2
j(ζ,k)

2 ,

where j(ζ, k) is defined in (6.113).

Proof.

Ef (2
ĵ(ζ,k)

2 ) ≤
j(ζ,k)+3∑

j=1

Ef (ĵ(ζ, k) = j)× 2
j
2 +

∞∑
j=j(ζ,k)+4

Ef (ĵ(ζ, k) = j)× 2
j
2

≤ 2
j(ζ,k)+5

2 +
∞∑

j=j(ζ,k)+4

2
j
2Φ(−zζ +

zζ + 1

64
)j−j(ζ,k)−4

≤ 2
j(ζ,k)+5

2 + 2
j(ζ,k)+4

2 × 1.74803 ≤ 12.7× 2
j(ζ,k)

2

(6.143)

To bound 2
j(ζ,k)

2 , we continue with another lemma

Lemma 6.3. For ζ ≤ 0.3, and k = 1, 2, · · · , s we have

(6.144) 2−j(ζ,k) ≥ 1

4
ρz(zζε; fk).
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Proof. Without loss of generality, assume fk(Z(fk) + ρz(zζε; fk)) ≤
ρm(zζε; fk). Suppose 2−j ≤ 1

4ρz(zζε; fk), then we have that

(f̄j,i∗j,k+2,k − f̄j,i∗j,k+1,k) · 2−
j
2

1√
6ε

≤ ρm(zζε; fk) ·
1

2

√
ρz(zζε; fk)

1√
6ε

≤ 1

2
√
2
zζ ≤ zζ + 1.

(6.145)

Therefore, j ≥ j(ζ, k), thus 2−j(ζ,k) ≥ 1
4ρz(zζε; fk).

Combing Lemma 6.2 with Lemma 6.3 and getting back to Inequality
(6.141), we have

E(|fhi − flo|2)

≤

2
√
6ε
(
S208,α/8s + zα/4 + 2zα/4s + 2zα/8

) s∑
k=1

12.7× 2
1√

ρz(zα/4sε; fk)

2

≤

(
8
√
3× 12.7×

(
S208,α/8s + zα/4 + 2zα/4s + 2zα/8

) 1

zα/4s

s∑
k=1

ρm(zα/4sε; fk)

)2

.

(6.146)

Note that

(6.147) ρm(zα/4sε; fk) ≤ zα/4sρm(ε; fk),

and

(6.148) E(|fhi − flo|) ≤
√
E(|fhi − flo|2).

Therefore, we have the statement.

6.12. Analysis of Local Minimax Rates for Nonparametric Regression. In
this section, we give lower bounds for the benchmarks defined in (4.2) and
(4.3).

An additional complexity for the nonparametric regression is that two
functions f and g can have same values on all grid points i

n while have
different minimizers or minimums. We call this error caused by discretization
discretization error :

Dz(f ;n) = supg∈Fs
{∥Z(f)− Z(g)∥2 : f( i

n) = g( i
n) for all i ∈ {0, 1, . . . , n}s},(6.149)

Dm(f ;n) = supg∈Fs
{|M(f)−M(g)| : f( i

n) = g( i
n) for all i ∈ {0, 1, . . . , n}s}.(6.150)

(6.151)
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Note that while the discretization errors are defined for f ∈ Fs, they are
also well defined for univariate convex functions by setting s = 1. With
a bit abuse of notation, we use them directly for univariate convex func-
tions as well by plugging in univariate convex function f in the place of the
multivariate convex function f .

It’s apparent that
(6.152)

R̃z,n(σ; f) ≥
1

4
Dz(f ;n), R̃m,n(σ; f) ≥

1

4
Dm(f ;n)2, L̃m,α,n(σ; f) ≥ (1−2α))Dm(f ;n).

For simplicity of notation, for ε > 0, we define

φz(ε; f) = ρz(ε; f)
(
1 ∧

√
nρz(ε; f)

)
, for f ∈ F ,(6.153)

φm(ε; f) = ρm(ε; f)
(
1 ∧

√
nρz(ε; f)

)
, for f ∈ F .(6.154)

Now we state the lower bounds for the benchmarks, whose proof will be
given later.

R̃z,n(σ; f) ≥
(
0.1× 1

12s

∑s
k=1 φz(

σ

(n+1)
s
2
; fk)

2

)
∨ Dz(f ;n)

4 ,(6.155)

L̃z,α,n(σ; f) ≥ 1−α−Φ(−zα+1)

(12s)s/2
Πs

k=1

(√
Dz(fk;n) ∨ φz(

σ

(n+1)
s
2
; fk)

)
,(6.156)

(6.157)

R̃m,n(σ; f) ≥

 1

180

s∑
k=1

φm(
σ

(n+ 1)
s
2

; fk)
2 1

1 + s
n +

∑s
k=1 2ρz(

σ

(n+1)
s
2
; fk)

∨1

2
Dm(f ;n)2,

L̃m,α,n(σ; f) ≥ (1− α− Φ(−zα + 1))· 1

3
√
2

√√√√ s∑
k=1

φm(
σ

(n+ 1)
s
2

; fk)2
√

1

1 + s
n +

∑s
k=1 2ρz(

σ

(n+1)
s
2
; fk)

∨Dm(f ;n)

 .

(6.158)

Before continue with the proofs of the lower bounds (6.155), (6.156),
(6.157), and (6.158) separately, we introduce some quantities and lemmas
that will be frequently used.

We introduce a function ln(·, ·). For f, g ∈ F

(6.159) ln(f, g) =

√∑n
j=1(f(

i
n)− g( i

n))
2

n+ 1
.
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ln can be considered as a discrete L2 norm of the difference of function f
and g.

We also have the following lemma.

Lemma 6.4. For f ∈ F , ε > 0, and δ > 0, there exist g ∈ F such that

(6.160) ln(f, g) ≤
√
6ε,

and that

|Z(f)− Z(g)| ≥ ρz(ε; f)(1 ∧
√

2nρz(ε; f))− δ,

M(g)−M(f) ≥ ρm(ε; f)(1 ∧
√
2nρz(ε; f))− δ,

g(t) ≥ f(t) for 0 ≤ t ≤ 1,

1

n+ 1

n∑
i=0

(g(
i

n
)− f(

i

n
)) ≤ ln(f, g)

√
1

n
+ 2ρz(ε; f).

(6.161)

Proof. Suppose η > 0 is a small number. For µ > 0, we next define
convex function gη,µ. Suppose tl,µ, tr,µ are left and right end points of {t :
f(t) ≤ µ+M(f)}. When tl,µ + tr,µ ≥ 2Z(f).

(6.162) gη,µ(t) = max{f(t), µ+M(f) +
−η

tr,µ − tl,µ
(t− tl,µ)}.

When tl,µ + tr,µ ≤ 2Z(f).

(6.163) gη,µ(t) = max{f(t), µ+M(f) +
η

tr,µ − tl,µ
(t− tr,µ)}.

For ρz(ε; f) ≥ 1
2n , we have

(6.164) ln(f, gη,ρm(ε;f)) ≤
√
6∥f − g∥ ≤

√
6ε,

for any η > 0. And we also have that

(6.165) lim
η→0+

|Z(gη,ε)− Z(f)| ≥ ρz(ε; f).

For ρz(ε; f) ≤ 1
2n , we have that

(6.166) ln(f, gη,ρm(ε;f)
√

2nρz(ε;f)
) ≤

√
6∥f − g∥ ≤

√
6ε,

for any η > 0.

(6.167) lim
η→0+

|Z(g
η,ε
√

2nρz(ε;f)
)− Z(f)| ≥ ρz(ε; f)

√
2nρz(ε; f)).
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Let µ = ρm(ε; f)(1 ∧
√
2nρz(ε; f)).

Then we have that

ln(f, gη,µ) ≤ 6ε2,

lim
η→0+

M(gη,µ)−M(f) ≥ ρm(ε; f)(1 ∧
√

2nρz(ε; f)),

lim
η→0+

|Z(gη,µ)− Z(f)| ≥ ρz(ε; f)(1 ∧
√
2nρz(ε; f)),

gη,µ(t) ≥ f(t) for all 0 ≤ t ≤ 1,(
1

n+ 1

n∑
i=1

(gη,µ(
i

n
)− f(

i

n
))

)

≤ ln(f, gη,µ)
2 |{i : gη,µ(

i
n) > f( i

n)}|
n+ 1

≤ ln(f, gη,µ)
2 2nρz(ε; f) + 1

n+ 1
.

(6.168)

Take η small enough gives the statement.

Now we continue with analyzing the probability structure of the nonpara-
metric regression setting.

For f ,g ∈ Fs, denote the probability distribution under f as Pf and that
under g as Pg. Then for observation {yi}, we have

(6.169) log

(
Pf

Pg
({yi})

)
=

∑
i∈{0,1,··· ,n}s

(
yi(f(i)− g(i))

σ2
+

−f(i)2 + g(i)2

2σ2

)
.

If we set fθ = f1{θ = 1}+ g1{θ = −1}, then we know that
(6.170)

W =
∑

i∈{0,1,··· ,n}s

yi(f(i))− g(i))

σ
√∑

i∈{0,1,··· ,n}s(f(i))− g(i))2
+

−f(i)2 + g(i)2

2σ
√∑

i∈{0,1,··· ,n}s(f(i))− g(i))2

is a sufficient statistic for θ, and

(6.171) W ∼ N(θ
1

2

√∑
i∈{0,1,··· ,n}s(f(i))− g(i))2/(n+ 1)s

σ/(n+ 1)
s
2

, 1).

6.12.1. Proof of Inequality (6.155). Recall Lemma 6.4, take ε2 = σ2

6(n+1)s
1
s .

Take
δ < 0.001 min

1≤k≤s
ρz(ε; fk)

(
1 ∧

√
nρz(ε; fk)

)
.
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Take gk,δ to be the function satisfying (6.161) in Lemma 6.4 for f = fk. Let

(6.172) hk,δ(t) = gk,δ(t)−
1

n+ 1

n∑
i=0

(gk,δ(
i

n
)− fk(

i

n
)).

Let

(6.173) hδ(t) = f0 +

s∑
k=1

hk,δ(tk).

It’s easy to check hδ ∈ Fs.
Then Lemma 6.4 together with elementary calculation show that

(6.174)

√∑
i∈{0,1,··· ,n}s(f(i))− g(i))2/(n+ 1)s

σ/(n+ 1)
s
2

≤ 1,

and that

(6.175) ∥Z(hδ)− Z(f)∥2 ≥
s∑

k=1

(
ρz(ε; fk)

(
1 ∧

√
2nρz(ε; fk)

)
− δ
)2

.

Recall that W defined in (6.171) is sufficient statistic for θ, we have

R̃z,n(σ; f) ≥ inf
Ẑ

max{Ef

(
∥Ẑ − Z(f)∥2

)
,Ehδ

(
∥Ẑ − Z(hδ)∥2

)
} ≥ r2∥Z(f)− Z(hδ)∥2,

≥ r2

s∑
k=1

(
ρz(ε; fk)

(
1 ∧

√
2nρz(ε; fk)

)
− δ
)2

,

(6.176)

where

r2 = inf
θ̂

max
θ=±1

Eθ
|θ̂ − θ|2

4
,

for W ∼ N( θ2 , 1). Elementary calculation shows that r2 > 0.1.
Now we take δ → 0+, we have that

R̃z,n(σ; f) ≥ 0.1
s∑

k=1

ρz(ε; fk)
2 (1 ∧ 2nρz(ε; fk))

≥ 0.1× 1

12s

s∑
k=1

φz(
σ

(n+ 1)
s
2

; fk)
2,

(6.177)

where the last inequality comes from Proposition 2.1.
Note that R̃z,n(σ; f) ≥ Dz(f ;n)

4 apparently. We concludes the proof.
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6.12.2. Proof of Inequality (6.156) . Take hk,δ constructed in (6.172).
Let δ̃ < 0.01 be a small positive number.
Take fk,alt,δ̃ ∈ F satisfying

fk,alt,δ̃(
i

n
) = fk(

i

n
) for 0 ≤ i ≤ n,

|Z(fk,alt,δ̃)− Z(fk)| ≥
1

2

√
(1− δ̃)Dz(fk;n).

(6.178)

Take

hδ,δ̃(t) = f0 +
s∑
k

(
hk,δ(tk)1{|Z(hk,δ)− Z(fk)| ≥ |Z(fk,alt,δ̃)− Z(fk)|}

+ fk,alt,δ̃(tk)1{|Z(hk,δ)− Z(fk)| < |Z(fk,alt,δ̃)− Z(fk)|}

)
.

(6.179)

It’s easy to check that hδ,δ̃Fs.
Then we have that

(6.180)

√∑
i∈{0,1,··· ,n}s(f(i))− g(i))2/(n+ 1)s

σ/(n+ 1)
s
2

≤ 1,

and that
(6.181)

∥Z(hδ,δ̃)k−Z(f)k∥ ≥

(
1

2

√
(1− δ̃)Dz(fk;n) ∨

s∑
k=1

(
ρz(ε; fk)

(
1 ∧

√
2nρz(ε; fk)

)
− δ
))

,

for k ∈ {1, 2, · · · , s}.
Therefore, we have for CIm,α ∈ Im,α,n(Fs),

Ef (V (CIm,α)) ≥(1− α− Φ(−zα + 1))×

Πs
k=1

(
1

2

√
(1− δ̃)Dz(fk;n) ∨

s∑
k=1

(
ρz(ε; fk)

(
1 ∧

√
2nρz(ε; fk)

)
− δ
))

.

(6.182)

Note that α ≤ 0.3 gives 1− α− Φ(−zα + 1) > 0.
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Take δ, δ̃ → 0+, we have

Ef (V (CIm,α))

≥ (1− α− Φ(−zα + 1))Πs
k=1

(
1

2

√
Dz(fk;n) ∨

(
ρz(ε; fk)

(
1 ∧

√
2nρz(ε; fk)

)))
≥ (1− α− Φ(−zα + 1))Πs

k=1

(
1

2

√
Dz(fk;n) ∨

1√
12s

φz(
σ

(n+ 1)
s
2

; fk)

)
≤ (1− α− Φ(−zα + 1))(12s)−

s
2Πs

k=1

(√
Dz(fk;n) ∨ φz(

σ

(n+ 1)
s
2

; fk)

)
.

(6.183)

6.12.3. Proof of Inequality (6.157) and Inequality (6.158) . Let
(6.184)

εk =
φm( σ

(n+1)
s
2
; fk)√∑s

i=1 φm( σ

(n+1)
s
2
; fi)2

1√
6

σ

(n+ 1)
s
2

1

1 + s
n +

∑s
i=1 2ρz(

σ

(n+1)
s
2
; fi)

.

Recall Lemma 6.4. Let δ = 0.1
s ·min1≤k≤s φm(εk; fk). For each k ∈ {1, 2, · · · , s},

take ε = εk, and take let gk,δ be the function g in Lemma 6.4.
Let δ̃ < 0.01 be a small positive number.
Take fk,alt,δ̃ ∈ F satisfying

fk,alt,δ̃(
i

n
) = fk(

i

n
) for 0 ≤ i ≤ n,

|M(fk,alt,δ̃)−M(fk)| ≥
1

2
(1− δ̃)Dm(fk;n).

(6.185)

Let

(6.186) gδ(t) = f0 +
s∑

k=1

gk,δ(tk).

Clearly gδ ∈ Fs.
With a bit abuse of notation, in this proof let

(6.187) ∆k =
1

n+ 1

n∑
i=0

gk,δ(
i

n
)− fk(

i

n
)
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Then we have that√∑
i∈{0,1,··· ,n}s(f(i))− gδ(i))2/(n+ 1)s

σ/(n+ 1)
s
2

=

√
(
∑s

k=1∆k)2 +
∑s

k=1 ln(fk, gk,δ)−∆k)2

σ/(n+ 1)
s
2

≤

√∑s
k=1 ln(fk, gk,δ)−∆k)2

√
1 + s

n +
∑s

k=1 2ρz(εi; fk)

σ/(n+ 1)
s
2

≤

√∑s
k=1 6ε

2
k

√
1 + s

n +
∑s

k=1 2ρz(ε; fk)

σ/(n+ 1)
s
2

.

≤ 1

(6.188)

Also, by Lemma 6.4, we have that

M(gδ)−M(f) =
s∑

k=1

M(gk,δ)−M(fk) ≥
s∑

k=1

ρm(εk; f)(1 ∧
√
2nρz(εk; f))− δ

≥
s∑

k=1

√
1

3

εk

σ/(n+ 1)
s
2

φm(
σ

(n+ 1)
s
2

; fk)− δ

≥ 1

3
√
2

√√√√ s∑
k=1

φm(
σ

(n+ 1)
s
2

; fk)2
√

1

1 + s
n +

∑s
k=1 2ρz(

σ

(n+1)
s
2
; fk)

− sδ.

(6.189)

Recall the sufficient statistic W given in (6.171).
So we have

R̃m,n(σ; f) ≥ inf
M̂

max{Ef (|M̂ −M(f)|2),Egδ
(|M̂ −M(gδ)|2)}

≥ r2|M(f)−M(gδ)|2,
(6.190)

where

r2 = inf
θ̂

max
θ=±1

Eθ
|θ̂ − θ|2

4
,

for W ∼ N( θ2 , 1). Elementary calculation shows that r2 > 0.1.
Let δ → 0+, so we have

(6.191)

R̃m,n(σ; f) ≥
1

180

s∑
k=1

φm(
σ

(n+ 1)
s
2

; fk)
2 1

1 + s
n +

∑s
k=1 2ρz(

σ

(n+1)
s
2
; fk)

.
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It’s apparent that R̃m,n(σ; f) ≥ 1
4Dm(f ;n)2. This concludes the proof of

Inequality (6.157). We now turn to the proof of Inequality (6.158) .
Let δ̃ < 0.01 be a small positive number. Then there exist f̃1, f̃2 ∈ Fs such

that
(6.192)

f̃1(
i

n
) = f(

i

n
) = f̃2(

i

n
) for i ∈ {0, 1, · · · , n}s, |M(f̃1)−M(f̃2)| ≥ (1−δ̃)Dm(f ;n),

Suppose CIm,α ∈ Im,α,n(Fs).
It’s clear that CIm,α ∈ Im,α,n({f ,gδ}), CIm,α ∈ Im,α,n({f̃2, f̃1}). There-

fore, we have that

(6.193) L̃m,α,n(σ; f) ≥ (1− 2α) · (1− δ̃)Dm(f ;n),

and that

L̃m,α,n(σ; f)

≥ (1− α− Φ(−zα + 1)) · |M(f)−M(gδ)|

≥ (1− α− Φ(−zα + 1)) · 1

3
√
2

√√√√ s∑
k=1

φm(
σ

(n+ 1)
s
2

; fk)2
√

1

1 + s
n +

∑s
k=1 2ρz(

σ

(n+1)
s
2
; fk)

− sδ.

(6.194)

Letting δ, δ̃ → 0+ gives Inequality (6.158).

6.13. Proof of Proposition 4.1. The idea of the proof is very similar to
that for white noise model.

Invertibility follows from definition. Independence follows from the obser-
vation that the concatenation of the elements is this s + 1 tuple P({yi})
follows a joint normal distribution and that covariance of of elements from
different places of the tuple is 0. The sufficiency rises from factorization of
the probability.

6.14. Proof of Theorem 4.1. We have

(6.195) Ef

(
∥Ẑ − Z(f)∥2

)
≤

s∑
k=1

Ef

(
∥Ẑk − Z(fk)∥2

)
.

Note that Proposition 2.1 gives

(6.196) ρz((zζ + 1)

√
6σ

√
n(n+ 1)

s−1
2

; fk) ≤
(
3× 4

√
3
) 2

3
ρz(

σ

(n+ 1)
s
2

; fk)
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for ζ ≤ Φ(−2). Also note that Dz(f ;n) =
∑s

k=1Dz(fk;n).
Recall the lower bound for R̃z,n(σ; f) given in Inequality (6.155).
So it is sufficient to prove that for ζ ≤ 0.15 the following holds

Ef

(
∥Ẑk − Z(fk)∥2

)
≤

Č2ρz((zζ + 1)

√
6σ

√
n(n+ 1)

s−1
2

; fk)
2

√
nρz((zζ + 1)

√
6σ

√
n(n+ 1)

s−1
2

; fk) ∨ 1 + 2Dz(fk;n),

(6.197)

for an absolute constant Č2 > 0.
Now we proceed with proving it.
First we introduce a quantity for a general ζ > 0:

ξk(ζ) = sup

{
ξ : min

{√
ξ [fk(Z(fk) + ξ)−M(fk)] ,

√
ξ [fk (Z(fk)− ξ)−M(fk)]

}
×

√
n

√
6σ/(n+ 1)

s−1
2

≤ zζ + 1

}
.

(6.198)

Then let

(6.199) jk(ζ) = max{j : 2
J−j

n
> ξk(ζ)}.

We further introduce the following quantities.

i∗k,j = max{i : Z(fk) ∈
[
2J−j · (i− 1)

n
− 1

2n
,
2J−j · i

n
− 1

2n

]
}

j̃k = min
(
{j : |îk,j − i∗k,j | ≥ 2} ∪∞

)
,

j́k = min
(
{j : |îk,j − i∗k,j | ≥ 5} ∪∞

)
,

j̀k = min
(
{j : |îk,j − i∗k,j | ≥ 7} ∪∞

)
.

(6.200)

Then we immediately have the following facts that we summarize into a
lemma.

Lemma 6.5. For j ≤ min{J, jk(ζ)}, we have

(6.201)
1

σ̃k,j

(i∗k,j+2)2J−j−1∑
h=(i∗k,j+1)2J−j

(
fk(

h

n
)− fk(

h− 2J−j

n
)

)
≥ 2

3
2
(jk(ζ)−j) (zζ + 1) ,
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and

(6.202)
1

σ̃k,j

(i∗k,j−1)2J−j−1∑
h=(i∗k,j−2)2J−j

(
fk(

h− 2J−j

n
)− fk(

h

n
)

)
≥ 2

3
2
(jk(ζ)−j) (zζ + 1) .

When j̃k = j, then one of the following happens

Ylk,j,i∗k,j+2 ≤ Ylk,j,i∗k,j+1, Y
l
k,j,i∗k,j+3 ≤ Ylk,j,i∗k,j+1, Y

l
k,j,i∗k,j+4 ≤ Ylk,j,i∗k,j+1,

Ylk,j,i∗k,j−2 ≤ Ylk,j,i∗k,j−1, Y
l
k,j,i∗k,j−3 ≤ Ylk,j,i∗k,j−1, Y

l
k,j,i∗k,j−4 ≤ Ylk,j,i∗k,j−1.

(6.203)

Now we will state three lemmas, the proofs of which are left to latter
parts.

Lemma 6.6. Suppose ζ ≤ 0.5.

(6.204) Ef

(
2−2j̃k1{j̃k ≤ J}

)
≤ Č02

−2jk(ζ)
(
1 ∧ 2J−jk(ζ)

)
,

where Č0 = max{supx≥1 2x
2Φ(−x), 2}.

Remark 6.1. Note that the left hand side of Inequality (6.204) does not
depend on ζ, but we state this more general lemma.

Lemma 6.7. Suppose ζ ≤ 0.5.
(6.205)

Ef

(
2−2ǰk(ζ)1{ǰk(ζ) < ∞}1{j̃k > ǰk(ζ)}

)
≤ Č02

−2jk(ζ)
(
1 ∧ 2J−jk(ζ)

)
,

where Č0 = max{supx≥1 2x
2Φ(−x), 2}.

Lemma 6.8. Suppose ζ ≤ 0.5.

Ef

(
|Ẑk − Z(fk)|21{ǰk(ζ) = ∞, j̃k > J}

)
≤ 64 · 2−2jk(ζ)

(
1 ∧ 2J−jk(ζ)

)
+ 2Dz(fk;n).

(6.206)

With these lemmas, we have that

(6.207) Ef

(
|Ẑk − Z(fk)|2

)
≤ Č1 · 2−2jk(ζ)

(
1 ∧ 2J−jk(ζ)

)
+ 2Dz(fk;n),

where Č1 = 64 + 2Č0.
Now we introduce the following lemma about ξk(ζ) and jk(ζ), which

immediately concludes the proof of Theorem 4.1.
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Lemma 6.9. For ζ > 0, we have
(6.208)

2ρz((zζ + 1)

√
6σ

(n+ 1)
s−1
2
√
n
; fk) ≥ ξk(ζ) ≥

1

2
ρz((zζ + 1)

√
6σ

(n+ 1)
s−1
2
√
n
; fk).

(6.209)
n+ 2

2
≤ 2J ≤ n+ 1.

(6.210) 2−jk(ζ) ≤ 2n

2J
ξk(ζ) ≤ 8ρz((zζ + 1)

√
6σ

(n+ 1)
s−1
2
√
n
; fk).

6.14.1. Proof of Lemma 6.6. A basic property of normal tail bound is

that Φ(−2
√
2x)

Φ(−x) decreases with x > 0 increasing.

Ef

(
2−2j̃k1{j̃k ≤ J}

)
≤

J∑
j=1

2−2jk(ζ) · 2−2j+2jk(ζ)
(
Φ(−2

3
2
(jk(ζ)−j)(zζ + 1))1{j ≤ jk(ζ)}+ 1{j > jk(ζ)}

)
≤ 1{J ≤ jk(ζ)}2−2jk(ζ) · 2−2J+2jk(ζ)Φ(−2

3
2
(jk(ζ)−J)(zζ + 1))

1

1− 4Φ(−2
√
2)

Φ(−1)

+ 1{J > jk(ζ)}2−2jk(ζ)

 1

1− 4Φ(−2
√
2)

Φ(−1)

+
1

3


≤ 1{J ≤ jk(ζ)}2−2jk(ζ) · 2J−jk(ζ) sup

x≥1
2x2Φ(−x) + 2 · 1{J > jk(ζ)}2−2jk(ζ)

(6.211)

Let Č0 = max{supx≥1 2x
2Φ(−x), 2}, then we have the lemma.

6.14.2. Proof of Lemma 6.7. By our stopping rule, apparently ǰk(ζ) ≥ 1.
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Ef

(
2−2ǰk(ζ)1{ǰk(ζ) < ∞}1{j̃k > ǰk(ζ)}

)
=

J∑
j=1

2−2jEf

(
Ef

(
1{j̃k > ǰk(ζ) = j}

∣∣νlk,i))

≤
J∑

j=1

2−2jk(ζ) · 2−2j+2jk(ζ)
(
Φ(−2

3
2
(jk(ζ)−j)(zζ + 1))1{j ≤ jk(ζ)}+ 1{j > jk(ζ)}

)
≤ 1{J ≤ jk(ζ)}2−2jk(ζ) · 2−2J+2jk(ζ)Φ(−2

3
2
(jk(ζ)−J)(zζ + 1))

1

1− 4Φ(−2
√
2)

Φ(−1)

+ 1{J > jk(ζ)}2−2jk(ζ)

 1

1− 4Φ(−2
√
2)

Φ(−1)

+
1

3


≤ 1{J ≤ jk(ζ)}2−2jk(ζ) · 2J−jk(ζ) sup

x≥1
2x2Φ(−x) + 21{J > jk(ζ)}2−2jk(ζ)

(6.212)

Let Č0 = max{supx≥1 2x
2Φ(−x), 2}, then we have the lemma.

6.14.3. Proof of Lemma 6.8. Note that ǰk(ζ) = ∞, j̃k > J means that

(6.213) {i : fk(
i

n
) = min

l∈{0,1,··· ,n}
} ⊂ {îk,J−3, îk,J−2, îk,J−1, îk,J , îk,J+1},

and that

(6.214) Z(fk) ∈ [
îk,J − 3

n
,
îk,J + 1

n
].

When jk(ζ) ≤ J , then we have 2−jk(ζ) ≥ 2−J ≥ 1
n+1 .

Ef

(
|Ẑk − Z(fk)|21{ǰk(ζ) = ∞, j̃k > J}

)
≤ 16

n2

≤ 16

(
n+ 1

n

)2

2−2jk(ζ)
(
1 ∧ 2J−jk(ζ)

)
≤ 64 · 2−2jk(ζ)

(
1 ∧ 2J−jk(ζ)

)
.

(6.215)

When jk(ζ) ≥ J + 1, denote im = argmini:fk( i
n
)=minl∈{0,1,··· ,n}

| in − Ẑk|,
the index of the position at which fk is minimized while being closest to
the estimator. Note that this is deterministic when fk has unique minimizer
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among grid points but is a random variable when fk has two minimizers
among grid points.

Then according to Lemma 6.5 we know that

Ef

(
|Ẑk − Z(fk)|21{ǰk(ζ) = ∞, j̃k > J}

)
≤ 2Ef

(
|Ẑk −

im
n
|2
)
+ 2Dz(fk;n)

≤ 2× 16

n2
× 4Φ(−2

3
2
(jk(ζ)−J)(zζ + 1)) + 2Dz(fk;n)

≤ 128

(
n+ 1

n

)2

2−2JΦ(−2
3
2
(jk(ζ)−J)) + 2Dz(fk;n)

≤ 128

(
n+ 1

n

)2

2−2jk(ζ) · 2J−jk(ζ) · 23Φ(−
√
8) + 2Dz(fk;n)

< 10 · 2−2jk(ζ) · 2J−jk(ζ) + 2Dz(fk;n)

(6.216)

Hence we concludes the proof.

6.14.4. Proof of Lemma 6.9. Denote

∆1,k =
1

2
ρz((zζ + 1)

√
6σ

(n+ 1)
s−1
2
√
n
; fk),

and
∆2,k = min{fk(Z(fk) + ∆1,k), fk(Z(fk)−∆1,k)} −M(fk).

Then we have that

∆1,k∆
2
2,k

≤ ∥fk −max{fk,M(fk) + ρm((zζ + 1)

√
6σ

(n+ 1)
s−1
2
√
n
; fk)}∥2

=

(
(zζ + 1)

√
6σ

(n+ 1)
s−1
2
√
n

)2

.

(6.217)

Denote

∆3,k = 2ρz((zζ + 1)

√
6σ

(n+ 1)
s−1
2
√
n
; fk),

and
∆4,k = min{fk(Z(fk) + ∆3,k), fk(Z(fk)−∆3,k)} −M(fk).
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Clearly that

∆4,k ≥ ρm((zζ + 1)

√
6σ

(n+ 1)
s−1
2
√
n
; fk).

Then we have that

∆3,k∆
2
4,k

≥ ∥fk −max{fk,M(fk) + ρm((zζ + 1)

√
6σ

(n+ 1)
s−1
2
√
n
; fk)}∥2

=

(
(zζ + 1)

√
6σ

(n+ 1)
s−1
2
√
n

)2

.

(6.218)

6.15. Proof of Theorem 4.2 . Note that the coordinates of the hyper cube
CIz,α are independence from each other, so the following two propositions
are sufficient to give the statement of the theorem.

Proposition 6.11. For CIk,α defined in (4.14)

(6.219) Ef (1{Z(fk) /∈ CIk,α}) ≤ α/s,

for all f ∈ Fs

Proposition 6.12. For CIk,α defined in (4.14)
(6.220)

Ef

(
|tk,hi − tk,lo|2

)
≤ C5ρz(zα/s

σ

(n+ 1)
s
2

; fk)
2

(
1 ∧ nρz(zα/s

σ

(n+ 1)
s
2

; fk)

)
+9Dz(fk;n),

for all f ∈ Fs, for an absolute positive constant C5.

The reason Proposition 6.12 implies the statement of expected volume in
Theorem 4.2 is as follows. Proposition (6.12) implies that

(6.221) Ef (|tk,hi − tk,lo|) ≤
√

C5 · (2zα/s) ·φz(
σ

(n+ 1)
s
2

; fk)+3
√

Dz(fk;n),

where φz(·, ·) is defined in Equation (6.153). This further gives that
(6.222)

Ef (V (CIz,α)) ≤
(
3 +

√
C5 · (2zα/s)

)s
Πs

k=1

(
φz(

σ

(n+ 1)
s
2

; fk) ∨
√

Dz(fk;n)

)
.

This combined with the lower bound for L̃z,α,n(σ; f) given in (6.156) gives
the statement about expected volume.
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Before we continue with the proofs of the propositions, recall the quanti-
ties we defined in Equation (6.200) and (6.199).

And we further introduce the following quantities that will be used fre-
quently
(6.223)

im,l = min{i : f( i
n
) = min

h∈{0,1,··· ,n}
f(

h

n
)}, im,r = max{i : f( i

n
) = min

h∈{0,1,··· ,n}
f(

h

n
)}.

On the event {ǰk(α/2s) = ∞}, we define a “bad” event. Let the event
that first shrinking step misses the target be

(6.224) B1 = {il ≥ im,l + 1} ∪ {ir ≤ im,2 − 2}.

We will define more “bad” events in the proofs of the propositions, usually
denoted by Bh for h = 2, 3, 4, · · · .

On the event {ǰk(α/2s) = ∞}, from our definition, it is clear that il ≤
ir + 1.

We recollect the quantities defined in Equations (6.200), (6.199).

6.15.1. Proof of Proposition 6.11. The event that {Z(fk) /∈ CIk,α} can
be partitioned into the followings

{Z(fk) /∈ CIk,α} ⊂{j̀k ≤ ĵk(α/2s)− 1}
∪
(
{j̀k ≥ ĵk(α/2s), ǰk(α/2s) = ∞} ∩B1

)
∪
((
{j̀k ≥ ĵk(α/2s), ǰk(α/2s) = ∞} ∩Bc

1

)
∩ {Z(fk) /∈ CIk,α}

)
.

(6.225)

We will bound them separately.
(6.226)

Ef

(
1{j̀k ≤ ĵk(α/2s)− 1}

)
≤ Ef

((
1{Tk,j̀k ≥ σ̃k,j̀k(zα/2s)}

∣∣∣νlk,·)) ≤ α/2s.

On event {j̀k ≥ ĵk(α/2s), ǰk(α/2s) = ∞}, we know that Lk ≤ im,l ≤
im,r ≤ Uk. Therefore, we have

Ef

(
{j̀k ≥ ĵk(α/2s), ǰk(α/2s) = ∞} ∩B1

)
≤ P (νek,im,l

− νek,im,l+1 +

√
3σ

(n+ 1)
s−1
2

(
z3k,im,l

− z3k,im,l+1

)
> 2

√
3

σ

(n+ 1)
s−1
2

zα1)

+ P (νek,im,r−1 − νek,im,r
+

√
3σ

(n+ 1)
s−1
2

(
z3k,im,r−1 − z3k,im,r

)
< − 2

√
3σ

(n+ 1)
s−1
2

zα1)

≤ 2α1 ≤ α/4s.

(6.227)
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On the event {j̀k ≥ ĵk(α/2s), ǰk(α/2s) = ∞} ∩ Bc
1, we know that only

when il = ir + 1 ≤ n − 1, tk,hi < min{ im,r+1

n , 1} could happen, and only

when il = ir + 1 ≥ 1, tk,lo > max{ im,l−1
n , 0} could happen. And note that

im,r ≤ il = ir + 1 ≤ im,l indicates that im,l = im,r, which we denote as im.
So in the following we only consider fk with unique minimizer on grids. Also
we have in these cases il = im. We have that

Pf

((
{j̀k ≥ ĵk(α/2s), ǰk(α/2s) = ∞} ∩Bc

1

)
∩ {Z(fk) /∈ CIk,α}

)
≤ Ef (1{im = il = ir + 1 ≤ n− 1, tk,hi < Z(fk)})
+ Ef (1{im = il = ir + 1 ≥ 1, tk,lo > Z(fk)}) .

(6.228)

The arguments bounding the two terms are similar, so we only show that
for the first one.

Use tk,r to denote the intersection between the two lines
(6.229)

l1 : y = f(
im
n
), l2 : y(t) = f(

im + 1

n
) +

f( im+2
n )− f( im+1

n )

1/n
(t− im + 1

n
).

It is clear that Z(fk) ≤ tk,r.
Basic calculation shows that

(6.230) tk,r =
fk(

im
n )− fk(

im+1
n )

n(fk(
im+2
n )− fk(

im+1
n ))

+
im + 1

n
.

It is easy to check that the distribution of(
νek,im − νek,im+1 −

√
3σ

(n+ 1)
s−1
2

(
z3k,im − z3k,im+1 − 2

√
2zα2

)
,

νek,im+2 − νek,im+1 −
√
3σ

(n+ 1)
s−1
2

(
z3k,im+2 − z3k,im+1 − 2

√
2zα2

))(6.231)

is the same with the following

(
fk(

im
n
) +

√
6σ

(n+ 1)
s−1
2

· η0 − fk(
im + 1

n
)−

√
6σ

(n+ 1)
s−1
2

· η1 +
√
6σ

(n+ 1)
s−1
2

· 2zα2 ,

fk(
im + 2

n
) +

√
6σ

(n+ 1)
s−1
2

· η2 − fk(
im + 1

n
)−

√
6σ

(n+ 1)
s−1
2

· η1 +
√
6σ

(n+ 1)
s−1
2

· 2zα2

)
,

(6.232)

where η0, η1, η2
i.i.d∼ N(0, 1) and also independent from il, ir.
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Note that under the event

{η0 ≥ −zα2 , η1 ≤ zα2 , η2 ≥ −zα2},

we have tk,hi ≥ tk,r. Hence we have that

Ef (1{im = il = ir + 1 ≤ n− 1, tk,hi < Z(fk)})

≤P (η0 < −zα2) + P (η1 > zα2) + P (η2 < −zα2) ≤ 3α2 =
α

8s
.

(6.233)

Similar arguments show that

Ef (1{im = il = ir + 1 ≥ 1, tk,lo > Z(fk)}) ≤ 3α2 =
α

8s
.

Therefore we have

(6.234) Pf (Z(fk) /∈ CIk) ≤ α/2s+ 2α1 + 6α2 = α/s.

6.15.2. Proof of Proposition 6.12.

Ef

(
|CIk|2

)
≤ 262Ef

(
22J−2ĵk(α/2s)

n2
1{ǰk(α/2s) < ∞, ǰk(α/2s) < j̃k}

)

+ 282Ef

(
22J−2j̃k

n2
1{j̃k ≤ ĵk(α/2s)}

)
+ Ef

(
|CIk|21{ǰk(α/2s) = ∞, j̃k > J}

)
(6.235)

Recall Lemma 6.6, 6.7 and 6.9, we have first two terms being bounded by

multiple times ρz((zα/2s+1)
√
6σ

(n+1)
s−1
2

√
n
; fk)

(
1 ∧

√
nρz((zα/2s + 1)

√
6σ

(n+1)
s−1
2

√
n
; fk)

)
,

specifically,

Ef

(
|CIk|2

)
≤ Č3ρz((zα/2s + 1)

√
6σ

(n+ 1)
s−1
2
√
n
; fk)

2

(
1 ∧ nρz((zα/2s + 1)

√
6σ

(n+ 1)
s−1
2
√
n
; fk)

)
+ Ef

(
|CIk|21{ǰk(α/2s) = ∞, j̃k > J}

)
,

(6.236)

where Č3 > 0 is an absolute constant.
Note that

zα/2s+1

zα/s
< 4, and invoke Proposition 2.1 by Cai et al. (2023a),

it suffices to bound the remaining term.
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We proceed to bound the remaining term. Note that

ρz(zα/8s
2
√
12σ

(n+ 1)
s−1
2
√
n
; fk) ≤

(
2
zα/8s

zα/s
· 4
√
3

√
n+ 1

n

) 2
3

ρz(zα/s
σ

(n+ 1)
s
2

; fk),

n+ 1

n
≤ 2,

zα/8s

zα/s
< 4 for α ≤ 0.3.

(6.237)

So it is sufficient to have the following lemma for concluding the proof.

Lemma 6.10.

Ef

(
|CIk|21{ǰk(α/2s) = ∞, j̃k > J}

)
≤

Č4ρz(zα/8s
2
√
12σ

(n+ 1)
s−1
2
√
n
; fk)

2

(
1 ∧ nρz(zα/8s

2
√
12σ

(n+ 1)
s−1
2
√
n
; fk)

)
+ 9Dz(fk;n)

(6.238)

where Č4 > 282 is an absolute constant.

Proof. When

(6.239) ρz(zα/8s
2
√
12σ

(n+ 1)
s−1
2
√
n
; fk) ≥

1

n
,

lemma 6.10 holds.
Now we consider the case that

(6.240) ρz(zα/8s
2
√
12σ

(n+ 1)
s−1
2
√
n
; fk) <

1

n
.

Note that this means that for i ≥ im,r,

fk(
i+ 1

n
)− fk(

i

n
) ≥ 1

n

ρm(zα/8s
2
√
12σ

(n+1)
s−1
2

√
n
; fk)

ρz(zα/8s
2
√
12σ

(n+1)
s−1
2

√
n
; fk)

≥ 1√
2
zα/8s

2
√
12σ

(n+ 1)
s−1
2

(
nρz(zα/8s

2
√
12σ

(n+ 1)
s−1
2
√
n
; fk)

)− 3
2

.

(6.241)

and similarly for i ≤ im,l, we have
(6.242)

fk(
i− 1

n
)−fk(

i

n
) ≥ 1√

2
zα/8s

2
√
12σ

(n+ 1)
s−1
2

(
nρz(zα/8s

2
√
12σ

(n+ 1)
s−1
2
√
n
; fk)

)− 3
2

.
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Note that on the event {ǰk(α/2s) = ∞, j̃k > J}, we have that Lk ≤
im,l ≤ im,r ≤ Uk. We define a “bad” event

(6.243) B2 = {il ≤ im,l − 1} ∪ {ir ≥ im,r}.

Then we know that

Pf (B2 ∩ {ǰk(α/2s) = ∞, j̃k > J})

≤ 28Φ

−
√
2zα/8s

(
nρz(zα/8s

2
√
12σ

(n+ 1)
s−1
2
√
n
; fk)

)− 3
2

+ zα1

 .
(6.244)

On the other hand, for the bad event B1 defined in (6.224), we have

Pf (B1 ∩ {ǰk(α/2s) = ∞, j̃k > J})

≤ Φ

−
√
2zα/8s

(
nρz(zα/8s

2
√
12σ

(n+ 1)
s−1
2
√
n
; fk)

)− 3
2

− zα1

 .
(6.245)

Note that we have zα/8s > 1 for 0 < α ≤ 1. Hence we have

Ef

(
|CIk|21{B1 ∪B2}1{ǰk(α/2s) = ∞, j̃k > J}

)
≤ 282

n2
× 40Φ

−(
√
2− 1)zα/8s

(
nρz(zα/8s

2
√
12σ

(n+ 1)
s−1
2
√
n
; fk)

)− 3
2


≤ Č5ρz(zα/8s

2
√
12σ

(n+ 1)
s−1
2
√
n
; fk)

2

(
1 ∧ nρz(zα/8s

2
√
12σ

(n+ 1)
s−1
2
√
n
; fk)

)
,

(6.246)

where Č5 = 282 × 40× supx>1 x
2Φ(−(

√
2− 1)x).

On the remaining event

(B1 ∪B2)
c ∩ {ǰk(α/2s) = ∞, j̃k > J},

we have that
il = im,l, ir = im,r − 1.

Now we have two cases. Case 1: im,l = im,r − 1, or im,l = im,r = 1 or
im,l = im,r = n− 1. Case 2: im,l = im,r and im,l ̸= 1 and im,l ̸= n− 1.

For the case 1 , we have Dz(fk;n) ≥ 1
n2 , so we have

Ef

(
|CIk|21{(B1 ∪B2)

c}1{ǰk(α/2s) = ∞, j̃k > J}
)

≤ 9

n2
≤ 9Dz(fk;n).

(6.247)
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Combining with Inequality (6.246), we have lemma 6.10.
For the case 2, denote im = im,l = im,r, we have

Ef

(
|CIk|21{(B1 ∪B2)

c}1{ǰk(α/2s) = ∞, j̃k > J}
)

≤ Ef

(
2(tk,hi − im)21{(B1 ∪B2)

c}1{ǰk(α/2s) = ∞, j̃k > J, im ≤ n− 2}
)

+ Ef

(
2(tk,lo − im)21{(B1 ∪B2)

c}1{ǰk(α/2s) = ∞, j̃k > J, im ≥ 2}
)
.

(6.248)

The arguments for bounding the two terms are almost identical (flipping
everything around im), we only bound the first and second share the same
bound.

Recall tk,r defined in Equation (6.230), for simplicity of notation, denote

D = (B1 ∪B2)
c ∩ {ǰk(α/2s) = ∞, j̃k > J, im ≤ n− 2}

we have

Ef

(
2(tk,hi − im)21{D}

)
≤ Ef

((
4(tk,hi − tk,r)

2
+ + 4(tk,r −

im
n
)2
)
1{D}

)
≤ 4Dz(fk;n) + 4Ef

(
(tk,hi − tk,r)

2
+1{D}

)
.

(6.249)

To bound the second term, we will split event D into D ∩A and D ∩Ac,
where A is an event define later. We will consider the expectation on these
two events.

Recall the joint distribution of the quantities in the numerator and de-
nominator of tk,hi under (B1 ∪ B2)

c ∩ {ǰk(α/2s) = ∞, j̃k > J, im ≤ n− 2},
as explained in Equation (6.232), denote ε =

√
6σ

(n+1)
s−1
2

, when further under

the event tk,hi >
im
n (the only one we need to consider), tk,hi − tk,r is upper

bounded:

tk,hi − tk,r ≤
εη0
(
fk(

im+2
n )− fk(

im+1
n )

)
+ εη1

(
fk(

im
n )− fk(

im+2
n )

)
+ εη2

(
fk(

im+1
n )− fk(

im
n )
)

n
(
fk(

im+2
n )− fk(

im+1
n ) + εη2 − εη1 + 2εzα2

) (
fk(

im+2
n )− fk(

im+1
n )

)
+

2zα2ε
(
fk(

im+2
n )− fk(

im
n )
)

n
(
fk(

im+2
n )− fk(

im+1
n ) + εη2 − εη1 + 2εzα2

) (
fk(

im+2
n )− fk(

im+1
n )

) .

(6.250)

The reason it is not an equation is due to the possibility of upper truncation
if tk,hi by

im+1
n
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Recall that we define η0, η1, η2 in Equation (6.232).
Now we consider a “good” event

(6.251)

A = {η1 ≤
fk(

im+2
n )− fk(

im+1
n )

6ε
+
1

2
εzα2 , η2 ≥ −

fk(
im+2
n )− fk(

im+1
n )

6ε
−1

2
εzα2}.

Under this good event A, we have
(6.252)

fk(
im + 2

n
)−fk(

im + 1

n
)+εη2−εη1+2εzα2 ≥ 2

3

(
fk(

im + 2

n
)− fk(

im + 1

n
)

)
+εzα2 .

Then we have that

Ef

(
(tk,hi − tk,r)

2
+1{D ∩A}

)
≤ 4

1

n2

(
ε

2
3

(
fk(

im+2
n )− fk(

im+1
n )

)
+ εzα2

)2 (
1 + 4 + 1 + 16z2α2

)

≤ 4
1

n2

 1

2
3 · 2zα/8s

(
nρz(zα/8s

2
√
12σ

(n+1)
s−1
2

√
n
; fk)

)− 3
2

+ zα/24s


2 (

6 + 16z2α/24s

)

≤ ρz(zα/8s
2
√
12σ

(n+ 1)
s−1
2
√
n
; fk)

2 ·

(
nρz(zα/8s

2
√
12σ

(n+ 1)
s−1
2
√
n
; fk)

)(
13.5 + 36

(
zα/24s

zα/8s

)2
)
.

(6.253)

The second inequality is due to Inequality (6.241).
Also note that

zα/24s

zα/8s
< 2 for α < 1. Hence we have that

Ef

(
(tk,hi − tk,r)

2
+1{D ∩A}

)
< 86ρz(zα/8s

2
√
12σ

(n+ 1)
s−1
2
√
n
; fk)

2 ·

(
nρz(zα/8s

2
√
12σ

(n+ 1)
s−1
2
√
n
; fk)

)
.

(6.254)

For event Ac ∩D, we have

(6.255) P (Ac ∩D) ≤ 2Φ

−
zα/8s

3

(
nρz(zα/8s

2
√
12σ

(n+ 1)
s−1
2
√
n
; fk)

)− 3
2

 .
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Therefore we have

Ef

(
(tk,hi − tk,r)

2
+1{D ∩Ac}

)
≤ 18ρz(zα/8s

2
√
12σ

(n+ 1)
s−1
2
√
n
; fk)

2 ·

(
nρz(zα/8s

2
√
12σ

(n+ 1)
s−1
2
√
n
; fk)

)
.

(6.256)

Adding up the expection on event D ∩ Ac and D ∩ A and going back to
Inequality (6.249), we have the first term in (6.248) bounded. Using similar
arguments, the second term can be bounded by the same bound. So we have

Ef

(
|CIk|21{(B1 ∪B2)

c}1{ǰk(α/2s) = ∞, j̃k > J}
)

≤ 8D(fk;n) + 832ρz(zα/8s
2
√
12σ

(n+ 1)
s−1
2
√
n
; fk)

2 ·

(
nρz(zα/8s

2
√
12σ

(n+ 1)
s−1
2
√
n
; fk)

)
.

(6.257)

This concludes case 2, thus the proof of the lemma.

6.16. Proof of Theorem 4.3. Note thatDm(f ;n) ≥
∑s

k=1

(
min{fk( i

n) : 0 ≤ i ≤ n} −M(fk)
)
.

Recall the lower bound of L̃m,α,n(σ; f) given in Equation (6.157). Note that
ρz(

σ

(n+1)
s
2
; fk) ≤ 1 for all k ∈ {1, 2, · · · , s}. Using Cauchy-Schwartz inequal-

ity, we know that it suffices to prove that

E
(
M̂ −M(f)

)2
≤

(
Cm

s∑
k=1

ρm(
σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)

+

s∑
k=1

(
min{fk(

i

n
) : 0 ≤ i ≤ n} −M(fk)

))2

,

(6.258)

for some positive absolute constant Cm.
Now we will prove this statement.
Recall that ζ = Φ(−2) < 0.1.
For simplicity of notation, denote

f̂k,i =
1

2ĵk(ζ)

2ĵk(ζ)·i−1∑
w=2ĵk(ζ)·(i−1)

fk(
w

n
).
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Note that {νuk,h : 1 ≤ k ≤ s, 0 ≤ h ≤ n, u = l, r, e} are independent. So we

have that 2ĵk(ζ)−JYe
k,ĵk(ζ),îk,ĵk(ζ)+2∆k

− f̂k,îk,ĵk(ζ)+2∆k

∣∣∣∣∣(νl·,·, νr·,·) ∼ N(0, (1− 2ĵk(ζ)−J)2ĵk(ζ)−J · 3 σ2

(n+1)s−1 ).

Also recall the independence between er({yi}) and {νuk,h : 1 ≤ k ≤ s, 0 ≤
h ≤ n, u = l, r, e}. So we have that

E
(
M̂ −M(f)

)2
≤

≤


√√√√√E

 1

(n+ 1)s

∑
i∈{0,1,2,··· ,n}s

er({yi})− f0

2

+
s∑

k=1

√
E
(
M̂k −M(fk)

)2
2

≤

(√√√√√E

 1

(n+ 1)s

∑
i∈{0,1,2,··· ,n}s

er({yi})

− f0

2

+
s∑

k=1

(√
E
((

M̂k − f̂k,îk,ĵk(ζ)+2∆k

)2
1{ǰk(ζ) < ∞}

)

+

√
E
((

f̂k,îk,ĵk(ζ)+2∆k
−M(fk)

)2
1{ǰk(ζ) < ∞}

)

+

√
E
(
1{ǰk(ζ) = ∞}(M̂k −M(fk))

)2))2

≤

(
σ

(n+ 1)
s
2

+

s∑
k=1

(√
3σ2

(n+ 1)s−1

√
E(2ĵk(ζ)−J1{ǰk(ζ) < ∞})+√

E
((

f̂k,îk,ĵk(ζ)+2∆k
−M(fk)

)2
1{ǰk(ζ) < ∞}

)
+√

E
((

M̂k −M(fk)
)2
1{ǰk(ζ) = ∞}

)))2

.

(6.259)

Now we will continue with bounding the terms in Inequality (6.259) sep-
arately.

We introduce the following lemma, which we will prove later, to bound
the first term in the summation.

Lemma 6.11. For ζ ≤ 0.1, we have

(6.260) E(2ĵk(ζ)1{ǰk(ζ) < ∞}) ≤ 37 · 2jk(ζ)
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for k = 1, 2, · · · , s, where jk(ζ) is defined in Equation 6.199.

By definition of jk(ζ) , we know that

(6.261)
2J−jk(ζ)

n
> ξk(ζ).

By Lemma 6.9, we have that

(6.262)
2J−jk(ζ)

n
> ξk(ζ) ≥

1

2
ρz((zζ + 1)

√
6σ

(n+ 1)
s−1
2
√
n
; fk).

Recall that we have ζ < 0.1 (because ζ = Φ(−2) here).
This combined with Lemma 6.11 we have that

(6.263)

E(2ĵk(ζ)−J
1{ǰk(ζ) < ∞}) ≤ 37·2jk(ζ)−J ≤ 148

n
ρm(

σ

(n+ 1)
s
2

; fk)
2·
(

σ

(n+ 1)
s
2

)−2

.

The second inequality is due to that

1

2

(
(zζ + 1)

√
6σ

(n+ 1)
s−1
2
√
n

)2

≤ ρz((zζ + 1)

√
6σ

(n+ 1)
s−1
2
√
n
; fk)ρm((zζ + 1)

√
6σ

(n+ 1)
s−1
2
√
n
; fk)

2

≤ ρz((zζ + 1)

√
6σ

(n+ 1)
s−1
2
√
n
; fk) ·

(
(zζ + 1)

√
6

√
n+ 1

n

)2

ρm(
σ

(n+ 1)
s
2

; fk)
2.

(6.264)

Therefore, we have the first term in the summation in Inequality (6.259)
upper bounded, which we summarize into the following lemma.

Lemma 6.12.

√
3σ2

(n+ 1)s−1

√
E(2ĵk(ζ)−J1{ǰk(ζ) < ∞})

≤ min

{√
3σ2

(n+ 1)s−1
,

√
3 · 148(n+ 1)

n
ρm(

σ

(n+ 1)
s
2

; fk)

}

≤ min

{√
6(n+ 1)

n
ρm(

σ

(n+ 1)
s
2

; fk)

√
nρz(

σ

(n+ 1)
s
2

; fk),

√
444(n+ 1)

n
ρm(

σ

(n+ 1)
s
2

; fk)

}
.

(6.265)
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Now we continue with bounding the second term in the summation in
Inequality (6.259).

Note that our localization step and stopping rule for each coordinate
parallel that in Cai et al. (2023a), but with noise level σ

(n+1)
s
2
. So according

to Lemma C.42 and Lemma C.45 in Cai et al. (2023b), we have that

E
((

f̂k,îk,ĵk(ζ)+2∆k
−M(fk)

)2
1{ǰk(ζ) < ∞}

)
≤ min

{
cm2ρm(

σ

(n+ 1)
s−1
2

1√
n
; fk)

2, čm2
σ2

(n+ 1)s−1

}

≤ cmρm(
σ

(n+ 1)
s
2

; fk)
2

(
1 ∧ nρz(

σ

(n+ 1)
s
2

; fk)

)
,

(6.266)

where cm2 and čm2 are from Lemma C.42 and C.45 in Cai et al. (2023b),
and cm is an absolute positive constant.

Now we turn to the third term in the summation in Inequality (6.259).
Recall that {νek,h} is independent from {νlk,h}∪{νrk,h}. Let f̃k = minîk,J−2≤i≤îk,J+2 fk(

i−1
n ).

Elementary calculation show that

E
((

M̂k −M(fk)
)2
1{ǰk(ζ) = ∞}

)
≤ 2 · 5 · σ2

(n+ 1)s−1
P (ǰk(ζ) = ∞) + 2E

((
f̃k −M(fk)

)2
1{ǰk(ζ) = ∞}

)
.

(6.267)

Again, note that the localization procedure and stopping rule for each
coordinate parallels that in Cai et al. (2023a), by Lemma C.46 and Lemma
C.43 in Cai et al. (2023b), we have that

E
((

f̃k −M(fk)
)2
1{ǰk(ζ) = ∞}

)
≤ min{č2m3

σ2

(n+ 1)s−1
, cm6 · 2ρm(

√
σ2

(n+ 1)s
; fk)

2}

+

(
min{fk(

i

n
) : 0 ≤ i ≤ n} −M(fk)

)2

.

(6.268)

And by Lemma C.44 in Cai et al. (2023b), we have that

(6.269)
σ2

(n+ 1)s−1
P (ǰk(ζ) = ∞) ≤ 64ρm(

√
σ2

(n+ 1)s
; fk)

2.
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Also note that σ2

(n+1)s−1 ≤ 4ρm(
√

σ2

(n+1)s ; fk)
2 · nρz(

√
σ2

(n+1)s ; fk) and that

σ

(n+ 1)
s
2

≤
√
2ρm(

σ

(n+ 1)
s
2

; fk)

√
ρz(

σ

(n+ 1)
s
2

; fk).

Adding the three parts together, and going back to Inequality (6.259), we
have that

E
(
M̂ −M(f)

)2
≤

(
Cm

s∑
k=1

ρm(
σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)

+
s∑

k=1

(
min{fk(

i

n
) : 0 ≤ i ≤ n} −M(fk)

))2

,

(6.270)

where Cm is a positive absolute constant. This concludes the proof of the
theorem.

Now we give the proof of Lemma 6.11.

6.16.1. Proof of Lemma 6.11. By the definition of jk(ζ), we immediately
have the following facts that we summarize into a lemma

Lemma 6.13. For J ≥ j ≥ jk(ζ) + 5, we have that
(6.271)

1

σ̃k,j

(i∗k,j+14)2J−j−1∑
h=(i∗k,j+13)2J−j

(
fk(

h

n
)− fk(

h− 2J−j

n
)

)
≤ 2−2 × 2

3
2
(5+jk(ζ)−j) (zζ + 1) ,

or
(6.272)

1

σ̃k,j

(i∗k,j−13)2J−j−1∑
h=(i∗k,j−14)2J−j

(
fk(

h− 2J−j

n
)− fk(

h

n
)

)
≤ 2−2 × 2

3
2
(5+jk(ζ)−j) (zζ + 1) .

Therefore, we have that

E(2ĵk(ζ)1{ǰk(ζ) < ∞})

≤ 2jk(ζ) ≤ 16 · 2jk(ζ) +
J∑

j=jk(ζ)+5

2jΦ(−zζ +
zζ + 1

4
· 2

3
2
(5+jk(ζ)−j)) ≤ 37 · 2jk(ζ).

(6.273)

The last inequality is based on elementary calculation.
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6.17. Proof of Theorem 4.4. Recall the lower bound of L̃m,α,n(σ; f) given
in Inequality (6.158). Using Cauchy-Schwartz inequality, it suffices to prove
the following two propositions.

Proposition 6.13 (Coverage). For 0 < α ≤ 0.3, CIm,α defined in
(4.25) is a 1− α level confidence interval for M(f).

Proposition 6.14 (Expected Length). Suppose α ≤ 0.3. For CIm,α

defined in (4.25), we have
(6.274)

E(|CIm,α|) ≤ Dm(f ;n)+C̄m,α,s

s∑
k=1

ρm(
σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)
,

where

C̄m,α,s =
(
2
√
3S210,α/8s + 3(zα/4s + 1)

)√
8 · 148 · 2 +

(√
3S210,α/8s + 2

)
· 32+

(6 + S212,α/24s + zα/48s/
√
2) · 210 ·

√
3 · 32 + zα/84

√
6,

(6.275)

and Dm(f ;n) is defined in (6.150).

6.17.1. Proof of Proposition 6.13. Denote

(6.276) j∗k = jF,k ∧ J.

Note that ζ = α/4s and recall Theorem 4.15, we have that for the event
A1 defined by

A1 =

{Z(f)k ∈[2
J−ĵk(α/4s)+1

n
× (îk,ĵk(α/4s)−1 − 7)− 1

2n
,
2J−ĵk(α/4s)+1

n
× (îk,ĵk(α/4s)−1 + 6)− 1

2n
]

for k = 1, 2 · · · , s},

(6.277)

its probability satisfies

(6.278) P (A1) ≥ 1− α/4.
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Note that

{
2j

∗
k−J

Yek,j∗k,i
−

i·2J−j∗k−1∑
w=2

J−j∗
k (i−1)

fk(
w

n
)

+
√
2

σ

(n+ 1)
s−1
2

∑n
l=0 z

1
k,l

n+ 1
+

1

(n+ 1)s

∑
i

er({yi})− f0 : 0 ≤ i ≤ n

}∣∣∣∣∣ (ĵk(ζ), îk,ĵk(ζ)) i.i.d∼ N(0, 2j
∗
k−J · 3 σ2

(n+ 1)s−1
),

(6.279)

for i = 0, 1, 2, · · · , n. This fact together with the fact that on event A1,
(6.280)

min
Ik,lo≤i≤Ik,hi

2j
∗
k−J

i·2J−j∗k−1∑
w=2

J−j∗
k (i−1)

fk(
w

n
) = min

0≤i≤n
2j

∗
k−J

i·2J−j∗k−1∑
w=2

J−j∗
k (i−1)

fk(
w

n
),

gives

P

(
M̃k,md +

1

(n+ 1)s

∑
i

er({yi})− f0 −M(fk) +
√
2

σ

(n+ 1)
s−1
2

∑n
l=0 z

1
k,l

n+ 1

≤ −S210,α/8s ×
√
3σ

(n+ 1)
s−1
2

× 2
j∗k−J

2

∣∣∣∣∣A1

)
≤ α/8s.

(6.281)

Also note that 1
(n+1)s

∑
i er({yi}) − f0 ∼ N(0, σ2

(n+1)s ), elementary calcu-

lation on the remainder terms of M̃hi gives

(6.282) P
(
M̃hi ≤ M(f)|A1

)
≤ α

8
+

α

8
.

Recollect quantities introduced in (6.200) and (6.199).
Lemma 6.9 and the definition of jk(ζ) gives

2J−jk(ζ)

n
≤ 4ρz((zζ + 1)

√
6σ

(n+ 1)
s−1
2
√
n
; fk).

Therefore
(6.283)

2
√
3(zζ + 1)

√
6σ

(n+ 1)
s−1
2
√
n

√
n

2J−jk(ζ)
≥ ρm((zζ + 1)

√
6σ

(n+ 1)
s−1
2
√
n
; fk).
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This means for j ≥ jk(ζ) + 3,

(6.284)
3σ(zζ + 1)

(n+ 1)
s−1
2

√
1

2J−j
≥ ρm((zζ + 1)

√
6σ

(n+ 1)
s−1
2
√
n
; fk),

and if further j ≤ J ,
(6.285)

min
w∈{−2,−1,0}

(i∗k,j+w+1)2J−j−1∑
h=(i∗k,j+w)2J−j

fk(
h

n
) ≤ M(fk) + ρm((zζ +1)

√
6σ

(n+ 1)
s−1
2
√
n
; fk).

Now we define an event

(6.286) D2,k = {ǰk(ζ) ≤ jk(ζ)− 1}.

Lemma 6.5 gives that for ζ ≤ 0.1

P (D2,k) ≤ P (j̃k ≤ jk(ζ)− 1) + P (ǰk(ζ) ≤ jk(ζ)− 1, j̃k ≥ jk(ζ))

≤ 6Φ(−zζ − 2)× 1

1− 0.001
+ Φ(−zζ − 2)

1

1− 0.001
≤ ζ · 7

1− 0.001
· exp(−4) · 4

3
≤ 0.5ζ.

(6.287)

Note that ζ = α/4s, hence P (D2,k) ≤ α/8s and P (∪s
k=1D2,k) ≤ α/8.

Equations (6.279), (6.280), (6.284), (6.285) together with the apparent
fact that

min{v1, · · · , vw} ≤ max{v1, · · · , vw}

, we have that

P

(
M̃k,lo +

1

(n+ 1)s

∑
i

er({yi})− f0 +
√
2

σ

(n+ 1)
s−1
2

∑n
l=0 z

1
k,l

n+ 1
−M(fk) ≥ 0∣∣∣∣∣A1 ∩Dc

2,k ∩ {jF,k ≤ J}

)
≤ α/8s.

(6.288)

Now we introduce a lemma.

Lemma 6.14.

(6.289) P

(
M̃k,lo ≥ M(fk)

∣∣∣∣∣A1 ∩Dc
2,k ∩ {jF,k ≥ J + 1}

)
≤ α/8s,

for k = 1, 2, · · · , s.
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Proof. We prove the inequality for any fixed k ∈ {1, 2, · · · , s}. Denote
δi = νek,i − fk(

i
n)

Note that {νe·,·} is independent with {νl·,·, νr·,·}, elementary calculation
show that
(6.290)

P (max{|δi| : (kl−1)∨0 ≤ i ≤ (kr+2)∧n} ≤ H
∣∣∣νl·,·, νr·,·) ≥ 1−2·α/24s−2·α/48s = 1−α/8s.

Denote event

B = max{|δi| : kl ∨ 0 ≤ i ≤ kr + 2 ∧ n} ≤ H

.
On event A1, we know that kl

n ≤ Z(fk) ≤ kr+1
n .

Recall a geometric fact: for t ∈ [i/n, (i + 1)/n], where 1 ≤ i ≤ n − 2, we
have that
(6.291)

fk(t) ≥ max{
fk(

i
n)− fk(

i−1
n )

1/n
(t− i

n
)+fk(

i

n
),
fk(

i+2
n )− fk

i+1
n )

1/n
(t− i+ 1

n
)+fk(

i+ 1

n
)}

and the right hand side are also attainable for some fk when {fk( i
n) : i =

0, 1, · · · , n} are given.
For 0 < t ≤ 1/n, we have that

(6.292) fk(t) ≥
f(2/n)− f(1/n)

1/n
(t− 1/n) + f(1/n)

and the right hand side is attainable for some fk when {fk( i
n) : i = 0, 1, · · · , n}

are given.
For 1 > t ≤ n− 1/n, we have that

(6.293) fk(t) ≥
f((n− 2)/n)− f((n− 1)/n)

1/n
(t− (n−1)/n)+f((n−1)/n).

On event B, we have that

(6.294) h(i) ≤ min
t∈[ i

n
, i+1

n
]
fk(t),

for i = tl, · · · , tr.
Therefore, on event A1 ∩B, we have that

(6.295) M̃k,lo ≤ fk(t).
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Also we have

P (A1 ∩B
∣∣A1 ∩Dc

2,k ∩ {jF,k ≥ J + 1})

= E
(
E(1{B}|{νlk,·, νrk,·})1{A1 ∩Dc

2,k ∩ {jF,k ≥ J + 1}}
)
/P (A1 ∩Dc

2,k ∩ {jF,k ≥ J + 1})

≥ 1− α/8s,

(6.296)

which gives the statement of the lemma.

Write M̃lo in the form

M̃lo =

f0 +

(
(|{k : jF,k ≤ J}| − 1) ·

f0 −
1

(n+ 1)s

∑
i∈{0,1,2,··· ,n}s

er({yi})

−

s∑
k=1

1{jF,k ≤ J}
√
2

σ

(n+ 1)
s−1
2

∑n
l=0 z

1
k,l

n+ 1
− zα/8 · 2

√
3

σ

(n+ 1)
s
2

s

)

+
s∑

k=1

(
M̃k,lo+

1{jF,k ≤ J}

 1

(n+ 1)s

∑
i∈{0,1,2,··· ,n}s

er({yi})− f0 +
√
2

σ

(n+ 1)
s−1
2

∑n
l=0 z

1
k,l

n+ 1

),

(6.297)
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we have

P
(
M̃lo > M(f)

∣∣∣A1 ∩
(
∩s
k=1D

c
2,k

))
≤ P

((∣∣{k : jF,k ≤ J}
∣∣− 1

)f0 −
1

(n+ 1)s

∑
i∈{0,1,2,··· ,n}s

er({yi})


−

s∑
k=1

1{jF,k ≤ J}
√
2

σ

(n+ 1)
s−1
2

∑n
l=0 z

1
k,l

n+ 1
− zα/8 · 2

√
3

σ

(n+ 1)
s
2

s > 0∣∣∣∣∣A1 ∩
(
∩s
k=1D

c
2,k

))

+

s∑
k=1

(
P

(
M̃k,lo +

1

(n+ 1)s

∑
i

er({yi})− f0 −M(fk) ≥ 0

∣∣∣∣∣A1 ∩Dc
2,k ∩ {jF,k ≤ J}

)
× P

(
A1 ∩Dc

2,k ∩ {jF,k ≤ J}
∣∣A1 ∩

(
∩s
k=1D

c
2,k

))
+ P

(
M̃k,lo ≥ M(fk)

∣∣∣∣∣A1 ∩Dc
2,k ∩ {jF,k ≥ J + 1}

)

× P
(
A1 ∩Dc

2,k ∩ {jF,k ≥ J + 1}
∣∣A1 ∩

(
∩s
k=1D

c
2,k

)))
.

(6.298)

Inequality (6.288) and Lemma 6.14 gives that the sum of the terms in the
summation is upper bounded by α/8s for each k.

For the first term, split it into summation of conditional probability on

A1 ∩
(
∩s
k=1D

c
2,k

)
∩ {jF,k = jk : k = 1, 2, · · · , s} times P (A1 ∩

(
∩s
k=1D

c
2,k

)
∩

{jF,k = jk : k = 1, 2, · · · , s}
∣∣∣A1 ∩

(
∩s
k=1D

c
2,k

)
) for legitimate j. Elementary

calculation show that the conditional probability on A1 ∩
(
∩s
k=1D

c
2,k

)
∩

{jF,k = jk : k = 1, 2, · · · , s} is upper bounded by α/8.
Therefore

P
(
M̃lo > M(f)

∣∣∣A1 ∩
(
∩s
k=1D

c
2,k

))
≤ α/8 + α/8 = α/4.

Therefore,

P (M(f) /∈ [M̃lo, M̃hi]) ≤P (Ac
1) +

s∑
k=1

P (D2,k) + P
(
M̃lo > M(f)

∣∣∣A1 ∩
(
∩s
k=1D

c
2,k

))
+ P

(
M̃hi < M(f)

∣∣∣A1 ∩
(
∩s
k=1D

c
2,k

))
≤ α.

(6.299)
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6.17.2. Proof of Proposition 6.14.

E(M̃hi − M̃lo) =zα/8
4
√
3σ

(n+ 1)
s
2

s+

s∑
k=1

E(M̃k,hi − M̃k,lo)

≤ zα/84
√
6

s∑
k=1

ρm(
σ

(n+ 1)
s
2

; fk)

√
ρz(

σ

(n+ 1)
s
2

; fk) +

s∑
k=1

E(M̃k,hi − M̃k,lo).

(6.300)

Recall that Dm(f ;n) defined in (6.150) also applies to univariate case by
setting s = 1, more specifically,
(6.301)

Dm(fk;n) = min{fk(
i

n
) : 0 ≤ i ≤ n}−min{M(h) : h(

i

n
) = fk(

i

n
) for 0 ≤ i ≤ n, h ∈ F}.

Then it is easy to see that

(6.302) Dm(f ;n) =

s∑
k=1

Dm(fk;n).

So it is sufficient to prove that the following holds for any k ∈ {1, 2, · · · , s}
(6.303)

E(M̃k,hi−M̃k,lo) ≤ Dm(fk;n)+C̃m,α,sρm(
σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)
,

where

C̃m,α,s =
(
2
√
3S210,α/8s + 3(zα/4s + 1)

)√
8 · 148 · 2 +

(√
3S210,α/8s + 2

)
· 32+

(6 + S212,α/24s + zα/48s/
√
2) · 210 ·

√
3 · 32.

(6.304)

This gives the statement of the proposition by taking C̄m,α,s = zα/84
√
6+

C̃m,α,s.
Next we will prove Inequality (6.303).
We have

E(M̃k,hi − M̃k,lo) ≤
E((M̃k,hi − M̃k,lo)1{jF,k ≤ J}) + E((M̃k,hi − M̃k,lo)1{jF,k > J}).

(6.305)
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For the first term we have

E((M̃k,hi − M̃k,lo)1{jF,k ≤ J})

=
(
2
√
3S210,α/8s + 3(zα/4s + 1)

) σ

(n+ 1)s−1
E(2

jF,k−J

2 1{jF,k ≤ J})

≤
(
2
√
3S210,α/8s + 3(zα/4s + 1)

) σ

(n+ 1)s−1

(
E(2

ĵk(ζ)+3−J

2 ) ∧ 1

)
≤
(
2
√
3S210,α/8s + 3(zα/4s + 1)

) σ

(n+ 1)s−1(√
8 · 148

n
ρm(

σ

(n+ 1)
s
2

; fk)2 ·
(

σ

(n+ 1)
s
2

)−2

∧ 1

)
≤
(
2
√
3S210,α/8s + 3(zα/4s + 1)

)
ρm(

σ

(n+ 1)
s
2

; fk)(√
8 · 148(n+ 1)

n
∧
√

2(n+ 1)

n

√
nρz(

σ

(n+ 1)
s
2

; fk)

)
.

(6.306)

The second to last inequality is due to Inequality (6.263).
Let C̃m,s,α,0 =

(
2
√
3S210,α/8s + 3(zα/4s + 1)

)√
8 · 148 · 2, we have

(6.307)

E((M̃k,hi−M̃k,lo)1{jF,k ≤ J}) ≤ C̃m,s,α,0ρm(
σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)
.

Now we turn to the second term in Equation (6.305). We introduce two
quantities first.
(6.308)

f̃k = min
(Ik,lo−1)∧0≤i≤(Ik,hi−1)∨n

fk(
i

n
), ĩk,m = argmin

(Ik,lo−1)∧0≤i≤(Ik,hi−1)∨n
fk(

i

n
).

Note that these two quantities depend on {νlk,·, νrk,·}.

E(
(
M̃k,hi − M̃k,lo

)
1{jF,k > J})

≤ E
((

M̃k,hi − f̃k

)
+
1{jF,k > J}

)
+ E

((
f̃k − M̃k,lo

)
+
1{jF,k > J}

)
.

(6.309)

Note that

(6.310) M̃k,hi ≤ νe
k,̃ik,m

+ S210,α/8s ×
√
3

σ

(n+ 1)
s−1
2

,
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hence we have that
(6.311)

E
((

M̃k,hi − f̃k

)
+
1{jF,k > J}

)
≤ P (jF,k > J)

( √
3σ

(n+ 1)
s
2

+ S210,α/8s

√
3σ

(n+ 1)
s−1
2

)
.

Lemma 6.15.
(6.312)

σ

(n+ 1)
s−1
2

P (jF,k > J) ≤ 32ρm(
σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)
.

Proof. Recall that ζ = α/4s ≤ 0.25. According to Lemma 6.13, we know
that when J ≥ jk(ζ) + 8,
(6.313)

P (jF,k > J) ≤ ΠJ−3
j=jk(ζ)+5Φ(−zζ + 2

3
2
(jk(ζ)+5−j) zζ+1

4
) < 0.4J−jk(ζ)−7.

By Lemma 6.9 and the definition of jk(ζ), we have that
(6.314)

0.4J−jk(ζ)−7 < 27 · 2jk(ζ)−J < 27 · 1

nξk(ζ)
≤ 28

1

nρz((zζ + 1)
√
6σ

(n+1)
s−1
2

√
n
; fk)

When nρz((zζ + 1)
√
6σ

(n+1)
s−1
2

√
n
; fk) ≥ 28, we have that

(6.315) 2jk(ζ)−J+8 <
1

nξk(ζ)
· 28 ≤ 29 · 1

nρz((zζ + 1)
√
6σ

(n+1)
s−1
2

√
n
; fk)

≤ 2.

Note that 2jk(ζ)−J+8 only takes integer value, hence we have jk(ζ)−J+8 ≤ 0.
Hence

σ

(n+ 1)
s−1
2

P (jF,k > J) ≤
√
2ρm(

σ

(n+ 1)
s
2

; fk) · 28
1√

nρz((zζ + 1)
√
6σ

(n+1)
s−1
2

√
n
; fk)

·
√
2

≤ 32ρm(
σ

(n+ 1)
s
2

; fk).

(6.316)
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Also, we always have

σ

(n+ 1)
s−1
2

P (jF,k > J) ≤ σ

(n+ 1)
s−1
2

≤
√
2ρm(

σ

(n+ 1)
s
2

; fk)

√
n+ 1

n

√
nρz(

σ

(n+ 1)
s
2

; fk)

≤ 32ρm(
σ

(n+ 1)
s
2

; fk)

√
nρz(

σ

(n+1)
s
2
; fk)

28

(6.317)

Note that when

√
nρz(

σ

(n+1)
s
2
;fk)

28
≥ 1, we have nρz((zζ+1)

√
6σ

(n+1)
s−1
2

√
n
; fk) ≥

28, in which case we have Inequality (6.316) holds.
So we have

σ

(n+ 1)
s−1
2

P (jF,k > J) ≤ 32ρm(
σ

(n+ 1)
s
2

; fk)

1 ∧

√
nρz(

σ

(n+1)
s
2
; fk)

28


≤ 32ρm(

σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)
.

(6.318)

With Lemma 6.15, going back to inequality (6.311), we have

E
((

M̃k,hi − f̃k

)
+
1{jF,k > J}

)
≤

(√
3S210,α/8s + 2

)
· 32ρm(

σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)
.

(6.319)

Now we turn to the second term in Inequality (6.309).
We have the following lemma
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Lemma 6.16. Let Dm(fk;n) be defined in (6.301). Then we have

E
((

f̃k − M̃k,lo

)
+
1{jF,k > J}

)
≤Dm(fk;n) + (6 + S212,α/24s + zα/48s/

√
2) · 210 ·

√
3×

32ρm(
σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)
(6.320)

Proof. We first recall a basic geometry property of univariate convex
functions. Suppose f is a convex function. For any 0 ≤ i ≤ j ≤ n, we have
that

(6.321) min
i≤l≤j

{f( l
n
)} − min

i
n
≤t≤ j

n

f(t) ≤ min
0≤l≤n

{f( l
n
)} − min

0≤t≤1
f(t).

For 0 ≤ i ≤ n−1, we define a reference number h̃(i), which is the smallest
number a function h could achieve on [i/n, (i+ 1)/n] when it has the same
values with fk on the grid points (i.e 0, 1/n, 2/n, · · · , 1).

h̃(i) = min
i/n≤t≤(i+1)/n

max
{
fk(

i+ 1

n
) +

fk(
i+2
n )− fk(

i+1
n )

1/n
(t− i+ 1

n
),

fk(
i

n
) +

fk(
i−1
n )− fk(

i
n)

1/n
(t− i

n
)
}
,

(6.322)

where f(−1/n) = ∞ = f(n+1
n ) and ∞× 0 is set to 0.

Therefore, we have that

E
((

f̃k − M̃k,lo

)
+
1{jF,k > J}

)

≤ E

E

(f̃k − min
tl≤i≤tr

h̃(i)) +

kr∑
i=kl

(h̃(i)− h(i))+

∣∣∣{νr·,·, νl·,·}
1{jF,k > J}


≤ Dm(fk;n)P (jF,k > J) + E

 kr∑
i=kl

E
(
(h̃(i)− h(i))+

∣∣∣{νr·,·, νl·,·})1{jF,k > J}

 .

(6.323)

Now we are left with bounding the second term.
Recollect the notation δi = νek,i − fk(

i
n) for 0 ≤ i ≤ n, and δi = 0 for

i /∈ {0, 1, · · · , n}.
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Elementary calculation shows that

(6.324) (h̃(i)− h(i))+ ≤ 2|δi|+ 2|δi+1|+ |δi−1|+ |δi+2|+ 3H.

And note that for fixed i , δi−1, δi, δi+1, δi+2 are independent from {νl·,·, νr·,·}.
Also δi ∼ N(0, n

n+1
3σ2

(n+1)s−1 ).

Therefore, we have that

E

 kr∑
i=kl

E
(
(h̃(i)− h(i))+

∣∣∣{νr·,·, νl·,·})1{jF,k > J}


≤

√
3σ

(n+ 1)
s−1
2

(6 + S212,α/24s + zα/48s/
√
2) · 210P (jF,k > J)

≤ (6 + S212,α/24s + zα/48s/
√
2) · 210 ·

√
3×

32ρm(
σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)
.

(6.325)

The last inequality comes from Lemma 6.15.
This concludes the proof of Lemma 6.16.

Now, combining Lemma 6.16, Inequality (6.309), Inequality (6.319) and
Inequality (6.307), we have that
(6.326)

E(M̃k,hi−M̃k,lo) ≤ Dm(fk;n)+C̃m,α,sρm(
σ

(n+ 1)
s
2

; fk)

(
1 ∧

√
nρz(

σ

(n+ 1)
s
2

; fk)

)
,

where

C̃m,α,s =
(
2
√
3S210,α/8s + 3(zα/4s + 1)

)√
8 · 148 · 2 +

(√
3S210,α/8s + 2

)
· 32+

(6 + S212,α/24s + zα/48s/
√
2) · 210 ·

√
3 · 32.

(6.327)
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